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Abstract

Cross-modal retrieval methods build a common repre-

sentation space for samples from multiple modalities, typ-

ically from the vision and the language domains. For im-

ages and their captions, the multiplicity of the correspon-

dences makes the task particularly challenging. Given an

image (respectively a caption), there are multiple captions

(respectively images) that equally make sense. In this paper,

we argue that deterministic functions are not sufficiently

powerful to capture such one-to-many correspondences. In-

stead, we propose to use Probabilistic Cross-Modal Embed-

ding (PCME), where samples from the different modalities

are represented as probabilistic distributions in the com-

mon embedding space. Since common benchmarks such as

COCO suffer from non-exhaustive annotations for cross-

modal matches, we propose to additionally evaluate re-

trieval on the CUB dataset, a smaller yet clean database

where all possible image-caption pairs are annotated. We

extensively ablate PCME and demonstrate that it not only

improves the retrieval performance over its deterministic

counterpart but also provides uncertainty estimates that

render the embeddings more interpretable. Code is avail-

able at https://github.com/naver-ai/pcme.

1. Introduction

Given a query and a database from different modalities,

cross-modal retrieval is the task of retrieving the database

items which are most relevant to the query. Most research

on this topic has focused on the image and text modali-

ties [5, 9, 25, 51, 58]. Typically, methods estimate embed-

ding functions that map visual and textual inputs into a com-

mon embedding space, such that the cross-modal retrieval

task boils down to the familiar nearest neighbour retrieval

task in a Euclidean space [9, 51].

Building a common representation space for multiple

modalities is challenging. Consider an image with a group

of people on a platform preparing to board a train (Figure 1).

There is more than one possible caption describing this im-

age. “People waiting to board a train in a train platform”

Figure 1. We propose to use probabilistic embeddings to rep-

resent images and their captions as probability distributions in a

common embedding space suited for cross-modal retrieval. These

distributions gracefully model the uncertainty which results from

the multiplicity of concepts appearing in a visual scene and im-

plicitly perform many-to-many matching between those concepts.

and “The metro train has pulled into a large station” were

two of the choices from the COCO [5] annotators. Thus,

the common representation has to deal with the fact that an

image potentially matches with a number of different cap-

tions. Conversely, given a caption, there may be multiple

manifestations of the caption in visual forms. The multiplic-

ity of correspondences across image-text pairs stems in part

from the different natures of the modalities. All the different

components of a visual scene are thoroughly and passively

captured in a photograph, while language descriptions are

the product of conscious choices of the key relevant con-

cepts to report from a scene. All in all, a common repre-

sentation space for image and text modalities is required to

model the one-to-many mappings in both directions.

Standard approaches which rely on vanilla functions do

not meet this necessary condition: they can only quan-

tify one-to-one relationships [9, 51]. There have been at-

tempts to introduce multiplicity. For example, Song and So-

leymani [45] have introduced Polysemous Visual-Semantic
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Embeddings (PVSE) by letting an embedding function pro-

pose K candidate representations for a given input. PVSE

has been shown to successfully capture the multiplicity in

the matching task and to improve over the baseline built

upon one-to-one functions. Others [25] have computed re-

gion embeddings obtained with a pre-trained object detec-

tor, establishing multiple region-word matches. This strat-

egy has led to significant performance gains at the expense

of a significant increase in computational cost.

In this work, we propose Probabilistic Cross-Modal

Embedding (PCME). We argue that probabilistic map-

ping is an effective representation tool that does not re-

quire an explicit many-to-many representation as is done

by detection-based approaches, and further offers a number

of advantages. First, PCME yields uncertainty estimates

that lead to useful applications like estimating the difficulty

or chance of failure for a query. Second, the probabilistic

representation leads to a richer embedding space where set

algebras make sense, whereas deterministic ones can only

represent similarity relations. Third, PCME is complemen-

tary to the deterministic retrieval systems.

As harmful as the assumption of one-to-one correspon-

dence is for the method, the same assumption has intro-

duced confusion in the evaluation benchmarks. For exam-

ple, MS-COCO [5] suffers from non-exhaustive annotations

for cross-modal matches. The best solution would be to ex-

plicitly and manually annotate all image-caption pairs for

evaluation. Unfortunately, this process does not scale, espe-

cially for a large-scale dataset like COCO. Instead, we pro-

pose a smaller yet cleaner cross-modal retrieval benchmark

using CUB [55] and more sensible evaluation metrics.

Our contributions are as follows. (1) We propose Proba-

bilistic Cross-Modal Embedding (PCME) to properly rep-

resent the one-to-many relationships in joint embedding

spaces for cross-modal retrieval. (2) We identify shortcom-

ings with existing cross-modal retrieval benchmarks and

propose alternative solutions. (3) We analyse the joint em-

bedding space using the uncertainty estimates provided by

PCME and show how intuitive properties arise.

2. Related work

Cross-modal retrieval. In this work, we are interested in

image and text cross-modal retrieval. Much research is ded-

icated to learning a metric space that jointly embeds images

and sentences [8, 9, 10, 18, 25, 45, 47]. Early works [11, 23]

relied on Canonical Correlation Analysis (CCA) [13] to

build joint embedding spaces. Frome et al. [10] use a hinge

rank loss for triplets built from both modalities. Wang et

al. [51] expand on this idea by also training on uni-modal

triplets to preserve the structure inherent to each modality in

the joint space. Faghri et al. [9] propose to learn such space

with a triplet loss, and only sample the hardest negative with

respect to a query-positive pair.

One of the drawbacks of relying on a single global

representation is its inability to represent the diversity of

semantic concepts present in an image or in a caption.

Prior work [16, 54] observed a split between one-to-one

and many-to-many matching in visual-semantic embedding

spaces characterized by the use of one or several embed-

ding representations per image or caption. Song and Soley-

mani [45] build many global representations for each image

or sentence by using a multi-head self-attention on local de-

scriptors. Other methods use region-level and word-level

descriptors to build a global image-to-text similarity from

many-to-many matching. Li et al. [25] employ a graphical

convolutional network [22] for semantic reasoning of re-

gion proposals obtained from a Faster-RCNN [40] detector.

Veit et al. [49] propose a conditional embedding approach

to solve the multiplicity of hashtags, but it does not rely on

a joint embedding space, hence cannot be directly applied

to cross-modal retrieval.

Recently, the most successful way of addressing many-

to-many image-to-sentence matching is through joint visual

and textual reasoning modules appended on top of sepa-

rate region-level encoders [24, 28, 30, 31, 34, 53, 54, 60].

Most of such methods involve cross-modal attention net-

works and report state-of-the-art results on cross-modal re-

trieval. This, however, comes with a large increase in com-

putational cost at test time: pairs formed by the query and

every database entry need to go through the reasoning mod-

ule. Focusing on scalability, we choose to build on top of

approaches that directly utilize the joint embedding space

and are compatible with large-scale indexing.

Finally, concurrent to our work, Wray et al. [56] con-

sider cross-modal video retrieval and discusses similar lim-

itations of the one-to-one correspondence assumptions for

evaluation. They propose to consider semantic similarity

proxies computed on captions for a more reliable evalua-

tion on standard video retrieval datasets.

Probabilistic embedding. Probabilistic representations of

data have a long history in machine learning [32]. They

were introduced in 2014 for word embeddings [50], as they

gracefully handle the inherent hierarchies in language, since

then, a line of research has explored different distribution

families for word representations [26, 35, 36]. Recently,

probabilistic embeddings have been introduced for vision

tasks. Oh et al. [37] proposed the Hedged Instance Em-

bedding (HIB) to handle the one-to-many correspondences

for metric learning, while other works apply probabilistic

embeddings to face understanding [43, 3], 2D-to-3D pose

estimation [46], speaker diarization [44], and prototype em-

beddings [42]. Our work extends HIB to joint embeddings

between images and captions, in order to represent the dif-

ferent levels of granularities in the two domains and to im-

plicitly capture the resulting one-to-many associations. Re-

cently Schönnfeld et al. [41] utilized Variational Autoen-
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coders [20] for zero-shot recognition. Their latent space is

conceptually similar to ours, but is learned and used in very

different ways: they simply use a 2-Wasserstein distance as

their distribution alignment loss and learn classifiers on top,

while PCME uses a probabilistic contrastive loss that en-

ables us to use the latent features directly for retrieval. To

our knowledge, PCME is the first work that uses probabilis-

tic embeddings for multi-modal retrieval.

3. Method

In this section, we present our Probabilistic Cross-

Modal Embedding (PCME) framework and discuss its

conceptual workings and advantages.

We first define the cross-modal retrieval task. Let D “
pC, Iq denote a vision and language dataset, where I is a

set of images and C a set of captions. The two sets are

connected via ground-truth matches. For a caption c P C
(respectively an image i P I), the set of corresponding im-

ages (respectively captions) is given by τpcq Ď I (respec-

tively τpiq Ď C). Note that for every query q, there may be

multiple cross-modal matches (|τpqq| ą 1). Handling this

multiplicity will be the central focus of our study.

Cross-modal retrieval methods typically learn an embed-

ding space R
D such that we can quantify the subjective no-

tion of “similarity” into the distance between two vectors.

For this, two embedding functions fV , fT are learned to

map image and text samples into the common space R
D.

3.1. Building blocks for PCME

We introduce two key ingredients for PCME: joint

visual-textual embeddings and probabilistic embeddings.

3.1.1 Joint visual-textual embeddings

We describe how we learn visual and textual encoders. We

then present a previous attempt at addressing the multiplic-

ity of cross-modal associations.

Visual encoder fV . We use the ResNet image encoder [14].

Let zv “ gVpiq : I Ñ R
hˆwˆdv denote the output before

the global average pooling (GAP) layer. Visual embedding

is computed via v “ hVpzvq P R
D where in the simplest

case hV is the GAP followed by a linear layer. We modify

hV to let it predict a distribution, rather than a point.

Textual encoder fT . Given a caption c, we build the array

of word-level descriptors zt “ gT pcq P R
Lpcqˆdt , where

Lpcq is the number of words in c. We use the pre-trained

GloVe [38]. The sentence-level feature t is given by a bidi-

rectional GRU [6]: t “ hT pztq on top of the GloVe features.

Losses used in prior work. The joint embeddings are often

learned with a contrastive or triplet loss [9, 10].

Polysemous visual-semantic embeddings (PVSE) [45]

are designed to model one-to-many matches for cross-

modal retrieval. PVSE adopts a multi-head attention block

on top of the visual and textual features to encode K

possible embeddings per modality. For the visual case,

each visual embedding vk P R
D for k P t1, . . . ,Ku is

given by: vk “ LN

`

hVpzvq ` spw1
att

k
V

pzvqzvq
˘

, where

w1 P R
dvˆD are the weights of fully connected layers,

s is the sigmoid function and LN is the LayerNorm [1].

att
k
V

denotes the k-th attention head of the visual self-

attention attV . Textual embeddings tk for k P t1, . . . ,Ku
are given symmetrically by the multi-head attention: tk “
LN

`

hT pztq ` spw2
att

k
C

pztqztq
˘

. PVSE learns the visual

and textual encoders with the multiple instance learning

(MIL) objective, where only the best pair among the K2

possible visual-textual embedding pairs is supervised.

3.1.2 Probabilistic embeddings for a single modality

Our PCME models each sample as a distribution. It builds

on the Hedged Instance Embeddings (HIB) [37], a single-

modality methodology developed for representing instances

as a distribution. HIB is the probabilistic analogue of the

contrastive loss [12]. HIB trains a probabilistic mapping

pθpz|xq that not only preserves the pairwise semantic simi-

larities but also represents the inherent uncertainty in data.

We describe the key components of HIB here.

Soft contrastive loss. To train pθpz|xq to capture pairwise

similarities, HIB formulates a soft version of the contrastive

loss [12] widely used for training deep metric embeddings.

For a pair of samples pxα, xβq, the loss is defined as:

Lαβpθq “

#

´ log pθpm|xα, xβq if α, β is a match

´ log p1 ´ pθpm|xα, xβqq otherwise

(1)

where pθpm|xα, xβq is the match probability.

Factorizing match probability. [37] has factorized

pθpm|xα, xβq into the match probability based on the em-

beddings ppm|zα, zβq and the encoders pθpz|xq. This is

done via Monte-Carlo estimation:

pθpm|xα, xβq «
1

J2

J
ÿ

j

J
ÿ

j1

ppm|zjα, z
j1

β q (2)

where zj are samples from the embedding distribution

pθpz|xq. For the gradient to flow, the embedding distribu-

tion should be reparametrization-trick-friendly [21].

Match probability from Euclidean distances. We com-

pute the sample-wise match probability as follows:

ppm|zα, zβq “ sp´a}zα ´ zβ}2 ` bq (3)

where pa, bq are learnable scalars and sp¨q is sigmoid.

3.2. Probabilistic cross­modal embedding (PCME)

We describe how we learn a joint embedding space that

allows for probabilistic representation with PCME.
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Figure 2. Method overview. The visual and textual encoders for Probabilistic Cross-Modal Embedding (PCME) are shown. Each modality

outputs mean and variance vectors in R
D , which represent a normal distribution in R

D .
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Figure 3. Head modules. The visual and textual heads (hV , hT )

share the same structure, except for modality-specific modules (a).

The mean (b) and variance (c) computations differ: variance mod-

ule does not involve sigmoid sp¨q, LayerNorm (LN), and L2 pro-

jection.

3.2.1 Model architecture

An overview of PCME is shown in Figure 2. PCME rep-

resents an image i and caption c as normal distributions,

ppv|iq and ppt|cq respectively, over the same embedding

space R
D. We parametrize the normal distributions with

mean vectors and diagonal covariance matrices in R
D:

ppv|iq „ N phµ
V

pzvq, diagphσ
Vpzvqq

ppt|cq „ N phµ
T

pztq, diagphσ
T pztqq

(4)

where zv “ gVpiq is the feature map and zt “ gT pcq is

the feature sequence (§3.1.1). For each modality, two head

modules, hµ and hσ , compute the mean and variance vec-

tors, respectively. They are described next.

Local attention branch. Inspired by the PVSE architec-

ture (§3.1.1, [45]), we consider appending a local attention

branch in the head modules (hµ, hσ) both for image and

caption encoders. See Figure 3 for the specifics. The local

attention branch consists of a self-attention based aggrega-

tion of spatial features, followed by a linear layer with a

sigmoid activation function. We will show with ablative

studies that the additional branch helps aggregating spatial

features more effectively, leading to improved performance.

Module for µ versus σ. Figure 3 shows the head modules

hµ and hσ , respectively. For h
µ
V

and h
µ
T

, we apply sigmoid

in the local attention branch and add the residual output. In

turn, LayerNorm (LN) [1] and L2 projection operations are

applied [45, 48]. For hσ
V

and hσ
T

, we observe that the sig-

moid and LN operations overly restrict the representation,

resulting in poor uncertainty estimations (discussed in §D).

We thus do not use sigmoid, LN, and L2 projection for the

uncertainty modules.

Soft cross-modal contrastive loss. Learning the joint prob-

abilistic embedding is to learn the parameters for the map-

pings ppv|iq “ pθv pv|iq and ppt|cq “ pθtpt|cq. We adopt

the probabilistic embedding loss in Equation (1), where the

match probabilities are now based on the cross-modal pairs

pi, cq: Lembpθv, θt; i, cq, where θ “ pθv, θtq are parameters

for visual and textual encoders, respectively. The match

probability is now defined upon the visual and textual fea-

tures: pθpm|i, cq « 1

J2

řJ
j

řJ
j1 sp´a}vj ´ tj

1

}2 ` bq where

vj and tj
1

follow the distribution in Equation (4).

Additional regularization techniques. We consider two

additional loss functions to regularize the learned uncer-

tainty. Following [37], we prevent the learned variances

from collapsing to zero by introducing the KL divergence

loss between the learned distributions and the standard nor-

mal N p0, Iq. We also employ the uniformity loss that was

recently introduced in [52], computed between all embed-

dings in the minibatch. See §A.1 for more details.

Sampling SGD mini-batch. We start by sampling B

ground-truth image-caption matching pairs pi, cq P G.

Within the sampled subset, we consider every positive and

negative pair dictated by the ground truth matches. This

would amount to B matching pairs and BpB ´ 1q non-

matching pairs in our mini-batch.

Measuring instance-wise uncertainty. The covariance

matrix predicted for each input represents the inherent un-

certainty for the data. For a scalar uncertainty measure, we
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take the determinant of the covariance matrix, or equiva-

lently the geometric mean of the σ’s. Intuitively, this mea-

sures the volume of the distribution.

3.2.2 How does our loss handle multiplicity, really?

We perform a gradient analysis to study how our loss in

Equation (1) handles multiplicity in cross-modal matches

and learn uncertainties in data. In §A.2, we further make

connections with the MIL loss used by PVSE (§3.1.1, [45]).

We first define the distance logit: ljj1 :“ ´a}vj ´tj
1

}2`
b and compare the amount of supervision with different

pj, j1q values. To see this, take the gradient on ljj1 .

BLemb

Bljj1

“

#

wjj1 ¨ p1 ´ spljj1 qq for positive match

´wjj1 ¨ spljj1 q for negative match
(5)

wjj1 :“
e˘ljj1

ř

αα1 e˘lαα1

where ˘ is the positivity of match.

We first observe that if wjj1 “ 1, then Equation (5) is ex-

actly the supervision from the soft contrastive loss (Equa-

tion (1)). Thus, it is the term wjj1 that let the model learn

multiplicity and represent associated uncertainty.

To study the behavior of wjj1 , first assume that pv, tq is

a positive pair. Then, wjj1 is the softmax over the pairwise

logits ljj1 . Thus, pairs with smaller distances }vj ´ tj
1

}2
have greater weights wjj1 than distant ones. Similarly, if

pv, tq is negative pair, then wjj1 assigns greater weights on

distant pairs than close ones. In other words, wjj1 gives

more weights on pair samples that correctly predicts the dis-

tance relationships on the embedding space. This results in

a reward structure where wrong similarity predictions do

not get penalized significantly, as long as there is at least

one correct similarity prediction. Such a reward encourages

the embeddings to produce more diverse samples and hedge

the bets through non-zero values of σ predictions.

3.2.3 Test-time variants

Unlike methods that employ cross-modal reasoning mod-

ules [24, 28, 30, 31, 34, 53, 54, 60], computing match prob-

abilities at test time for PCME reduces to computing a func-

tion over pairwise Euclidean distances. This means that

the probabilistic embeddings of PCME can be used in vari-

ous ways for computing the match probabilities at test time,

with different variants having different computational com-

plexities. The options are split into two groups. (i) Sam-

pling-based variants. Similar to training, one can use

Monte-Carlo sampling (Equation (2)) to approximate match

probabilities. Assuming J samples, this requires OpJ2q dis-

tance computations per match, as well as OpJ2q space for

every database entry. This implies that J plays an important

role in terms of test time complexity. (ii) Non-sampling

A B

C D

a) A baseball player swinging a bat at a ball.

b) A baseball player is getting ready to hit a ball.

c) A baseball player standing next to home plate holding a bat.

d) A group of baseball players at the pitch.

Figure 4. Can you match the captions to the images? In the COCO

annotations, each of the four captions corresponds to (only) one of

the four images (Answer:

A:b,B:c,C:a,D:d

).

variants. One can simply use the distances based on µ to

approximate match probabilities. In this case, both time and

space complexities become Op1q. We ablate this variant (“µ

only”) in our experiments, as it is directly comparable to de-

terministic approaches. We also may use any distributional

distance measures with closed-form expressions for Gaus-

sian distributions. Examples include the 2-Wasserstein dis-

tance, Jensen Shanon (JS) divergence, and Expected Likeli-

hood Kernel (ELK). We ablate them as well. The details of

each probabilistic distance can be found in §B.

4. Experiments

We present experimental results for PCME. We start with

the experimental protocol and a discussion on the problems

with current cross-modal retrieval benchmarks and evalua-

tion metrics, followed by alternative solutions (§4.1). We

then report experimental results on the CUB cross-modal

retrieval task (§4.2) and COCO (§4.3). We present an anal-

ysis of the embedding space in §4.4.

4.1. Experimental protocol

We use ResNet [14] pre-trained on ImageNet and the

pre-trained GloVe with 2.2M vocabulary [38] for initializ-

ing the visual and textual encoders. Training proceeds in

two phases: a warm-up phase where only the head modules

are trained, followed by end-to-end fine-tuning of all param-

eters. We use a ResNet-152 (resp. ResNet-50) backbone

with embedding dimension D “ 1024 (resp. D “ 512)

for MS-COCO (resp. CUB). For both datasets, models are

always trained with Cutout [7] and random caption drop-

ping [2] augmentation strategies with 0.2 and 0.1 erasing

ratios, respectively. We use the AdamP optimizer [15] with

the cosine learning rate scheduler [29] for stable training.

More implementation details are provided in §C.2. Hyper-

parameter details and ablations are presented in §D.
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4.1.1 Metrics for cross-modal retrieval

Researchers have long been aware of many potentially pos-

itive matches in the cross-modal retrieval evaluation sets.

They use metrics that reflect such consideration.

Many works report the Recall@k (R@k) metrics with

varying numbers for k. This evaluation policy, with larger

values of k, becomes more lenient to plausible wrong pre-

dictions prevalent in COCO. However, it achieves leniency

at the cost of failing to penalize obviously wrong retrieved

samples. The lack of penalties for wrongly retrieved top-k

samples may be complemented by the precision metrics.

Musgrave et al. [33] proposed the R-Precision (R-P)

metric as an alternative; for every query q, we compute the

ratio of positive items in the top-r retrieved items, where

r “ |τpqq| is the number of ground-truth matches. This pre-

cision metric has a desirable property that a retrieval model

achieves the perfect R-Precision score if and only if it re-

trieves all the positive items before the negatives.

For R-Precision to make sense, all the existing positive

pairs in a dataset must be annotated. Hence, we expand

the existing ground truth matches by seeking further plausi-

ble positive matches in a database through extra information

(e.g. class labels for COCO). More concretely, a pair pi, cq
is declared positive if the binary label vectors for the two

instances, yi, yc P t0, 1udlabel , differ at most at ζ positions.

In practice, we consider multiple criteria ζ P t0, 1, 2u and

average the results with those ζ values. We refer to metrics

based on such class-based similarity as Plausible Match

(PM) because we incentivize models to retrieve plausible

items. We refer to the R-Precision metric based on the Plau-

sible Match policy as PMRP. More details in §C.1.

4.1.2 Cross-modal retrieval benchmarks

COCO Captions [5] is a widely-used dataset for cross-

modal retrieval models. It consists of 123,287 images from

MS-COCO [27] with 5 human-annotated captions per im-

age. We present experimental results on COCO. We follow

the evaluation protocol of [17] where the COCO validation

set is added to the training pool (referred to as rV or rVal

in [8, 9]). Our training and validation splits contain 113,287

and 5,000 images, respectively. We report results on both

5K and (the average over 5-fold) 1K test sets.

The problem with COCO as a cross-modal retrieval

benchmark is the binary relevance assignment of image-

caption pairs pi, cq. As a result, the number of matching

captions τpiq for an image i is always 5. Conversely, the

number of matching images τpcq for a caption c is always

1. All other pairs are considered non-matching, indepen-

dent of semantic similarity. This is far from representing

the semantic richness of the dataset. See Figure 4 for an

illustration. While all 4ˆ4 possible pairs are plausible pos-

itive pairs, 12 of them are assigned negative labels during

training and evaluation. This results in noisy training and,

more seriously, unreliable evaluation results.

We re-purpose the CUB 200-2011 [55] as a more reli-

able surrogate for evaluating cross-modal retrieval models.

We utilize the caption annotations by Reed et al. [39]; they

consist of ten captions per image on CUB images (11,788

images of 200 fine-grained bird categories). False positives

are suppressed by the fact that the captions and images are

largely homogeneous within a class. False negatives are un-

likely to happen because the images contain different types

of birds across classes and the captions are generated un-

der the instruction that the annotators should focus on class-

distinguishing characteristics [39].

We follow the class splits proposed by Xian et al. [57],

where 150 classes are used for training and validation, and

the remaining 50 classes are used for the test. The hyperpa-

rameters are validated on the 150 training classes. We refer

to this benchmark as CUB Captions.

4.2. Results on CUB

Similarity measures for retrieval at test time. We have

discussed alternative similarity metrics that PCME may

adopt at test time (§ 3.2.3). The “Mean only” metric only

uses the hµ features, as in deterministic retrieval scenarios.

It only requires OpNq space to store the database features.

Probabilistic distance measures like ELK, JS-divergence,

and 2-Wasserstein, require the storage for µ and σ features,

resulting in the doubled storage requirement. Sampling-

based distance computations, such as the average L2 dis-

tance and match probability, need J2 times the storage re-

quired by the Mean-only baseline.

We compare the above variants in Table 1 and §E.1.

First of all, we observe that PCME, with any test-time sim-

ilarity measure, mostly improves over the deterministically

trained PCME (µ-only training). Even if the test-time sim-

ilarity is computed as if the embeddings are deterministic

(Mean only), PCME training improves the retrieval perfor-

mances (24.7% to 26.1% for i2t and 25.6% to 26.7% for

t2i). Other cheaper variants of probabilistic distances, such

as 2-Wasserstein, also result in reasonable performances

(26.2% and 26.7% for i2t and t2i, respectively), while in-

troducing only twice the original space consumption. The

best performance is indeed attained by the similarity mea-

sure using the match probability, with 26.3% and 26.8% i2t

and t2i performances, respectively. There exists a trade-off

between computational cost and performance and the deter-

ministic test-time similarity measures. We use the match

probability measure at test time for the rest of the paper.

Comparison against other methods. We compare

PCME against VSE0 [9] and PVSE [45] in Table 2. As

an important ingredient for PVSE, we consider the use of

the hardest negative mining (HNM). We first observe that
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PCME
variant Sampling

Test-time
Similarity Metric

Space

complexity
i2t

R-P
t2i

R-P

µ only ✗ Mean only OpNq 24.70 25.64

PCME

✗ Mean only OpNq 26.14 26.67

✗ ELK Op2Nq 25.33 25.87

✗ JS-divergence Op2Nq 25.06 25.55

✗ 2-Wasserstein Op2Nq 26.16 26.69

✓ Average L2 OpJ2Nq 26.11 26.64

✓ Match prob OpJ2Nq 26.28 26.77

Table 1. Pairwise distances for distributions. There are many op-

tions for computing the distance between two distributions. What

are the space complexity and retrieval performances for each op-

tion? R-P stands for the R-Precision.

Method HNM
Image-to-text Text-to-image

R-P R@1 R-P R@1

VSE0 ✗ 22.4 44.2 22.6 32.7

PVSE K=1 ✓ 22.3 40.9 20.5 31.7

PVSE K=2 ✓ 19.7 47.3 21.2 28.0

PVSE K=4 ✓ 18.4 47.8 19.9 34.4

PCME µ only ✗ 24.7 46.4 25.6 35.5

PCME ✗ 26.3 46.9 26.8 35.2

Table 2. Comparison on CUB Caption test split. R-P and R@1

stand for R-Precision and Recall@1, respectively. The usage of

hardest negative mining (HNM) is indicated.

PVSE with HNM tends to obtain better performances than

VSE0 under the R@1 metric, with 47.8% for K=4, com-

pared to 44.2% for VSE0. However, under the R-Precision

metric, we observe all PVSE models with HNM are worse

than VSE0 (R-Precision drops from 22.4% for VSE0 to

18.4% for PVSE K=4). It seems that PVSE with HNM

tends to retrieve items based on diversity, rather than preci-

sion. We conjecture that the HNM is designed to optimize

the R@1 performances; more details in §E.2. Comparing

PVSE with different values of K, we note that increasing

K does not always bring about performance gains under the

R-Precision metric (20.5%, 21.2% and 19.9% for K=1,2,4,

respectively, for t2i), while the improvement is more pro-

nounced under the R@1 metric. Finally, PCME provides

the best performances on both R-Precision and R@1 met-

rics, except for the R@1 score for i2t. PCME also improves

upon its deterministic version, PCME µ-only, with some

margin: +1.6 pp and +1.2 pp on i2t and t2i R-Precision

scores, respectively.

4.3. Results on COCO

As we have identified potential problems with measuring

performance on COCO (§4.1.2), we report the results with

our Plausible-Match R-Precision (PMRP) metrics (§4.1.1)

that captures the model performances more accurately than

the widely-used R@k metrics. Table 3 shows the results

1K Test Images 5K Test Images

Method
i2t t2i i2t t2i

PMRP R@1 PMRP R@1 PMRP R@1 PMRP R@1

VSE++ [9] - 64.6 - 52.0 - 41.3 - 30.3

PVSE K=1 [45] 40.3˚ 66.7 41.8˚ 53.5 29.3˚ 41.7 30.1˚ 30.6

PVSE K=2 [45] 42.8˚ 69.2 43.6˚ 55.2 31.8˚ 45.2 32.0˚ 32.4

VSRN [25] 41.2˚ 76.2 42.4˚ 62.8 29.7˚ 53.0 29.9˚ 40.5

VSRN + AOQ [4] 44.7˚ 77.5 45.6˚ 63.5 33.0˚ 55.1 33.5˚ 41.1

PCMEµ only 45.0* 68.0 45.9* 54.6 34.0* 43.5 34.3* 31.7

PCME 45.0* 68.8 46.0* 54.6 34.1* 44.2 34.4* 31.9

Table 3. Comparison on MS-COCO. PMRP stands for the Plau-

sible Match R-Precision and R@1 for Recall@1. “˚” denotes re-

sults produced by the published models.

with state-of-the-art COCO retrieval methods. We observe

that the stochastic version of PCME performs better than the

deterministic variant (µ only) across the board. In terms of

the R@1 metric, PVSE K=2 [45], VSRN [25] and AOQ [4]

work better than PCME (e.g. 45.2%, 53.0%, 55.1% versus

44.2% for the 5K, i2t task). However, on the more accu-

rate PMRP metric, PCME outperforms previous methods

with some margin (e.g. 31.8%, 29.7%, 33.0% versus 34.1%

for the 5K, i2t task). The results on two metrics imply that

PCME retrieves the plausible matches much better than pre-

vious methods do. The full results can be found in §E.

4.4. Understanding the learned uncertainty

Having verified the retrieval performance of PCME, we

now study the benefits of using probabilistic distributions

for representing data. We show that the learned embeddings

not only represent the inherent uncertainty of data but also

enable set algebras among samples that roughly correspond

to their semantic meanings.

Measuring uncertainty with σ. In an automated decision

process, it benefits a lot to be able to represent uncertainty.

For example, the algorithm may refrain from making a de-

cision based on the uncertainty estimates. We show that

the learned cross-modal embeddings capture the inherent

uncertainty in the instance. We measure the instance-wise

uncertainty for all query instances by taking the geomet-

ric mean over the σ P R
D entries (§3.2.1). We then com-

pute the average R@1 performances in each of the 10 un-

certainty bins. Figure 6 plots the correlation between the

uncertainty and R@1 on the COCO test set. We observe

performance drops with increasing uncertainty. In §F.2, we

visualize which word affects more to uncertainty. Example

uncertain instances and their retrieval results are in §F.3.

2D visualization of PCME. To visually analyze the behav-

ior of PCME, we conduct a 2D toy experiment by using

9 classes of the CUB Captions (details in §C.3). Figure 5

visualizes the learned image and caption embeddings. We

also plot the embedding for the most generic caption for the

CUB Captions dataset, “this bird has ăunką ăunką . . . ”,
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colorful black bird with white side and black wings 

with beige wing bars. bright orange spot on it's side.

a medium sized bird with a long neck with a white 

throat, it has a medium sized narrow pointy bill, and red eyes.

this bird is white with black 

and has a long, pointy beak.

a larger bird with a bright red head and a 

black and white body, and a long, straight bill.

this little fellow has a white belly

and breast with stripes of black 

on its crown and superciliary.

a beautiful small bird with a sharp beak is red 

all over except its back, wings and tail that are brown.

99% confidence interval for

this bird has <unk> <unk> <unk> <unk> <unk> <unk>.
a beautiful small bird with a sharp beak is red 

all over except its back, wings and tail that are brown.

Figure 5. Visualization of the probabilistic embedding. The learned image (left) and caption (right) embeddings on 9 subclass of CUB

Captions. Classes are color-coded. Each ellipse shows the 50% confidence region for each embedding. The red ellipse corresponds to the

generic CUB caption, “this bird has ăunką ¨ ¨ ¨ ăunką” with 99% confidence region.
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Figure 6. σ versus performance. Performance of PCME at dif-

ferent per-query uncertainty levels in COCO 1k test set.
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Figure 7. σ captures ambiguity. Average σ values at different

ratios of erased pixels (for images) and words (for captions).

where ăunką is a special token denoting the absence of a

word. This generic caption covers most of the caption vari-

ations in the embedding space (red ellipses).

Set algebras. To understand the relationship among distri-

butions on the embedding space, we artificially introduce

different types of uncertainties on the image data. In Fig-

ure 8, we start from two bird images and perform erasing

and mixing transformations [59]. On the embedding space,

we find that the mixing operation on the images results in

embeddings that cover the intersection of the original em-

beddings. Occluding a small region in input images, on the

other hand, amounts to slightly wider distributions, indicat-

ing an inclusion relationship. We quantitatively verify that

the sigma values positively correlate with the ratio of erased

pixels in Figure 7. In COCO, we observe a similar behavior

(shown in §F.1). We discover another positive correlation

(a) Intersection (mixed) (b) Inclusion (occluded)

Pied billed Grebe

σx σy = 3.48

Red bellied

Woodpecker

σx σy = 0.75

σx σy = 3.51

σx σy = 0.76

σx σy = 2.15

σx σy = 1.02

Original embedding

Transformed embedding

σx σy  Uncetainty level of

           each embedding

Figure 8. Set algebras. For two images, we visualize the em-

beddings for either erased or mixed samples. Mixing (left) and

erasing (right) operations roughly translate to the intersection and

inclusion relations between the corresponding embeddings.

between the caption ambiguity induced by erasing words

and the embedding uncertainty.

5. Conclusion

We introduce Probabilistic Cross-Modal Embedding

(PCME) that learns probabilistic representations of multi-

modal data in the embedding space. The probabilis-

tic framework provides a powerful tool to model the

widespread one-to-many associations in image-caption

pairs. To our knowledge, this is the first work that uses

probabilistic embeddings for a multi-modal task. We exten-

sively ablate our PCME and show that not only it improves

the retrieval performance over its deterministic counterpart,

but also provides uncertainty estimates that render the em-

beddings more interpretable.
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