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Abstract

We introduce Mask-ToF, a method to reduce flying pixels

(FP) in time-of-flight (ToF) depth captures. FPs are perva-

sive artifacts which occur around depth edges, where light

paths from both an object and its background are integrated

over the aperture. This light mixes at a sensor pixel to pro-

duce erroneous depth estimates, which can adversely affect

downstream 3D vision tasks. Mask-ToF starts at the source

of these FPs, learning a microlens-level occlusion mask

which effectively creates a custom-shaped sub-aperture for

each sensor pixel. This modulates the selection of fore-

ground and background light mixtures on a per-pixel basis

and thereby encodes scene geometric information directly

into the ToF measurements. We develop a differentiable

ToF simulator to jointly train a convolutional neural net-

work to decode this information and produce high-fidelity,

low-FP depth reconstructions. We test the effectiveness of

Mask-ToF on a simulated light field dataset and validate

the method with an experimental prototype. To this end, we

manufacture the learned amplitude mask and design an op-

tical relay system to virtually place it on a high-resolution

ToF sensor. We find that Mask-ToF generalizes well to real

data without retraining, cutting FP counts in half.

1. Introduction

Large-scale image datasets such as ImageNet [15] and

CIFAR [31, 32], in tandem with a boom in computational

resources, drastically reshaped the field of image process-

ing. In the depth domain, a similar trend [61, 8, 13] has

recently made the mass-acquisition of high-quality depth

maps a vital prerequisite for a range of 3D graphics and vi-

sion applications. These include human-centered tasks such

as pose tracking [59, 29], action recognition [26, 51], and

facial analysis [56], as well as scene-understanding prob-

lems including mapping [19], segmentation [14], and object

reconstruction [70, 10, 75]. While methods look to captured

depth datasets for ground truth, the devices used to capture

them are subject to a slew of error sources which, if not

addressed, can hurt task performance and generalizability.
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Figure 1: (a) 3D visualization of a microlens mask selec-

tively blocking light entering a sensor pixel. (b) The equiv-

alent mask pattern for a global aperture setup, all sensor

pixels equally susceptible to FPs. (c) A learned mask pat-

tern with spatially multiplexed noise/FP susceptibility.

One of many approaches to depth acquisition is passive

sensing: exploiting parallax cues to infer distances solely

from input monocular [66, 41, 18] or multiview [24, 27, 73]

images. These methods can use standard RGB cameras for

data acquisition, but struggle with textureless regions and

complex geometries [63, 36]. Active sensing approaches

tackle this challenge by first sending out a known illumina-

tion into the scene and reconstructing depth with the help

of the returned light. These include structured light meth-

ods such as active stereo, where spatially patterned light is

projected into the scene to aid in the stereo feature match-

ing process [1]. While being robust to textureless scenes,

their accuracy is fundamentally limited by illumination pat-

tern density and sensor baseline, resulting in a bulky cam-

era form-factor. Some of the most successful active depth

sensing methods are time-of-flight (ToF) approaches, where

depth is estimated from the travel time of light leaving and

returning to the device. Direct ToF systems such as LiDAR

send out individual laser pulses and measure their time to

return using time-resolved sensors such as avalanche photo

diodes [12]. These can provide high-accuracy and long-

range depth estimates, but use a scanning approach to col-

lect data, leading to poor depth completeness and/or expen-

sive sensor array systems. In contrast, amplitude-modulated

continuous wave (AMCW) ToF cameras, the focus of this
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paper, flood-illuminate a scene with periodic amplitude-

modulated light and estimate the phase shift of returned

light to infer depth. These devices do not need to time-

resolve captured light like their direct ToF counterparts, and

so can rely on an easy-to-manufacture CMOS sensor array

to produce complete depth maps at a high framerate. This,

when combined with their small sensor-illumination base-

line, makes AMCW ToF cameras compact and affordable,

and has led to their widespread adoption in the vision com-

munity. Devices such as those in the Microsoft Kinect series

have subsequently helped create community-made freely-

available scene understanding benchmarks that lower the

barrier of entry for 3D vision research [64, 2].

Although they promise to democratize low-cost dense

depth imaging, AMCW ToF methods are still subject to fun-

damental limitations of the sensing process: noise from am-

bient light, photon shot, phase wrapping, multipath interfer-

ence (MPI), and flying pixels (FPs) [16]. There has accord-

ingly arisen a large body of work in computational post-

processing methods to address these issues; methods con-

cerning depth denoising [17, 74], phase unwrapping [35],

and MPI correction [42]. Contrastingly, while confidence-

based methods [55] are able to identify flying-pixels, recti-

fying them — recovering the depth of their corresponding

chief ray — has remained a great challenge.

FPs are formed when light from both an object and its

background reaches the same sensor pixel, generating a

mixed depth measurement. These often appear to be float-

ing in empty space in the resultant point cloud, hence flying

pixels. Computationally unmixing these FPs often leads to

edge blur or severe artifacts [72]. As they originate in the

optical pipeline, artifacts of the light collection process by

the main lens, we argue that an effective strategy to miti-

gate them should also start in the optical pipeline. Unfortu-

nately, a direct masking approach, such as simply reducing

aperture size to block stray light paths, is not efficient for

overall light throughput, and so significantly lowers SNR.

With Mask-ToF we learn a microlens amplitude mask,

allowing us to generate per-pixel aperture configurations

with spatially-varying susceptibility to noise and FPs, as

shown in Figure 1. We train an encoder-decoder network

which learns to aggregate this spatial information and lever-

ages mask structural cues to produce refined depth esti-

mates. We then backpropagate this net’s loss to jointly learn

high-level mask patterns. We photolithographically manu-

facture the learned mask, and virtually place it on the sensor

with a custom optical relay system to validate Mask-ToF on

real-world data. In the future, we expect this mask can be

fabricated directly on the camera sensor in a similar manner

to a polarization sensor [47], preserving its form factor.

In summary, we make the following contributions:

• We develop a differentiable AMCW ToF image forma-

tion model, including sub-aperture light transport.

• We incorporate sub-aperture masking and a refinement

network into this framework and learn an optimal mask

structure through a patch-based gradient descent ap-

proach from synthetic data.

• We test the masks in simulation, evaluating on over-

all error and FP reduction, then manufacture them and

construct an experimental setup to validate the pro-

posed method on real data.

2. Related Work

Depth Imaging. There exists a wide body of work in both

passive and active methods for depth imaging. The for-

mer operates with only passive depth cues, such as paral-

lax [24, 5, 46] and defocus [66, 66], to infer depth. These

methods exhibit diminished accuracy for textureless scenes

with few visual cues and complex geometries with ambigu-

ous cues [63]. Active methods overcome this challenge by

sending out a known illumination pattern into the scene and

using the returned signal to help reconstruct depth. While

structured light approaches rely on this illumination to im-

prove local image contrast [58, 1], ToF imaging uses the

travel time of light itself to measure distance [23, 60]. This

sensing approach allows for compact illumination-sensor

setups and does not hinge on ambiguous visual cues.

ToF Imaging. ToF imaging can be further categorized into

direct and indirect methods. Direct ToF devices such as Li-

DAR send out pulses of light, scanning over a scene and

directly measuring their round-trip time via avalanche pho-

todiodes [12, 50] or single-photon detectors [45, 22]. While

accurate and long-ranged, these systems can produce only

a few spatial measurements at a time, resulting in sparse

depth maps [40]. Furthermore, their specialized detectors

are orders of magnitude more expensive than conventional

CMOS sensors. AMCW ToF imaging, a representative in-

direct ToF method, instead floods the whole scene with pe-

riodically modulated light and infers depth from phase dif-

ferences between captures [20, 34]. These captures can be

acquired with a standard CMOS sensor, making AMCW

ToF cameras an affordable solution for dense depth mea-

surement. Ultimately, all these devices integrate light over

an aperture and are thus susceptible to FPs [55, 57].

Depth Reconstruction Methods. Depth cameras are all

subject to erroneous measurements, which has led to a wide

array of work in robust depth reconstruction algorithms.

Some approaches attempt to learn a direct mapping be-

tween noisy and clean 3D points [44, 49], though they are

limited in their scope and scalability as they contend with

graph operations on unstructured point cloud data [53, 54].

Correlation between color and depth has also been used

to smooth noisy depth estimates and enforce view consis-

tency [30, 38], though these approaches often blur object
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edges, producing more FPs. Confidence-based methods for

ToF [55, 17] on the other hand can detect FPs as unreliable

measurements, but lack the context needed to determine if

they belong to an object, background, or intermediate depth.

Mask-ToF resolves this problem with a two-stage, general-

izable approach that joins reconstruction with the optical

pipeline; where a spatially varying amplitude mask encodes

the information needed to correct these flying pixels.

Masks for Computational Imaging. Masks enable an

imaging system to directly modify the point spread func-

tion (PSF) of input light, densely encoding information

about the scene that can be computationally recovered post-

capture. Amplitude masks can only attenuate light, yet have

a wide range of applications including light-field [43], lens-

less [4], x-ray [52], high-speed [39], and spectral imag-

ing [3]. Phase masks can allow for finer manipulation of

PSFs [11], and may be of interest in future masked ToF

projects, but are prohibitively expensive to manufacture at a

micro-scale resolution. In this work we learn an occlusion

mask with spatially varying microlens apertures, encoding

scene geometric information in AMCW ToF measurements

to help correct FPs during reconstruction.

End-to-End Design of Optics and Computation. Con-

ventional imaging systems are designed in a sequential

manner: first develop the optical and sensor stack in iso-

lation, driven by compartmentalized metrics, then delin-

eate an image processing pipeline [69]. Recently, a new

paradigm of jointly optimizing optics and reconstruction

has emerged, where all stages are jointly optimized in

the design phase. These hold promise for applications in

extended depth-of-field [62], microscopy [48], monocular

depth [9], HDR [67], hyperspectral [6], and transient [68]

imaging. Inspired by these works, Mask-ToF uses a differ-

entiable ToF simulator to jointly learn an optimal mask pat-

tern and train a depth refinement network to produce high

SNR, low FP depth maps.

3. Image Formation

Before introducing our proposed method, we review the

fundamentals of AMCW ToF imaging; for details see [33].

Pinhole Model. Correlation ToF cameras flood-illuminate

the scene with an amplitude-modulated light signal

p(t) := α cos(ωt) + β. (1)

Here ω is a modulation frequency, α is amplitude, and β is

signal bias. Under a pinhole camera model this modulated

light is perfectly reflected by an object and captured by the

ToF camera after travel time τ . The measured signal

p̃(t− τ) = α̃ cos(ωt− φ) + β̃, φ = ωτ (2)

is effectively p(t) with attenuated amplitude α̃, shifted bias

β̃, and an introduced τ -dependent phase shift φ.
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Figure 2: (a) ToF measurement at an object edge. (b) With-

out a mask, signals mix in unknown quantities to produce a

flying pixel. (c) Mask-ToF can use surrounding pixel values

and mask structure to disambiguate this measurement.

The camera then correlates p̃(t−τ) with an identically mod-

ulated reference signal r(t) = cos(ωt+ ψ) to produce

C(ψ) =

∫ T

0

p̃(t− τ)r(t)dt ≈
α̃

2
cos(φ+ ψ), (3)

for integration time T ≫ τ . By sampling correlation values

C(ψ) at four different phase offsets ψ=[0, π/2, 3π/2, π],
we can extract the measured signal’s true phase φ from

φ = arctan

(

C(π)− C(π/2)

C(0)− C(3π/2)

)

+ 2πn. n ∈ N. (4)

This arctangent, however, introduces a 2πn phase ambigu-

ity for depths z ≥ λ = c/2ω, halved for the round-trip

distance and with c being the speed of light. To estimate

this factor nwe can use a phase unwrapping algorithm [35],

which typically solves instances of Equation (4) for multi-

ple modulation frequencies ω and disambiguates φ via Eu-

clidean division [71]. This estimate is ultimately converted

to depth as z = φc/4πω.

Lens Model. In a practical camera system, to increase light

throughput, we use a lens to focus light incident on an aper-

ture plane U to a sensor pixel x; for simplicity we assume a

2D model. We thus rewrite the image formation model as

p̂x(t− τx) =

∫

u∈U

A(u)p̃x(t− τx − τu)du, (5)

where p̂x is the measurement at pixel x, A(·) is a binary

aperture function, u ∈ U is the aperture coordinate, and τu
is an additional time-of-flight term incurred by the residual

path length. p̃x, τx refer to Equation (2) evaluated for a ray

connecting through point u to x. The length of this ray is

du,x =
√

(r − u)2 + f2 +

√

z2 + (
xz

f
+ u)2, (6)
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where f is the focal length of the lens, z is the depth of the

scene point, and r is the lens radius. For a typical AMCW

ToF camera, with operating range z ≫ r and modulation

frequency ω = O(108Hz), the phase contribution from the

residual distance term δu,x = du,x − d0,x is negligible. We

thus discard the corresponding time-of-flight term τu, and

approximate the image formation model as

p̂x(t− τx) ≈

∫

u∈U

A(u)px(t− τx)du. (7)

Flying Pixels. While for an unobstructed point z this image

formation is adequate, an edge case arises for points at a

depth discontinuity. Suppose there is a single pixel on the

sensor whose chief ray (u = 0) comes from an x near an

object edge, see Figure 2. This would mean that for part of

the aperture coordinates, UF , we would receive unfocused

light rays from the foreground object, with travel time τ ′,
while the other rays passing through UB = U \ UF would

have the intended travel time τ . The received signal would

similarly consist of a mix of both foreground p̂Fx (t−τ
′
x) and

background p̂Bx (t− τx) measurements

p̂(t− τ) := p̂F (t− τ ′) + p̂B(t− τ)

⇒ p̂(t− τ) = α̃ cos(ωt− φ) + α̃′ cos(ωt− φ′) + β̃ + β′,

φ = ωτ, φ′ = ωτ ′

⇒ φ̂ = arctan

(

α̃ sin(φ) + α̃′ sin(φ′)

α̃ cos(φ) + α̃′ cos(φ′)

)

, (8)

where φ̂ is the measured phase shift of this mixed signal.

Solving Equation (4) returns an incorrect depth ẑ some-

where between the foreground and background depths.

Aperture-Masked ToF Image Formation. It might seem

that a simple solution to the above flying pixel problem is

just to reduce the aperture size. In the extreme case where

A(u) = 0, ∀u > 0, we retain only the chief ray and so

have no mixed measurements. Unfortunately, this also leads

to poor light efficiency, which lowers the system’s SNR as

it becomes more susceptible to photon shot. We provide

a detailed discussion of this fundamental SNR/FP tradeoff

in the Supplemental Document. To better maintain light

throughput, we can selectively block light paths by applying

a spatially-varying microlens amplitude mask Mx(u) to the

image plane. The model from Equation (7) thus becomes

p̂x(t− τx) =

∫

u∈U

Mx(u)A(u)px(t− τx)du. (9)

One could imagine an ominscient mask Mx(u) = 0 for

u ∈ UF , else Mx(u) = 1. This would remove unfocused

foreground light and preserve all other light paths, perfectly

correcting FPs with high SNR. Unfortunately, such a mask

could only work for a single scene, and we would need to

know that scene beforehand to design it. Instead, with the

derivations above, we can form a differentiable framework

for AMCW ToF image formation and use gradient descent

to learn a single generalizable mask pattern. We describe

this approach in the following section.

4. Learning to Mask Flying Pixels

Mask Intuition. Before we outline how to learn a mask,

it’s important to intuit why a static mask could help correct

FPs in the first place. With a global aperture, shown in Fig-

ures 1 and 2 (b), all pixels are equally susceptible to FPs;

if one sensor pixel returns an FP, likely so will its neigh-

bors. The addition of spatially variable susceptibility via a

microlens mask, shown in Figures 1 and 2 (c), means this

is no longer the case. A sensor pixel with a wide effective

aperture can be trusted with regards to noise statistics but

is likely to return FPs when near an object boundary. Con-

trastingly, a neighboring pixel with a narrow aperture will

likely produce noisier measurements, but be less affected by

depth discontinuities. By aggregating information in pixel

neighborhoods, we can effectively use wide aperture pixels

to denoise local measurements, and narrow aperture pixels

to de-flying-pixel them. This means a Mask-ToF approach

critically needs not only a mask, but also a method to de-

code the information encoded by the mask.

From Light to Time-of-Flight. Given ground truth depth,

we can simulate ToF measurements via Equation (2) with-

out distinguishing between light rays. However, to apply the

mask Mx(u) as in Equation (9), we also need access to the

aperture plane U . We thus discretize the image formation

model and use light fields [37] as a natural parametrization

p̂u,x(t− τx) =
∑

u∈L

Mx(u)A(u)px(t− τx). (10)

Here p̂u,x is our ToF signal, a sum over sub-aperture views

u in the light fieldL, discretized now in both x and u. As the

number of sub-aperture views |L| → ∞ we converge on the

form of Equation (9), though in practice |L| governs mask

resolution and is limited by manufacturing constraints.

Tensor Image Model. Rather than operate on p̂u,v,x,y , in

3D space we swap to a tensor view of simulation, as visual-

ized in Figure 3 (c). We start with a depth map D ∈ R
H×W ,

which we convert to phase array Φ, and with the light field

tensor L simulate 4×|L| correlation images C0,0 − C3,|L|.

One for each of four phase shifts ψ and sub-aperture arrays

Lu ∈ L. These are individually masked by Mu, and the

views are averaged to produce 4 final correlation images

Cψ , subject to simulated noise ηψ . This process is summa-

rized in Equation (11).
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Cψ,u = Lu ⊙ (0.5 + cos(Φ + ψ))
gT

π
, Φ =

4πω

c
D

Cψ = ηψ +
1

|L|

∑

u

Mu ⊙ Cψ,u

ηψ ∼ uniform(a, b) · NH×W (µ, σ2). (11)

Here g is sensor gain, T is integration time, H×W is the

sensor size, and ⊙ denotes element-wise multiplication.

The noise constants a, b, µ, σ are chosen empirically. At

high photon counts, Poisson and Skellam [7] noise can be

well approximated by scaled Gaussian noise, thus η gener-

alizes many expected sources of ToF noise [21] while main-

taining simulation differentiability.

Depth Reconstruction. Using Equation (4) we generate an

estimated depth map D̂ from the four masked correlation

images Cψ . We implement this as a differentiable func-

tion D̂ = P (C) with automatic gradient evaluations. This

grants us flexibility as we can swap P (C) for other depth

estimation methods, such as the discrete Fourier transform,

if needed. To process the information embedded in these

measurements by the microlens mask, we propose a refine-

ment network R, illustrated in Figure 3 (b). R is a residual

encoder-decoder model, inspired by the hourglass architec-

ture from [73], which takes as input D̂ and M and outputs

D̂∗ = R(P (C),M) = max(0, D̂ + D̂R), (12)

where D̂∗ is the refined depth map and D̂R is a learned

residual depth which when added to D̂ serves to correct

the now spatially multiplexed effects of noise and FPs. As

Equation (4) does the initial depth calculation, R does not

have to learn how to generate depth from phase, and can

be made significantly more lightweight than a typical deep

reconstruction network. This helps R to quickly learn high-

level depth and mask features, and generalize well to arbi-

trary scenes where raw phase data might significantly differ

from the training set. The sequential depth estimation and

refinement approach also allows us to naturally exploit cal-

ibration procedures [29] implemented by the sensor manu-

facturer. We can feed real depth data directly intoR without

having to retrain and learn calibration offsets.

Loss Functions. For training, we opt for a combined loss

L =
1

HW

∑

i

(

wLLS(D̂
∗
i ,Di) + wCLC(D̂

∗
i ,D)

)

,

LS(D̂
∗
i ,Di) =

{

|D̂∗
i −Di| − δ/2 if |D̂∗

i −Di| ≥ δ

(D̂∗
i −Di)

2/2δ else ,

LC(D̂
∗
i ,D) = min

j
‖proj(D̂∗

i )− proj(Dj)‖, (13)

where i, j ∈ {0, ..., HW − 1} are enumerative indices.

Smooth L1 loss LS helps enforce local smoothness in the

reconstructed depth map, controlling the Gaussian noise η
while being less sensitive to depth outliers. To penalize

these outliers, we add a Chamfer loss term LC . It con-

siders the projected points proj(p), which we produce by

concatenating sensor coordinates x, y to the corresponding

depth values z, and penalizes points based on their distance

to the nearest ground truth point. FPs, which exist in the

empty space between foreground and background depths

with no close neighbors, are thus heavily penalized. We

balance these losses with weights wL and wC .
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Figure 4: Comparison of optimized and naı̈ve mask design results on simulated test data, with zoomed view of reconstruction

and ground truth regions. Slices of the depth maps are plotted to help visualize flying pixels and noise susceptibility.

Patch-based Training. We can propagate the gradient of

this loss through the differentiable framework above all the

way to the mask M, however, learning an unconstrained M
proves computationally burdensome. We thus restrict M to

be an m×n tiling of a mask patch MP and learn MP in-

stead, adopting a patch-based stochastic gradient descent

approach. We sample a batch of random patches from the

input light field and ground truth depth, and update MP and

R based on the patch loss. This effectively exponentially

increases the number of available samples for training, al-

lowing us to rely on a relatively small light field dataset. As

R is fully convolutional, it is invariant to input shape, and so

this patch training generalizes well to the full-sized images.

5. Synthetic Assessment

Implementation. Our network R is trained on patches of

size 80×80×9×9 sampled from 512×512×9×9 synthetic

light field data. This data, sourced from [25], contains 9×9
sub-aperture views per image pixel, and a total of 16 light

fields. The full-sized evaluation masks are constructed by

an 8×8 tiling of the center 64×64 area of the learned mask

MP, reducing edge artifacts from training. Noise parame-

ters a, b, µ, σ from Equation (11) are set to 0.75, 1.25, 0, 3;

empirically matched to real recorded ToF samples. We set

sensor gain to g = 20 and integration time to T = 1ms.

The ADAM optimizer was used for training [28], with

an initial learning rate of 0.004 for the refinement network

R and 0.1 for the mask MP. We halve both rates every

80 epochs. MP is not updated for the first 70 epochs of

training, as these epochs tend to be extremely noisy, the

convolutional layers of R having not yet learned high-level

structures [76]. Through empirical study we found weights

wL = 100 and wC = 0.08 to effectively balance the differ-

ing scales of Chamfer and smooth L1 loss in Equation (13).

We leave δ as the default δ = 1. The network contains 19

million learnable parameters, 1 million of which are the am-

plitude mask, and is trained for 3 hours on a single Nvidia

Tesla V100. Inference time for a single 512×512 image is

≈ 8ms. Code and trained models will be made available.

Ablation Study. We quantify the effects of architecture

design choices in a series of ablation experiments, sum-

marized in Table 1. Here, Proposed is our final network

R, and Chamfer Only/L1 Only are tests where we train

R using only the respective loss function. In the Half

modification we remove the first hourglass, H1, while in

Big we double intermediate channel counts in R. These

help gauge if the network can be simplified or requires in-

creased parametrization. The Global modification adds an-

other global channel, implemented by duplicating H1 with

increased stride lengths and concatenating the new signal at

the input to H2, to test if the network can be improved by

aggregating more non-local information. The No Mask tests

the effect of training R on only depth data, without mask

input. Lastly, ToFNet is a reimplementation of the ToFNet

architecture from [65]. We train it until convergence with

weighted L1 and TV loss as suggested in the original work,

and fine-tune the learning rate to our data.

We validate the proposed architecture of the network

R with the results in Table 1. Specifically, the proposed
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Ablation RMSE ↓ MAE ↓ Thresh 3mm ↓ Thresh 15mm ↓

Mask-ToF 5.166/7.115 1.281/1.278 5.052/4.397 1.178/1.120

Chamfer Only 6.459/7.913 1.992/1.930 10.91/9.878 1.457/1.330

L1 Only 5.216/7.127 1.284/1.293 5.024/4.426 1.214/1.194

Half 5.489/7.432 1.356/1.367 5.247/4.647 1.391/1.373

Big 5.432/7.169 1.514/1.482 6.351/5.439 1.369/1.284

Global 5.427/7.310 1.407/1.393 5.488/4.716 1.363/1.307

No Mask 5.482/7.353 1.410/1.398 5.284/4.664 1.369/1.303

ToFNet 11.42/12.19 5.120/5.038 42.36/42.82 5.316/4.964

Table 1: Quantitative ablation results (train/test) for

changes to networkR or training procedure. Thresh Xmm is

a threshold metric denoting the percentage of points further

than X millimeters from ground truth depth.

Mask RMSE ↓ MAE ↓ Thresh 3mm ↓ Thresh 15mm ↓

Diam. 1 9.412/8.293 5.203/4.576 46.31/46.549 6.647/4.345

All Ones 9.227/12.58 2.470/2.814 9.712/10.45 3.118/3.558

Diam. 5 6.512/8.732 1.718/1.753 7.377/6.552 1.585/1.582

Mask-ToF 5.166/7.115 1.281/1.278 5.052/4.397 1.178/1.120

Table 2: Quantitative comparison (train/test) of mask-aided

ToF recovery. 4 images (greek, pillow, pens, tower) of 16

withheld for testing.

method wins in all categories compared to the Big and Half,

suggesting it is adequately parametrized. The lack of im-

provement from Global also suggests that the network R is

sufficiently utilizing non-local information. Chamfer Only

and No Mask both lead to lackluster performance, empha-

sizing the value of the L1 regularization term and mask

comprehension, respectively. Although we see close re-

sults for L1 Only, the addition of Chamfer loss does lead

to a reduction in outliers, expressed in RMSE and threshold

metrics. ToFNet shows overall worse performance than our

Baseline refinement architecture, with the network learning

to reconstruct a smooth depth map, however not learning to

remove flying pixels. This is possibly due to its significantly

wider scope; lacking a skip layer to the output, it must learn

to reconstruct depth from raw phase measurements.

Analysis of Mask Patterns. Mask-ToF contains a feed-

back loop: a change in the mask structure of MP neces-

sitates an update to the refinement network R, which itself

alters the propagated loss gradient and changes the structure

of MP. Thus, to avoid local minima, we test a broad set of

both human-selected and randomly generated initial masks

including: various diameters of circular aperture, Gaussian

and Bernoulli noise, randomly oriented barcode structures,

and several multiplexed designs. A full discussion of mask

patterns is available in the Supplemental Document.

We compare the final optimized mask against the best

hand-crafted (naı̈ve) initializations to validate our proposed

end-to-end optimization method. For a fair comparison, we

fine-tune the refinement network R for each of these hand-

crafted mask designs and highlight the drop in performance

from a lack of joint mask optimization. Results are dis-

played in Figure 3 and quantified in Table 2. We see that the

Diameter 1 mask achieves low error for the 15mm thresh-

Mask

Optical Relay System 2nd Half Optical Relay System 1st Half

ToF

Camera
Optical

Relay

Translation

Stage Mask

(a)

(c)

(b)

ToF

Camera

Figure 5: (a) The assembled imaging system. (b) The mask

mounted on a precision microscope slide attached to a trans-

lation stage. (c) A schematic of the relay lens system.

old metric and RMSE, which we find to be a good proxy

for FP count. Even with the refinement network, however,

its low light throughput leads to a large amount of noise,

resulting in poor MAE and RMSE values. On the other end

of the spectrum, the All-Ones (open-aperture) mask pro-

duces smooth low-noise reconstructions, but with copious

FPs. The optimized mask design wins in all categories,

with the low FP count and high SNR, and provides near-

identical light throughput as the Diameter 5 mask (13 times

the throughput of the Diameter 1 pinhole mask).

6. Experimental Assessment

Mask Fabrication. We fabricate our custom mask patterns

via photolithography. 0.5mm fused silica wafers are used

as the substrate, receiving a 200nm of chromium film to oc-

clude light. A layer of 0.6 µm thick photoresist AZ1505 is

then spin-coated on top. We place the wafer under a mas-

ter mask on a contact aligner (EVG 6200∞) for UV expo-

sure, and develop in AZ726 to form the mask pattern on the

photoresist. With an etchant we then remove the chromium

from under open areas in the photoresist. See the Supple-

mental Document for further information on fabrication.

Prototype. We capture measurements with an AMCW

ToF camera (Helios Flex, Lucid Vision) operating on an

NVIDIA Jetson TX2. We use a custom-designed 1:1 Kep-

lerian telescope as an optical relay system to virtually place

the mask on the sensor (see Figure 5). This eliminates the

need to remove the sensor cover glass and allows for rapid

prototyping, but in a commercial product can be supplanted

by a directly integrated mask to maintain device form fac-

tor. The mask sits on the intermediate image plane of the

telescope attached to a precision microscope slide, which is

optically conjugate with the sensor plane. We adjust the po-

sition of the mask with an XYZ translation stage (Thorlabs

PT3A). For more details, see the Supplemental Document.
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Figure 6: Perspective point cloud visualizations and depth maps of reconstruction results for Mask-ToF and naı̈ve mask

designs; object references on the left. Point cloud texture is generated from separate long-exposure amplitude captures.

Target

Lens
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y

z
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Flying

Pixels

Ones Diameter 5 Mask-ToF

Flying Pixel Ratio: 1 0.69 0.48

Figure 7: To quantify flying pixel ratios, we (a) capture 5

flat targets at a known depth and (b) count the number of

points between the target and background planes.

Results. Depth maps were captured via the previously de-

scribed setup and fed directly into the synthetically trained

refinement network R, with no network fine-tuning. By

counting points as in Figure 7, we see that Mask-ToF cuts

flying pixel counts in half when compared to an open aper-

ture. Compared to the near-identical light throughput Diam-

eter 5 mask we reduce FPs by an additional 30.5%. These

results are qualitatively confirmed in Figure 6 for objects

of varying geometry and reflectance, with additional results

in the Supplemental Document and 3D rendering in the ac-

companying video. Our optimized mask reconstruction vis-

ibly and significantly reduces FPs as compared to Diameter

5, while maintaining object shape consistency with the open

aperture measurements. Of note is how sharply Mask-ToF

reconstructs the tips of the Plant example’s petals, as com-

pared to the noisy reconstruction produced by the Diame-

ter 5 mask. Additionally, Mask-ToF is even able to reduce

intra-object FPs such as those inside the Plant’s pot.

7. Conclusion

Mask-ToF is an end-to-end approach to tackle the long-

standing problem of flying pixel artifacts in time-of-flight

imaging. It learns a per-pixel microlens amplitude mask,

that, when combined with a jointly trained refinement net-

work, reduces FPs while preserving light throughput. We

validate the method both in simulation and experimentally,

manufacturing the learned mask and optically placing it on

a camera sensor with a custom-designed optical relay sys-

tem. The proposed mask and reconstruction method out-

perform existing hand-engineered masks (and no mask) for

real-world scenes. In a mass-market implementation of our

method, we envision the amplitude mask to be integrated as

part of the sensor assembly, maintaining the camera form-

factor while improving FP statistics. Future research di-

rections include learned phase mask patterns and dynamic

masks, implemented via a spatial light modulator or similar,

which adapt their structure to the observed scene.
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