Abstract

Active Learning for discriminative models has largely been studied with the focus on individual samples, with less emphasis on how classes are distributed or which classes are hard to deal with. In this work, we show that this is harmful. We propose a method based on the Bayes’ rule, that can naturally incorporate class imbalance into the Active Learning framework. We derive that three terms should be considered together when estimating the probability of a classifier making a mistake for a given sample; i) probability of mislabelling a class, ii) likelihood of the data given a predicted class, and iii) the prior probability on the abundance of a predicted class. Implementing these terms requires a generative model and an intractable likelihood estimation. Therefore, we train a Variational Auto Encoder (VAE) for this purpose. To further tie the VAE with the classifier and facilitate VAE training, we use the classifiers’ deep feature representations as input to the VAE. By considering all three probabilities, among them, especially the data imbalance, we can substantially improve the potential of existing methods under limited data budget. We show that our method can be applied to classification tasks on multiple different datasets – including one that is a real-world dataset with heavy data imbalance – significantly outperforming the state of the art.

1. Introduction

Active learning focuses on efficient labelling of data and has drawn much interest lately [38,41,48], due to deep learning being attempted at new domains, such as biomedical imaging [3,16] and industrial imaging [27,49], where acquiring data can be costly [39]. Even for cases where data is not scarce, the effective usage of data may reduce training time, therefore the computational cost, including carbon foot-prints required to train each model. There have been various studies based on semi-supervised [7,21] and unsupervised [37,46] learning schemes to improve the training efficiency of data. However, with limited labelling budget, the performance of the studies are significantly worse to the
supervised learning with the additionally labelled data [35]. In other words, their label efficiency could be improved.

Existing methods [4, 10, 38, 41, 48], regardless of how they are formulated, have a common underlying assumption that all classes are equal – they do not consider that some classes might just be harder to learn compared to others, or some classes might be more prevalent in the dataset than others. Instead, they focus on, given a data sample, how much error a trained model is expected to make, or the estimated uncertainties [10, 48]. These assumptions could be harmful, as in practice, since data is often imbalanced and not all classes are of the same difficulty [1, 51]. This can create a bias in the labelled data pool, leading to the trained classifier and active learning methods also being biased in deciding which samples to label. As we show in Fig. 1, this can damage the capabilities of an active learning method significantly, even for typical benchmark datasets [6, 22].

In this work, we present a novel formulation for active learning, based on the classical Bayes’ rule that allows us to incorporate multiple factors of a classification network together. Through derivation, we show that the probability of a classifier making mistakes can be decomposed into three terms: i) the probability of misclassification for a given predicted class, ii) the likelihood of a sample given predicted class, and iii) the prior probability of a class being predicted. In other words, one needs to take into account i) the difficulty of a class, ii) the performance of the classifier and iii) the abundance of a certain class of data holistically when determining the potential of a classification error. We take all of them into account and choose samples to be labelled by selecting those that have the highest misclassification probability.

While the task is discriminative, our method requires the estimation of likelihood, which could be intractable. We, therefore, propose to use a Variational Auto Encoder (VAE) [20] to model the lower bound of the likelihood of a sample. To make VAE conditioned on a predicted label, a naive way would be applied to train multiple VAEs for each predicted class. However, this quickly becomes impractical with a large number of classes. We thus propose to train a single VAE, with regularisation that acts as conditioning based on the predicted label. To further tie the VAE with the classifier, and for quick training of the VAE, we use the deep feature representations of the classifier as inputs to the VAE. Being generative, this training of VAE does not involve any labels, and we utilise the vast amount of unlabelled data with their predicted labels while inferring probabilities that are independent of data samples on the labelled ones.

We show empirically in Section 4 that our method allows a significant leap in performance for the benchmark dataset and the real application dataset, especially when the labelling budget is highly limited. Furthermore, we posit that considering the prior, that is, the distribution of labels during training, is critical when analysing the uncertainty of estimates.

In summary, our contributions are four-fold:
- we derive a novel formulation for active learning based on the Bayes’ rule and posterior probability;
- we propose a framework based on VAE that realises this formulation;
- we reveal that considering the differences between classes – abundance and difficulty – is important;
- we outperform the state of the art in the various experiments.

2. Related Works

Traditional Active Learning. Increasing the label efficiency, thus reducing the cost associated with obtaining labels, has been of interest for decades. Even before deep learning became popular, various methods were suggested towards this goal [39]. Methods were proposed to estimate the uncertainty of the unlabelled samples through the probability of prediction [24], the difference between the best prediction and the second one [25, 30, 36], or the entropy covering all the possible classes [17, 40]. For support vector machine classifiers the methods were suggested to utilise the distance from the decision boundary, for both the classification task [26, 43] and the detection task [44]. The algorithms clustering and finding representative samples were also suggested as another way [2, 12, 32].

Discrete optimisation algorithms have been proposed to consider the relationship between the sampling result and the model performance [8, 11, 47]. In a voting scheme-based algorithm [31], multiple different models are trained by the labelled pool, which determines the next queries according to their disagreement. Despite these efforts, the classical approaches are geared towards simple features and may hold limitations when applying to a large deep network with many nonlinear estimations.

Active Learning for deep networks. Active learning algorithms for deep networks can be categorised into uncertainty-based methods and representation-based methods. The uncertainty-based methods aim to select the uncertain samples from the unlabelled data pool and annotate them to increase the labelled pool [4, 10, 48]. Yoo and Kwon [48] proposed to use a small auxiliary “module” network predicting the training loss of the baseline network that is being trained with the active learning scheme. They then select the samples that are expected to give high losses. While their method is similar to ours in that an additional network is trained, as they require a ground-truth loss value while training, the auxiliary network can only be trained with labelled data, creating yet another network that the performance depends on how data is sampled. In contrast, we train our VAE with unlabelled data since we only rely on the pre-
dicted labels from the baseline network during training, and result in stable performance even with few labelled data. Gal et al. [10] proposed a method based on the estimation of sample-wise posterior probability through a Bayesian deep learning [9] framework. The method can be implemented simply by locating several dropout layers in a deep network, but this increases training time significantly until the convergence. Beluch et al. [4] suggest an active sampling method that estimates the disagreement of the prediction by using multiple deep networks. The downside of their method is that, as they use multiple networks, the memory and the computational requirement increases proportionally.

The representation-based methods target on finding representative samples within the high-dimensional space that deep networks learn [38,41]. Sener and Savarese [38] proposed the Coreset algorithm that determines representative samples by using the feature maps of the intermediate layers of a deep network, rather than the last layer. However, the optimisation method in the Coreset algorithm does not scale well as the number of classes, and the number of unlabelled samples grows. To improve the scalability, Sinha et al. [41] proposed to map the high dimensional feature maps into a lower dimension through adversarial training. Unfortunately, being based on adversarial training, the method requires a large amount of training data for the mapping to be reliable.

Beyond them, hybrid approaches combine the best of both uncertainty-based and representation-based methods [34,50]. Some works focused on a specific task: for example person re-identification [29] and a human pose estimation [28].

While our work is most similar to uncertainty-based methods, it falls into neither uncertainty-based nor representation-based methods. Contrary to the previous uncertainty-based works, we take into account characteristics that are not restricted to a single sample – we consider the class difficulty and class imbalance. Also, unlike the representation-based methods, we are not aiming to find representative samples, but a global trend of samples that are predicted to belong to a certain class.

Semi-supervised learning with VAEs. As we utilise VAEs [20], we also briefly review works related to VAEs that associate them with labelled data. Since VAEs model the likelihood of data, Lee et al. [23] used them to identify out-of-distribution samples for each class. We are loosely inspired by them, as we also use conditioned VAEs. However, unlike them, we estimate one portion of our conditional probabilities in estimating the label correctness. M2 VAE models [19] and Conditional VAEs [42] have been proposed to model conditional distributions. They directly add the condition as an additional latent dimension that is trained independently with the other latent dimensions for the reconstruction. In contrast, we apply conditioning implicitly during training to represent the class information and the feature distribution in the same latent dimensions. In our early attempts, we were not able to obtain successful modelling for our application with the former.

3. Methodology

We first formally describe the active learning problem and detail how we select new samples to be labelled with the estimated correctness of predictions. We then derive our method via Bayes’ rule and describe how our derivation can be implemented in practice through a VAE. Afterwards, we provide a summary of how we tie every component together as an active learning algorithm and implementation details.

3.1. Problem formulation

Active learning can be formulated as a problem of increasing the pool of labelled data at every round by labelling subsets of the unlabelled pool. Formally, given a pool of data \(P \), we keep a pool of labelled data \(P_L \) and unlabelled data \(P_U \), such that \(P = P_L \cup P_U \) and \(\emptyset = P_L \cap P_U \). Then, for each active learning round \(r \), we select \(P_S^{(r)} \) that is a subset of \(P_U \) with \(N_r \) samples according to a criterion that defines the active learning method, which is moved from \(P_U \) to \(P_L \). Thus, \(P_U^{(r+1)} = P_U^{(r)} - P_S^{(r)} \) and \(P_L^{(r+1)} = P_L^{(r)} + P_S^{(r)} \).

The core of active learning is how \(P_S^{(r)} \) is selected, which in our case is based on the probability of a model providing a wrong answer for the given data.

Active learning based on the probability of wrong predictions. The underlying idea of our method is that when acquiring data with a limited labelling budget, one should acquire those that have the highest probability of making wrong predictions [10,25,29,48]. Formally, if we let \(y \) denote the real label and \(\hat{y} \) the label predicted by a model, we find samples \(x \) with large

\[
p(y \neq \hat{y} | x).
\]

Unfortunately, this is not a probability distribution that can be modelled directly, and we, therefore, estimate this probability via Bayes’ rule and approximations.

3.2. Bayesian active learning

We now derive our Bayesian formulation. To estimate \(p(y \neq \hat{y} | x) \), we take an alternative route through Bayes’ rule, instead of the direct estimation that could be given by a discriminative model. We first represent this probability with its complement, which can then be written as the sum of joint probabilities. We write

\[
p(y \neq \hat{y} | x) = 1 - p(y = \hat{y} | x) = 1 - \sum_{n=1}^{N_c} p(y_n, \hat{y}_n | x),
\]

where \(N_c \) is the number of classes and \(p(y_n) \) and \(p(\hat{y}_n) \) is a shorthand for \(p(y = n) \) and \(p(\hat{y} = n) \), respectively.
Then, each \(p(y_n, \hat{y}_n | x) \) within the summation can be written through Bayes’ rule as following:

\[
p(y_n, \hat{y}_n | x) = \frac{p(y_n | \hat{y}_n, x) p(x | \hat{y}_n) p(\hat{y}_n)}{\sum_{n=1}^{N} p(x | \hat{y}_n) p(\hat{y}_n)}.
\]

(3)

Here, \(p(y_n | \hat{y}_n, x) \) corresponds to the probability of the real label being \(n \), given that the predicted label is \(n \) and the data being \(x \). However, this is a probability that cannot be evaluated unless we have the paired true label. Thus, we instead do an informed guess, by ignoring \(x \) and approximating with \(p(y_n | \hat{y}_n) \). In other words, we assume that the probability of a model making a mistake is highly related to the label. Thus we approximate by writing

\[
p(y_n, \hat{y}_n | x) \approx \frac{p(y_n | \hat{y}_n) p(x | \hat{y}_n) p(\hat{y}_n)}{\sum_{n=1}^{N} p(x | \hat{y}_n) p(\hat{y}_n)}.
\]

(4)

Finally, with Eq. (2), we have

\[
p(y \neq \hat{y} | x) \approx 1 - \sum_{n=1}^{N} \frac{p(y_n | \hat{y}_n) p(x | \hat{y}_n) p(\hat{y}_n)}{\sum_{n=1}^{N} p(x | \hat{y}_n) p(\hat{y}_n)}.
\]

(5)

Note that here, i) \(p(y_n | \hat{y}_n) \) is the probability of a model making mistake based on label, ii) \(p(x | \hat{y}_n) \) is the likelihood of a sample given predicted label, iii) \(p(\hat{y}_n) \) is the prior on the distribution of predicted labels, which represents how imbalanced the predictions of a model are. As mentioned earlier in Section 1, the likelihood estimation is non-trivial and requires a generative model. Furthermore, through our Bayesian formulation, the confirmation bias of pseudo-labels can be alleviated. The prior terms would encode whether such a bias exists, and compensate for it. As our formulation is probabilistic, the predictions would not be affected as drastically as other heuristic methods. We now detail how we model these three probabilities.

3.3. Estimating probabilities with regularized VAE

To estimate the probabilities, we use a VAE [20]. Before we discuss the details, let us first clarify that we train this VAE exclusively in the unlabelled data pool \(\mathcal{P}_U \), and associate it with the behaviour of the discriminative model on unseen data. We do not use the labelled pool \(\mathcal{P}_L \), as it is likely that the classifier has overfitted to the data. Note also that while we explain in terms of \(x \), in fact, we use the deep feature representations given by the classifier to tie the VAE more with the classifier and to facilitate training by removing the need of learning the deep features. See Fig. 2 for an illustration of our framework.

We first detail why and how we estimate the likelihood with a VAE and then discuss the other two probabilities.

Likelihood of a sample \(- p(x | \hat{y}_n) \). Estimating \(p(x | \hat{y}_n) \) is not straightforward. A naive idea would be to implement multiple generative models that model \(p(x) \), each trained with labels predicted to be of a certain class. However, this becomes quickly impractical as the number of classes grows. Moreover, estimating \(p(x) \) can be intractable in practice [20].

In our work, we use a single VAE to estimate the lower bound of \(p(x | \hat{y}_n) \) for all \(\hat{y}_n \). We use a VAE, as it learns to reconstruct the data sample using the tractable lower bound for \(p(x) \). Distinct from existing work, to condition the \(p(x) \) based on predicted labels, we propose to learn a latent space where the absence of parts of the latent embeddings are related to the predicted label. In other words, this is as if we are training multiple VAEs with shared weights and overlapping latent spaces. Once such latent embeddings are learned, we compute the lower bound of \(p(x | \hat{y}_n) \), by simply enforcing the absence manually via masking – thus selecting a VAE dedicated to a certain predicted class among the multiple virtual VAEs – and computing \(p(x) \). This strategy allows us to have a manageable latent space while still being able to deal with many classes.

In more detail, if we denote the \(j \)-th embedding dimension of VAE as \(z_j \) and write \(j \in \mathbb{C}_n \) to denote dimension \(j \) is related to class \(n \), we write this absence condition as

\[
\hat{y} = \text{argmin}_n \left[\sum_{j \in \mathbb{C}_1} z_j^2, \sum_{j \in \mathbb{C}_2} z_j^2, \ldots, \sum_{j \in \mathbb{C}_{\mathbb{C}_n}} z_j^2 \right]^T.
\]

(6)

Notice how this condition is conceptually similar to disentangled representations [5,42]. In our earlier attempts, we have also tried forming this condition as disentangled representations or enforcing \(\sum_{j \in \mathbb{C}_n} z_j^2 \) to be zero if \(\hat{y}_n \), which neither was successful. We suspect that enforcing such constraints limit the capacity of the latent space and interferes with the training of the VAE too much. We have also tried other ways of enforcing absence – using the \(\ell - 1 \) norm or the sigmoid – but using the square worked best. We provide empirical results in Section 4.4.

We enforce this constraint as a form of regularisation. Let \(w = [w_1, w_2, \ldots, w_n]^T \), where \(w_n = \sum_{j \in \mathbb{C}_n} z_j^2 \), then we form an additional regularisation loss \(L_{\text{Class}} \) to be used...
during training of VAE as
\[\mathcal{L}_{\text{Class}} = \mathcal{H} \left(\text{softmax} \left(-\mathbf{w} \right), \mathbf{y} \right), \]
(7)

where \(\mathcal{H} \) denotes the cross entropy, \text{softmax} is the softmax, and \(\mathbf{y} \) is the one-hot encoded vector representation of \(\hat{y} \). With this regularisation term, recall from [20], that the training loss for VAEs \(\mathcal{L}_{\text{VAE}} \) is the inverse of the empirical lower bound (ELBO) of the likelihood, which is defined as
\[\mathcal{L}_{\text{VAE}} = -\mathbb{E}_{z \sim q_\phi(z|x)} \left[\log p_\theta(x|z) \right] + D_{KL}(q_\phi(z|x) \parallel p(z)) , \]
(8)

where \(p_\theta(x|z) \) is the decoder with parameters \(\theta \) and \(q_\phi(z|x) \) is the encoder with parameters \(\phi \). Therefore, the total loss to train our VAE is
\[\mathcal{L} = \mathcal{L}_{\text{VAE}} + \lambda \mathcal{L}_{\text{Class}}, \]
(9)

where \(\lambda \) is a hyperparameter that controls the regularisation strength. Note that with this loss, the VAE now also tries to mimic the behaviour of the classifier.

Once the VAE is trained, this VAE – without any conditioning – is now able to estimate the lower bound of the likelihood of a given data \(p(x) \) [20] by simply computing the inverse of value of \(\mathcal{L}_{\text{VAE}} \). Furthermore, by masking the embedding space associated with \(\hat{y} \) with zero, we can compute the lower bound of \(p(x|\hat{y}) \). To avoid the decoder going too far from the latent embeddings, it was trained for, we use Eq. (6) to obtain \(\hat{y} \), instead of the one from the classifier.

Probability of labelling error – \(p(y_n | \hat{g}_n) \). While the labelled pool \(\mathcal{P}_L \) is the only set of data that we have labels for, as the trained classifier is likely to have overfitted to \(\mathcal{P}_L \), we cannot use it for modelling this probability. We, therefore, use the labels given by the VAE for the data samples in the labelled pool \(\mathcal{P}_L \). Note that the VAE has never seen these data points during training. Mathematically, if we denote the \(i \)-th sample as \(x^{(i)} \), its label as \(y^{(i)} \), the predicted label from Eq. (6) as \(\hat{y}^{(i)} \), and introduce an indicator function \(\delta \) that is 1 if all inputs are equal and 0 otherwise, we write
\[p(y_n | \hat{g}_n) \approx \frac{E_{x \in \mathcal{P}_L, z \sim q_\phi(z|x)} \left[\delta \left(y^{(i)}, \hat{y}^{(i)} \right), n \right]}{E_{x \in \mathcal{P}_L, z \sim q_\phi(z|x)} \left[\delta \left(\hat{y}^{(i)}, n \right) \right]} . \]
(10)

Here, we approximate the expectations with Monte Carlo estimates. Note that we also take the expectation over \(z \), to take into account the stochastic nature of VAEs.

Prior – \(p(\hat{g}_n) \). The prior is also acquired by using the labelled samples included in \(\mathcal{P}_L \) as this probability should be related to how the classifier is trained. Same as in the case of \(p(y_n | \hat{g}_n) \), we cannot use the classifier predictions for the labelled pool, and we use the predictions from the VAE. Thus, sharing the notations as in Eq. (10), we write
\[p(\hat{g}_n) \approx E_{x \in \mathcal{P}_L, z \sim q_\phi(z|x)} \left[\delta \left(\hat{g}^{(i)}, n \right) \right] . \]
(11)

3.4. Summary and implementation details

We summarise our method in Algorithm 1. For each Active Learning round \(r \), we train a classifier \(\mathcal{M}^{(r)} \) with the labelled pool \(\mathcal{P}_L^{(r)} \). We then freeze the weights of the classifier, and train our VAE – \(p_\theta^{(r)}(x|z) \) and \(q_\phi^{(r)}(z|x) \) – with the unlabelled pool \(\mathcal{P}_U^{(r)} \). We then estimate the three probabilities, which we use to construct the final estimate of \(p(y \neq \hat{g}|x) \), and sample those from \(\mathcal{P}_U^{(r)} \) that have the highest value.

As noted earlier, we use the deep features of the baseline network (the classifier) as input to the VAE. Specifically, we extract deep features from the specific four layers of baseline. If the feature representations are from fully-connected layers, we use it as is. If it is from a convolutional layer, thus a feature map, we first apply global average pooling. We then apply batch normalisation to each feature, so that they are roughly in the same range, and feed it to a fully connected layer with 128 neurons and Sigmoid activation. Finally, the outputs from these fully-connected layers are concatenated to form a \(512 \times 1 \) vector and given as input to the VAE.

For the architecture of VAEs, we opt for a simple one as the deep features already have abstracted context. We apply four layers of fully connected layers with again 128 neurons and ReLU activations, with the exception of the layer that outputs the latent embeddings. For this layer, we use \(10 \times N_c \) weights and dedicate 10 dimensions per each class.

We implement our method with PyTorch [33]. To train our VAE, we set \(\lambda = 0.005 \) in Eq. (9), for all tasks. We use Adam optimiser [18] with a learning rate of \(10^{-4} \) and default parameters. We train for 20 epochs. To remove randomness from experiments, we perform our training multiple times with different initial conditions. We report both the average and the standard deviation of our experiments. For inference, to perform the Monte Carlo estimation in Eqs. (8), (10), and (11), we iterate the inference 100 times for every sample.
4. Experimental Results

We first introduce the dataset, then the experimental setup, including the classification network and the compared baselines. We then report our results and discuss the effect of the individual probability terms through an ablation study.

4.1. Dataset

To validate our experiments we apply our method to the standard CIFAR-10 and CIFAR-100 [22] datasets as well as the Northeastern University surface defect classification dataset (NEU) [14]. We use the CIFAR datasets to be comparable with recent Active Learning studies [41], and NEU to demonstrate that class imbalance is important in real-world applications. In more detail, the CIFAR-10 dataset contains 60,000 images sized by $32 \times 32 \times 3$ with 10 classes. The CIFAR-100 dataset also consists of 60,000 images of the $32 \times 32 \times 3$ size with 100 classes. Both the CIFAR-10 and the CIFAR-100 datasets are well balanced – all included images are assigned exactly one class among the 10 or the 100, and the number of instances per each class is equal. The datasets come with a pre-determined training and evaluation split of 50,000 and 10,000 images, respectively. The goal of the NEU dataset is to classify the 9 defect types on steels. The main feature of this dataset is that it is heavily imbalanced – the number of instances per class varies from 200 to 1589. In total, the NEU dataset contains 7226 defect images of size 64×64 pixel. This dataset does not provide pre-determined splits, and we thus randomly reserve 20% of the dataset for evaluation. This results in 5778 training samples and 1448 validation samples.

Introducing synthetic class imbalance. To demonstrate the importance of considering class-wise probabilities, we build additional variants of CIFAR datasets by removing a part of the samples in CIFAR-10 and CIFAR-100. First, we build four datasets that have dominant classes within them – we hereafter refer to them as dominant datasets. A real-world example would be when scraping data from the internet – there will be many images of people, cats, and dogs, but not so many of platypus. The first three dominant datasets are built from CIFAR-10 by randomly removing 90% samples of every category except for the $\{1, 5, 10\}^{th}$ classes, respectively. For CIFAR-100, as there are many classes, there are only a few instances each – 500 for each class in the training set. We, therefore, build the last dominant dataset by removing 40% of the original samples for all categories other than the middle ones from 45^{th} class to 55^{th} class, from the CIFAR-100 dataset. We denote these dominant datasets as $CIFAR-10^{+[1]}$, $CIFAR-10^{+[5]}$, $CIFAR-10^{+[10]}$, and $CIFAR-100^{+[45:55]}$, respectively.

We further consider the case when some samples are rare. This would be, for example, cases where there are rare events, such as accidents or defects that need to be discovered. Similar to the dominant datasets, we build rare datasets by taking certain classes away from CIFAR datasets. Specifically, we use three variants, where we remove 90% of the samples that correspond to the $\{1, 5, 10\}^{th}$ classes. We denote these as $CIFAR-10^{-[1]}$, $CIFAR-10^{-[5]}$, and $CIFAR-10^{-[10]}$, respectively.

With these datasets, we run different active learning setups, based on the size of the dataset. For NEU, we run five active learning rounds, where each round samples 250 samples. For CIFAR-10 based ones, we run six active learning round, which 500 samples each. For CIFAR-100, we run five rounds with 1000 samples each.

4.2. Experimental setup

The baseline classification network. As the baseline classifier, we utilise ResNet-18 [13]. This network is composed of an initial simple convolution layer, followed by four basic residual blocks. As discussed previously in Section 3.4, the output feature maps from these four residual blocks are used to form the input to our VAE. At every Active Learning round, we train the network for 200 epochs, with a batch size of 128. We train with a typical setup for classification on CIFAR-10: SGD with the momentum of 0.9, weight decay of 0.0005, the learning rate is also initialised as 0.1 and decreased to 0.01 after 160 epochs. We repeat the same experiments with the different random seeds three times to remove the randomness from our experiments.

The competitors. To demonstrate the effectiveness of the proposed algorithm, we compare our method with the state-of-the-art for active learning. We consider VAAL [41], DBAL [10], and Core-set [38]. We utilise the author’s implementation for VAAL and Core-set. For DBAL we utilise the author’s implementation to our framework to utilise our baseline classification network – this method is architecture dependent. In more detail, we utilise the authors’ code for uncertainty estimation and embed it into ours. Among the multiple methods to estimate the uncertainty in DBAL, we use the Bayesian Active Learning by Disagreement (BALD) [15] as the estimation method – it showed the best generality in our experiments. For the dropout layers of DBAL, we place them before each the residual blocks of the ResNet and fix the dropout ratio to 0.25. As suggested by the authors [10], we further use 100 samples to estimate the uncertainty. In addition, we also consider uniform random sampling as a baseline. Finally, for a fair comparison, after new samples are extracted by these methods, we train the networks with the same random seed to exclude any random surprises.

4.3. Comparison results

NEU dataset – a real-world imbalanced dataset. We first compare different methods on the NEU dataset, which is a typical case of an imbalanced real-world dataset. We report
the results in Fig. 3(a). As shown, the proposed method delivers improved performance, especially for the early iterations. Methods here mostly converge after 5 rounds, but the small difference in the later rounds are simply the results of using most of the available data. Hence, focus should be in the earlier stages, where our method dominates. Specifically, on the second round, our method performs 8.3% better than the second best method that is CoreSet. Interestingly, for this small dataset, VAAL performs worse than simple random selection because VAAL requests a lot of labels to bake in.

Dominant datasets. We now consider the dominant variants. In the dominant situation, a large part of the entire training samples is dedicated to a few specific categories – in the case of CIFAR-10, just one. In Fig. 3(b), we average the results from CIFAR-10+1, CIFAR-10+5, and CIFAR-10+10 that we run three times each – a total of nine experiments. As shown, the proposed method outperforms the compared methods by a significant margin. Especially, we perform 4.0% better than the second best in the third round. This gap comes from the fact that the dataset is biased, and this causes the active learning methods also to become biased. However, our method successfully mitigates this class imbalance and provides improved performance.

A similar phenomenon happens when there are more classes. In Fig. 3(c), we report results for CIFAR-100+45:55. Here, it is worth noting that all compared methods perform worse than Random. This is because the dataset has 100 classes, and it is easy to start ignoring a certain class. Nonetheless, our method is the only method that provides improved label efficiency. To mitigate this, existing works have only studied when there is a sufficient number of labels from the beginning – for example in VAAL41, 10% of the entire set. However, this greatly limits the applicability of active learning methods, as 10% is sometimes already too much to afford. In appendix A.1, we present the additional results of our method with the different classifier.

Rare datasets. We further test the case when some classes are rare. In Fig. 3(d), we show the average performance of each method on the three rare datasets – CIFAR-10−1, CIFAR-10−5, and CIFAR-10−10. Similar to the dominant case, our method shows the best performance among the compared methods. Interestingly, in this case, similar to the results with CIFAR-100+45:55, existing methods perform worse than the random baseline. Again, this is because existing methods can break down easily without enough labelled samples from the beginning. This is a limitation our method does not have.

On the full dataset. For completeness, we further study how methods perform with the full CIFAR-10 and CIFAR-100 datasets. However note that, as we demonstrated previously, these datasets are with perfect data balance, which is not the case for real-world datasets. We report a summary of these results in Figures Fig. 3(e) and (f). Our method performs comparable to existing methods for CIFAR-10 and outperforms existing methods for CIFAR-100. However, experiment for CIFAR-100 shows a limitation of active learning methods including ours, that when there are too many classes and very few examples, their performances are close to random, and sometimes even worse. Nonetheless, compared to existing methods, our method performs best, even in this extreme situation.

Additional results. In the supplementary document, we provide the original plots for all experiments before averaging. From them, we can confirm that the proposed method outperforms existing methods consistently for various situations.

4.4. Ablation study

4.4.1 Effectiveness of \(p(\hat{y}) \) and \(p(y_n|\hat{y}) \).

To validate their effectiveness, we perform an ablation study by excluding one or both of the prior (\(p(\hat{y}) \)) and the label difficulty (\(p(y|\hat{y}) \)) – we artificially set either to 1. We use
Table 1. Validity of the prior $p(\hat{y})$ and label difficulty $p(y|\hat{y})$.

| $p(\hat{y})$ | $p(y|\hat{y})$ | CIFAR-10 | | CIFAR-10$^{+}$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>82.56%</td>
<td>88.66%</td>
<td>48.02%</td>
</tr>
<tr>
<td>✓</td>
<td>-</td>
<td>82.91%</td>
<td>90.68%</td>
<td>54.23%</td>
</tr>
<tr>
<td>-</td>
<td>✓</td>
<td>82.71%</td>
<td>90.51%</td>
<td>51.86%</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>83.36%</td>
<td>91.12%</td>
<td>54.16%</td>
</tr>
</tbody>
</table>

CIFAR-10 and CIFAR-10$^{+}$ for these experiments to remove randomness. To avoid tuning on the test set, we use the validation splits for these experiments. We take the average performance over all active learning rounds and also the average final performance. We summarise the results in Table 1. We report both the average performance over all six active learning rounds (avg.) and the performance of the final round (final). We run each experiment three times and report the average. As shown, all terms contribute to performance improvement. We observe that all terms contribute to providing the best performance. Among the two terms, the prior ($p(\hat{y})$) provides more gain compared to the label difficulty ($p(y|\hat{y})$), demonstrating that it is critical to take data imbalance into account. We show an example of the two terms in action in Fig. 4. Our method balances the training data even when the dataset is imbalanced.

4.4.2 Robustness for various budgets and λ values

To analyse the sensitivity of the proposed framework against the user-defined parameters, we report the result of our method with various sampling budgets and λ values in Eq. (9): see Fig. 5(a). Regardless of the choice of the budget size, our method outperforms all compared methods. Smaller budget size tends to allow methods to react faster to the training outcomes and increase the effectiveness of active learning.

In Fig. 5(b) we report the performance of our method with varying λ. We test with various λ, which do affect the performance of the proposed method to some degree. However, as before in the case of the budget, our method outperforms all compared methods regardless of the choice of λ. This further hints that the two-loss terms that we train for in Eq. (9) do not compete. Note that $\lambda = 0$ completely disables $p(\hat{y})$ and $p(y|\hat{y})$, as \hat{y} estimation becomes meaningless, which causes the method to perform significantly worse as shown earlier in Table 1, and we have therefore left it out in this figure to reduce clutter; see supplementary appendix for full results.

5. Conclusion

We have proposed a novel active learning method that incorporates class imbalance and label difficulty. Our method was derived through the Bayes’ rule, which results in three types of probabilities – data likelihood, label prior, label difficulty – being considered together. We implement our method via a VAE, that is regularised to behave as a conditional VAE. We have shown that this creates a significant difference for a real-world dataset that exhibits data imbalance, as well as in cases when data imbalance is introduced to CIFAR-10 and CIFAR-100 datasets.

While we limit our experiments to classification in this work, our method is application agnostic. In the future, we plan to extend our work to other discriminative tasks, for example, object detection and segmentation.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, Compute Canada, and the Chung-Ang University Research Grants in 2020.
References

