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Abstract

Large scale image classification datasets often contain

noisy labels. We take a principled probabilistic approach to

modelling input-dependent, also known as heteroscedastic,

label noise in these datasets. We place a multivariate Nor-

mal distributed latent variable on the final hidden layer of

a neural network classifier. The covariance matrix of this

latent variable, models the aleatoric uncertainty due to label

noise. We demonstrate that the learned covariance structure

captures known sources of label noise between semantically

similar and co-occurring classes. Compared to standard

neural network training and other baselines, we show signif-

icantly improved accuracy on Imagenet ILSVRC 2012 79.3%

(+ 2.6%), Imagenet-21k 47.0% (+ 1.1%) and JFT 64.7% (+

1.6%). We set a new state-of-the-art result on WebVision 1.0

with 76.6% top-1 accuracy. These datasets range from over

1M to over 300M training examples and from 1k classes to

more than 21k classes. Our method is simple to use, and we

provide an implementation that is a drop-in replacement for

the final fully-connected layer in a deep classifier.

1. Introduction

Image classification datasets with many classes and large

training sets often have noisy labels [2, 30]. For example,

Imagenet contains many visually similar classes that are hard

for human annotators to distinguish [10, 2]. Datasets such as

WebVision where labels are generated automatically by look-

ing at co-occuring text to images on the Web, contain label

noise as this automated process is not 100% reliable [30].

A wide range of techniques for classification under label

noise already exist [29, 23, 16, 37, 24, 6, 9, 36, 18]. When

an image is mis-labeled it is more likely that it gets confused

with other related classes, rather than a random class [2].

Therefore it is important to take inter-class correlation into

account when modelling label noise in image classification.

Figure 1: Spot the difference? An Appenzeller (left) and

EntleBucher (right). Two visually similar Imagenet classes

our method learns have highly correlated label noise (aver-

age validation set covariance of -0.24) given only the stan-

dard Imagenet ILSVRC12 training labels.

We take a principled probabilistic approach to modelling

label noise. We assume a generative process for noisy labels

with a multivariate Normal distributed latent variable at the

final hidden layer of a neural network classifier. The mean

and covariance parameters of this Normal distribution are

input-dependent (aka heteroscedastic), being computed from

a shared representation of the input image. By modelling

the inter-class noise correlations our method can learn which

class pairs are substitutes or commonly co-occur, resulting

in noisy labels. See Fig. (1) for an example of two Imagenet

classes which our model learns have correlated label noise.

We evaluate our method on four large-scale image clas-

sification datasets, Imagenet ILSVRC12 and Imagenet-

21k [10], WebVision 1.0 [30] and JFT [21]. These datasets

range from over 1M training examples (ILSVRC12) to 300M

training examples (JFT) and from 1k classes (ILSVRC12 &

WebVision) to over 21k classes (Imagenet-21k). We demon-

strate improved accuracy and negative log-likelihood on all

datasets relative to (a) standard neural network training, (b)

methods which only model the diagonal of the covariance

matrix and (c) methods from the noisy labels literature.

We evaluate the effect of our probabilistic label noise

model on the representations learned by the network. We

show that our method, when pre-trained on JFT, learns image
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representations which transfer better to the 19 datasets from

the Visual Task Adaptation Benchmark (VTAB) [47].

Contributions. In summary our contributions are:

1. A new method which models inter-class correlated label

noise and scales to large-scale datasets.

2. We evaluate our method on four large-scale image clas-

sification datasets, showing significantly improved per-

formance compared to standard neural network training

and diagonal covariance methods.

3. We demonstrate that the learned covariance matrices

model correlations between semantically similar or

commonly co-occurring classes.

4. On VTAB our method learns more general representa-

tions which transfer better to 19 downstream tasks.

2. Method

In many datasets label noise is not uniform across the

input space, some types of examples have more noise than

others. We build upon prior work on probabilistic modelling

of noisy labels [25, 9] by assuming a heteroscedastic latent

variable generative process for our labels. This generative

process leads to two main challenges while computing its

resulting likelihood: (a) the intractable marginalization over

the latent variables which we estimate via Monte Carlo inte-

gration and (b) an argmax in the generative process which

we approximate with a temperature parameterized softmax.

Generative process. Suppose there is some latent vector

of utility u(x) 2 R
K , where K is the number of classes

associated with each input x. This utility is the sum of

a deterministic reference utility µ(x) and an unobserved

stochastic component ✏. A label is generated by sampling

from the utility and taking the argmax, i.e. class c is the

label if its associated utility is greater than the utility for all

other classes () y = argmaxj∈[K] uj(x):

u(x) = µ(x) + ✏

pc = P (y = c|x) = P (argmax
j∈[K]

uj(x) = c)

=

Z

1

n

argmax
j∈[K]

uj(x) = c
o

p(✏)d✏

(1)

This generative process follows prior work in the econo-

metrics, noisy labels and Gaussian Processes literature [42,

25, 9, 20, 45], discussed further in §3. First note that if we

choose each stochastic component to be distributed standard

Gumbel independently, ✏j ⇠ i.i.d. G(0, 1) 8j, then the pre-

dictive probabilities pc have a closed form solution that is

precisely the popular softmax cross-entropy model used in

training neural network classification models [42, 9]:

pc = P (argmax
j∈[K]

uj(x) = c)

=
exp(µc)

PK

j=1 exp(µj)

() ✏j ⇠ i.i.d. G(0, 1) 8j

(2)

In other words, this generative process with Gumbel noise

distribution is already an implicit standard assumption when

training neural network classifiers. In (2), the independence

and identical assumptions on the noise component is however

too restrictive for applications with noisy labels:

1. Identical: for a particular input x some classes may

have more noise than others, e.g., given an Imagenet

image of a dog there may be high levels of noise on

various different dog breeds but we may have high

confidence that elephant classes are not present. Hence

we need the level of noise to vary per class.

2. Independence: if one class has a high level of noise

other related classes may have high/low levels of noise.

In the above example there may be correlations in the

noise levels between different dog breeds.

Our method breaks both the independence and identical

assumptions by assuming that the noise term ✏(x) is dis-

tributed multivariate Normal, ✏(x) ⇠ N (0,Σ(x)). Comput-

ing an input-dependent covariance matrix enables modelling

of inter-class label noise correlations on a per image basis.

We discuss more formally in Appendix C how going beyond

an independent and identical noise model can lead to im-

proved predictions in the presence of label noise. However

it also raises a number of challenges;

First there is now no closed form solution for the pre-

dictive probabilities, Eq. (1). In order to address this, we

transform the computation into an expectation and approxi-

mate using Monte Carlo estimation, Eq. (3).

Second, notice that the Monte Carlo estimate of Eq. (1)

involves computing an argmax which makes gradient based

optimization infeasible. We approximate the argmax with

a temperature parameterized softmaxτ , Eq. (3).

pc = P (argmax
j∈[K]

uj(x) = c)

= E
✏∼N (0,Σ(x))

"

1

(

argmax
j∈[K]

uj(x) = c

)#

= E
✏∼N (0,Σ(x))

h

( lim
τ→0

softmax
τ

u(x))c

i

⇡ E
✏∼N (0,Σ(x))

h

(softmax
τ

u(x))c

i

, ⌧ > 0

⇡
1

S

S
X

i=1

(softmax
τ

u
(i)(x))c, u

(i)(x) ⇠ N (µ(x),Σ(x)).

(3)
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The notation (u(x))c denotes the cth entry of u(x) and S is

the number of MC samples.

In the zero temperature limit this approximation is exact,

but for non-zero temperatures ⌧ controls a bias-variance

trade-off. At lower temperatures the approximation is closer

to the assumed generative process but the gradient variance

is higher and vice versa. In practice ⌧ is a hyperparameter

that must be selected on a validation set. This approximation

is similar to the Gumbel-softmax/Concrete distribution [22,

31]. A similar derivation can be given in the multilabel

classification case in which a temperature parameterized

sigmoid is used as a smooth approximation to the hard 1

function for each class, see Appendix A. We analyze the

effect of modelling inter-class correlations by taking a Taylor

series approximation to Eq. 3 in Appendix C.

Efficient parametrization of the covariance matrix.

Σ(x) is a K ⇥ K matrix which is a function of input x.

The memory and computational resources required to com-

pute the full Σ(x) matrix are impractical for the large-scale

image classification datasets used in this paper (with K

up to 21k classes). We make a low-rank approximation

to Σ(x) = V (x)V (x)| where V (x) is a K ⇥ R matrix,

R << K. To ensure the positive semi-definiteness of

the covariance matrix, we compute a K dimensional vec-

tor d2(x) which we add to the diagonal of V (x)V (x)|.

In order to sample from our noise distribution we first

sample ✏K ⇠ N (0K , IK×K), ✏R ⇠ N (0R, IR×R), then

✏ = d(x)� ✏K + V (x)✏R, where � denotes element-wise

multiplication.

In practice we typically compute V (x) as an affine trans-

formation of a shared representation of x computed by a

deep neural network. Suppose that the dimension of this

representation is D, then the number of parameters required

to compute V (x) is O(DKR). For some datasets with

many classes this is still impractically large. For example

Imagenet-21k has 21,843 classes and in the below experi-

ments we use R = 50 and a ResNet-152 which has a final

layer representation with D = 2048. So computing V (x) re-

quires over 2.2B parameters, which dwarfs the total number

of parameters in the rest of the network.

In order to further reduce the parameter and computa-

tional requirements of our method we introduce a parameter-

efficient version which we use for datasets where the number

of classes is too large (Imagenet-21k and JFT). We param-

eterize V (x) = v(x)1|

R � V where v(x) is a vector of

dimension R, 1R is a vector of ones of dimension R and V

is a K⇥R matrix of learnable parameters which is not a func-

tion of x. Sampling the correlated noise component can be

simplified, V (x)✏R = (v(x)1|

K � V )✏R = v(x)� (V ✏R).
The total parameter count of this parameter-efficient ver-

sion is O(DK +KR) which typically reduces the memory

and computational requirements dramatically for large-scale

Algorithm 1: Computing pc

Input: Boolean is-parameter-efficient = { true/false};

compute shared representation r(x) := fθ(x);
compute mean parameter µ(x) := Wµr(x) + bµ;

compute diagonal correction d(x) := Wdr(x) + bd;

generate S standard normal samples

✏K ⇠ N (0K , IK×K), ✏R ⇠ N (0R, IR×R);
if is-parameter-efficient then

compute heteroscedastic low-rank component

v(x) := Wvr(x) + bv;

load homoscedastic low-rank component V ;

U(x) := µ(x) + d(x)� ✏K + v(x)� V ✏R;

else
compute low-rank parameters

V (x) = WV r(x) + bV ;

V (x) := reshape(V (x), [K,R]);
U(x) := µ(x) + d(x)� ✏K + V (x)✏R;

end

pc = mean(softmaxτ U(x), axis = 1)[c]

image classification datasets. For example, for Imagenet-

21k the number of parameters required to compute V (x)
is 44.8M , a 50⇥ reduction. See Algorithm 1 for a full

specification of our method.

3. Related work

3.1. Heteroscedastic modelling

Heteroscedastic regression. Heteroscedastic regression

is common in the Gaussian Processes [45] and economet-

rics literature [42]. Bishop and Quazaz [3] introduced a

heteroscedastic regression model where a neural network

outputs the mean and variance parameters of a Gaussian like-

lihood: y ⇠ N (µ(x),�(x)2). The negative log-likelihood

of the model is particularly amenable to interpretation, Eq.

(4).

1

N

N
X

i=1

1

2�(xi)2
(yi � µ(xi))

2 +
1

2
log �(xi)

2. (4)

We see that the squared error loss term for each example is

weighted inversely to the predicted variance for that example,

downweighting the importance of that example’s label and

providing robustness to noisy labels. This heteroscedastic

regression model has recently been applied to pixel-wise

depth regression [25] and in deep ensembles [28].

Heteroscedastic classification - diagonal covariance.

Kendall and Gal [25] extend the heteroscedastic regression

model to classification by placing a multivariate Normal
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Method Top-1 Acc Top-5 Acc NLL

90 epochs 270 epochs 90 epochs 270 epochs 90 epochs 270 epochs

Homoscedastic 76.5† (±0.22) 76.7† (±0.13) 93.0† (±0.16) 92.9† (±0.12) 0.98† (±0.010) 1.08† (±0.007)

Het. Diag [9] 78.3† (±0.06) 78.7† (±0.09) 94.0† (±0.06) 94.0† (±0.08) 0.88† (±0.003) 0.95† (±0.008)

Het. Full (ours) 78.5 (±0.06) 79.3 (±0.10) 94.3 (±0.03) 94.5 (±0.11) 0.86 (±0.002) 0.92 (±0.006)

Table 1: Results of ResNet-152 trained on ILSVRC12. For heteroscedastic models ⌧∗ = 0.9. Top-1 and top-5 accuracy and

negative log-likelihood ± 1 standard deviation is reported. 5 runs from different random seeds are used. † p < 0.05.

distribution with diagonal covariance matrix over the soft-

max logits in a neural network classifier. They find that

the method improves performance on image segmentation

datasets which have noisy labels at object boundaries.

Closest to our methodology is the approach developed

by Collier et al. [9] which we next describe. The authors

reinterpret the method of Kendall and Gal [25] as an instance

of the generative framework we follow in Eq. (1). They show

that this connects the method to the discrete choice modelling

econometrics literature where the temperature parameterized

softmax smoothing function is known as the logit-smoothed

accept-reject simulator [42, 32, 5]. The authors demonstrate

that the softmax temperature does indeed control a bias-

variance trade-off and that tuning the temperature results

in different training dynamics, qualitatively improved pre-

dictions and significantly improved performance on image

classification and image segmentation tasks. Both Kendall

and Gal [25] and Collier et al. [9] always use a diagonal

covariance matrix for the latent distribution.

The latent variable approach to heteroscedastic classi-

fication is also standard in the Gaussian Processes litera-

ture [20, 45]. A diagonal covariance matrix is used and a GP

prior is placed on mean and log variance parameters. Again

exact inference on the likelihood is intractable and different

approximate inference methods are used [20].

Heteroscedastic segmentation - full covariance. Mon-

teiro et al. [33] introduce Stochastic Segmentation Networks,

a method for modelling spatially correlated label noise in

image segmentation. Similar to Kendall and Gal [25] they

place a multivariate Normal distribution over the softmax

logits in an image segmentation network, but share a low-

rank approximation to the full covariance matrix across all

the pixels in the image, capturing spatially correlated noise.

Unlike our method, Stochastic Segmentation Networks are

a) only applied to medical image segmentation datasets, b)

do not recognise the softmax as a temperature parameterized

smoothing function w.r.t. an assumed generative process and

therefore always implicitly use a softmax temperature of

1.0 and c) do not have a parameter-efficient version of the

method to enable scaling to large output vocabularies.

Discussion. Our method combines the best of this prior

work and enables scaling to large-scale image classification

datasets. We follow Collier et al. [9] in assuming the genera-

tive process in Eq. (1). This gives the benefits of connecting

the work to the existing discrete choice modelling economet-

rics literature and theory. However unlike Collier et al. [9]

we use a low-rank approximation to a full (non-diagonal)

covariance matrix in the latent distribution. In the below

experiments, we demonstrate that our combination of (a)

recognizing the importance of the softmax temperature in

controlling a bias-variance trade-off and (b) modelling the

inter-class noise correlations yields significantly improved

performance compared with individually using (a) or (b).

Our parameter-efficient method also enables scaling up corre-

lated heteroscedastic noise models to a scale unprecedented

by previous work e.g. Imagenet-21k and JFT.

3.2. Noisy labels

We provide a brief overview of some recent methods

for training with noisy labels. Bootstrapping [36] sets the

target label to be a linear combination of the ground truth

label and the current model’s predictions. MentorNet [23]

uses an auxiliary neural network, the MentorNet to output a

scalar weighting for each potentially noisy example. Men-

torMix [24] adds mixup regularization [48] to the MentorNet

approach. Co-teaching [18] jointly trains two neural net-

works. Each network makes predictions on a mini-batch

and the small loss samples are then fed to the other network

for learning. It is assumed that small loss examples are

more likely to have clean labels. Cao et al. [6] propose a het-

eroscedastic adaptive regularization scheme which increases

the regularization strength on high noise examples.

4. Experiments

Our main experiment is to evaluate our method on four

large-scale image classification datasets and show signifi-

cant performance improvements over baseline methods. We

also provide qualitative analysis of the learned covariance

matrices in §4.1. We analyse the effect of our method on the

representations learned by the network in §4.2. Finally, in

§4.3 we combine our method with Deep Ensembles [28] to

yield a method with full predictive uncertainty.
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Method Webvision ILSVRC12

Top-1 Acc Top-5 Acc NLL Top-1 Acc Top-5 Acc NLL

Lee et al. [29] 69.1 86.7 - 61.0 82.0 -

Jiang et al. [23] 72.6 88.9 - 64.2 84.8 -

Guo et al. [16] 72.1 89.2 - 64.8 84.9 -

Saxena et al. [37] 67.5 - - - - -

Jiang et al. [24] 74.3 90.5 - 67.5 87.2 -

Cao et al. [6] 75.0 90.6 - 67.1 86.7 -

Homoscedastic 76.1† (±0.07) 91.2† (±0.07) 1.03† (±0.006) 67.0† (±0.08) 86.0† (±0.11) 1.49† (±0.008)

Het. Diag [9] 76.2† (±0.15) 91.4† (±0.08) 1.01† (±0.002) 67.3† (±0.10) 86.1† (±0.07) 1.47† (±0.004)

Het. Full (ours) 76.6 (±0.13) 92.1 (±0.09) 0.98 (±0.004) 68.6 (±0.17) 87.1 (±0.13) 1.41 (±0.010)

Table 2: WebVision 1.0 results. For het. models, ⌧∗ = 0.9. Top-1 and top-5 accuracy and negative log-likelihood ±1 standard

deviation is reported for both the WebVision and ILSVRC12 validation sets. 5 runs from different random seeds are used for

the homo/heteroscedastic methods, all other results are taken from the literature. † p-value < 0.05.

We provide code which implements our method as a

TensorFlow Keras layer [1, 8], in the supplementary material.

The layer is a drop-in replacement for the final layer of a

classifier, requiring only a simple one line code change from:

logits = tf.keras.layers.Dense(...)(x)

to

logits = MCSoftmaxDenseFA(...)(x).logits

No other changes, including to the loss function are required.

Imagenet ILSVRC12. Table 1 shows the results on Ima-

genet ILSVRC12, a dataset of over 1.2M training images

with 1k classes. ILSVRC12 is known to have noisy labels [2].

Only one class can be present for each image. We train a

ResNet-152 [19] for 90 and 270 epochs (further details in

Appendix B). Hyperparameters are tuned on a validation set

of 50,000 examples that we split off from the training set.

As is standard, we report results on the official ILSVRC12

validation set. For our method we use a softmax temperature

of 0.9 and covariance matrix rank of 15.

When trained for 270 epochs our method has a valida-

tion set top-1 accuracy of 79.3% statistically significantly

better than the baseline models based on an unpaired two-

tailed t-test. We compare to a homoscedastic baseline (stan-

dard neural network training), against which our method

improves the top-1 accuracy by 2.6%. Compared to the di-

agonal covariance method we see a smaller improvement of

0.6% for top-1 accuracy, suggesting that much of the gain is

from the diagonal covariance matrix entries, but that the off-

diagonal terms give further improvements. We note that we

are the first to evaluate the heteroscedastic diagonal model

on ILSVRC12. A sensitivity analysis to the number of MC

samples is provided in Appendix D. An ablation study equal-

izing the number of parameters in the heteroscedastic and

homoscedastic models is provided in Appendix E.

Prior work has shown that neural networks fit cleanly

labelled data points first and then fit examples with noisy la-

bels [27]. The purpose of the 90 epoch ablation is to demon-

strate the heteroscedastic models gain more from longer

training schedules than the homoscedastic model. By over-

fitting less to noisy labels the heteroscedastic models can

be trained for longer e.g., only our heteroscedastic sees im-

proved top-5 accuracy from training for 270 epochs while the

increase in top-1 accuracy from the longer training schedule

increases from 0.2% from the homoscedastic model, to 0.4%

for the diagonal covariance heteroscedastic model to 0.8%

for our model. This demonstrates that despite the parameter

count of the heteroscedastic models being higher than the

homoscedastic models, the additional parameters do not lead

to more overfitting, see Appendix E.

WebVision. WebVision 1.0 [30] is a popular benchmark

for noisy label techniques with the same 1,000 classes as

Imagenet ILSVRC12. Labels are gathered through a noisy

automated process based on co-occuring text with the images

which are scraped from the Web. The training set consists of

2.4M examples and we report results on the validation set,

as is standard, which has 50,000 examples.

Following other approaches in the literature [23, 16, 24, 6]

we use a InceptionResNet-v2 architecture [40] with the same

softmax temperature and covariance matrix rank as the above

ILSVRC12 experiments. Other hyperparameters are taken

from Jiang et al. [24], however we adopt a longer training

schedule of 95 epochs. Following previous methods we

report top-1 and top-5 accuracy on both the WebVision vali-

dation set and on the ILSVRC12 validation set. For the meth-

ods we implement we also report negative log-likelihood.

Our method achieves a new state-of-the-art on WebVi-

sion 1.0 with top-1 accuracy of 76.6% and top-5 accuracy

of 92.1% on the WebVision validation set. See Table 2 for
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Method Imagenet-21k gAP Imagenet-21k NLL JFT gAP JFT NLL

Homoscedastic 45.9† (±0.14) 3.65† (±0.010) 63.1† (±0.22) 20.12† (±0.090)

Heteroscedastic Diag ⌧ = 1.0 [9] 45.9† (±0.06) 3.64† (±0.003) 63.1† (±0.03) 19.95† (±0.022)

Heteroscedastic Diag ⌧
∗ = 0.15 [9] 46.8† (±0.04) 3.63 (±0.002) 64.1† (±0.07) 19.61† (±0.030)

Heteroscedastic PE ⌧
∗ = 0.15 (ours) 47.0 (±0.08) 3.62 (±0.005) 64.7 (±0.06) 19.34 (±0.026)

Table 3: Imagenet-21k and JFT results for heteroscedastic and homoscedastic models. Heteroscedastic PE, is the parameter-

efficient version of our method. The test set global average prevision (gAP) and negative log-likelihood ± 1 standard deviation

is reported. 5 runs from different random seeds are used. † p-value < 0.05.

detailed results. Our method improves upon the best pre-

viously published WebVision top-1 accuracy by 1.6% and

by 1.1% over the best published ILSVRC12 top-1 accuracy,

when training on WebVision. Our baseline homoscedastic

and diagonal heteroscedastic methods are strong relative to

the previously published WebVision results, perhaps due to

our longer than typical 95 epoch training schedule. We note

however there is no standard training schedule for WebVi-

sion and our experiments showed that none of the models

converge with shorter training schedules.

Multilabel datasets. We can also apply our method to

multilabel datasets which may have more than one class in

each image. The same latent variable formulation can be

used but with temperature parameterized sigmoid smoothing

function (see Appendix A). Imagenet-21k and JFT are two

large-scale multilabel image classification datasets.

Imagenet-21k is a larger version of the standard ILSVRC-

2012 Imagenet benchmark [10, 26, 2, 9]. It has over 12.8

million training images with 21,843 classes. No standard

train/test split is provided, so we use 4% of the dataset as a

validation set and a further 4% as the test set.

JFT-300M [21, 7, 39, 26] is a dataset introduced by Hin-

ton et al. [21] with over 300M training images and validation

and test sets with 50,000 images. JFT has over 17k classes

and each image can have more than one class (average 1.89

per image). The labels were collected automatically, with

20% of them estimated to be noisy [39].

For Imagenet-21k we train a Resnet-152 [19] for 90

epochs. Whereas for JFT we train a Resnet-50 [19] for 30

epochs. Further experimental setup details in Appendix B.

Sigmoid temperature of 0.15 is used for the heteroscedastic

methods. For our method the covariance matrix rank is set

to 50 and as the number of classes is large for both datasets,

we use the parameter-efficient version of our method, §2.

Table 3 shows the test set results for Imagenet-21k and

JFT. Global average precision (gAP), the average precision

over all classes, is the metric of interest. The diagonal co-

variance heteroscedastic method with tuned sigmoid temper-

ature provides gains over standard neural network training

and modelling the full covariance martix provides further

impovements in gAP for both datasets. On Imagenet-21k

the additional improvement from modelling the full covari-

ance matrix is more marginal than for JFT. We include an

ablation to demonstrate the importance of the smoothing

function temperature parameter. For both datasets, the per-

formance of the diagonal method is significantly degraded

at ⌧ = 1.0, which corresponds to the model of Kendall and

Gal [25], compared to ⌧
∗ = 0.15. We note that Collier et al.

[9] have already empirically demonstrated the temperature

controls a bias-variance trade-off in the training dynamics of

the diagonal covariance heteroscedastic model.

Class A Class B Avg. Cov.

partridge ruffed grouse,

partridge, Bonasa

umbellus

-0.46

projectile, missile missile -0.44

maillot, tank suit maillot -0.42

screen, CRT screen monitor -0.37

tape player cassette player -0.34

Welsh springer

spaniel

Blenheim spaniel 0.28

standard schnauzer miniature schnauzer 0.27

French bulldog Boston bull, Boston

terrier

0.27

EntleBucher standard schnauzer 0.26

tennis ball racket, racquet -0.26

Table 4: Class pairs with the top-10 absolute covariance,

averaged over the ILSVRC12 validation set.

4.1. Qualitative analysis of learned covariances

We can examine cases where our heteroscedastic model

makes the correct prediction but the standard homoscedastic

model is incorrect. Particularly we are interested in under-

standing whether there is structure in the covariance matrix

of our method which helps explain the correct prediction.

Note that we can reconstruct the full covariance matrix as

Σ(x) = diag(d(x)2) + V (x)V (x)|.

In Table 5, we list 8 cases when the homoscedastic pre-

diction has the highest absolute covariance with the correct
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Image Predictions & covariance

Het pred: cowboy hat

Hom pred: ten-gallon hat, cowboy

boot

Covariance: -4.26

Het pred: castle

Hom pred: palace

Covariance: -1.17

Het pred: African elephant, Lox-

odonta africana

Hom pred: Indian elephant, Elephas

maximus

Covariance: 0.78

Het pred: tractor

Hom pred: harvester, reaper

Covariance: 1.37

Het pred: Border collie

Hom pred: Cardigan, Cardigan

Welsh corgi

Covariance: 1.55

Het pred: computer keyboard, key-

pad

Hom pred: space bar

Covariance: 1.82

Het pred: analog clock

Hom pred: wall clock

Covariance: 2.46

Het pred: monitor

Hom pred: desktop computer

Covariance: 3.07

Table 5: 8 ILSVRC12 test set examples where the het-

eroscedastic model is correct, the homoscedastic model

is incorrect and the absolute covariance between the het-

eroscedastic and homoscedastic prediction is the largest of

all classes to the heteroscedastic prediction.

class and the heteroscedastic prediction is correct but the ho-

moscedastic prediction is incorrect. We see that these cases

broadly fall in two categories which can easily contribute to

noisy labels; 1) substitutes, e.g., a castle and a palace are

two easily confused classes and 2) co-occurrence, e.g., a

computer keyboard and a space bar are likely to occur in the

Figure 2: Histogram of the sorted rank of the absolute covari-

ance between the ground truth class and the homoscedastic

model’s predicted class for ILSVRC12 validation set exam-

ples which the heteroscedastic model predicted correctly and

the homoscedastic model did not.

same image but which one is considered the most prominent

class by the annotator may be unclear.

In Table 4 we look at the class pairs with the highest ab-

solute covariance averaged over the ILSVRC12 validation

set. We compute the average covariance matrix over the

50,000 validation set images and extract the top-10 entries

by absolute value. The class pairs, all are substitutes for each

other or commonly co-occur. There are just under 1M possi-

ble class pairs, it is remarkable that the average covariance

matrix exhibits such clear and consistent structure.

We now conduct a simple analysis to show that the above

examples are not anecdotal but that the learned covariance

matrices are structured. For one homoscedastic and one

heteroscedastic model selected from the previous Imagenet

ILSVRC12 experiments there are 3,565 out of 50,000 val-

idation set images where our model makes a correct pre-

diction but the homoscedastic model is incorrect. Figure

(2) shows a histogram of the rank of the sorted absolute

covariance between the homoscedastic prediction and the

correct class. Clearly the class the homoscedastic model has

incorrectly predicted, is much more likely to have a high

absolute covariance to the correct class in our learned co-

variance matrix. Assuming that the incorrect homoscedastic

prediction is sometimes a plausible label then we see that the

heteroscedastic model has learned to associate the noise on

the correct class with the noise on plausible alternatives. This

is consistent with our analysis of the 2nd order Taylor series

approximation to our model’s log-likelihood, Appendix C.

We expect to see covariances of commonly confused class

pairs to be strengthened during training.

4.2. Transfer of learned image representations

Often large-scale image classification datasets are used to

pre-train representations which are fine-tuned on smaller spe-

cialized datasets [47, 26, 39, 11, 35]. We wish to evaluate the

transferability of the representations learned by our model.
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VTAB1K score

Homoscedastic 70.46† ± 0.5

Heteroscedastic Diag 71.12 ± 0.19

Heteroscedastic PE 71.34 ± 0.23

Table 6: VTAB1K score ± 1 standard deviation for ResNet50

models pre-trained on JFT and fine-tuned on 19 diverse

image classification datasets. † p-value < 0.05.

We hypothesize that by overfitting less to noisy labels and

learning a better model of the upstream pre-training distribu-

tion, our method should learn more general representations.

We test the JFT models on the VTAB [47]. VTAB con-

sists of 19 unseen downstream classification datasets which

cover a variety of visual domains and tasks. We evaluate

using the VTAB1Kprotocol, where each model is fine-tuned

on only 1000 datapoints for each downstream dataset. For all

19 datasets the fine-tuned model is homoscedastic, i.e., the

heteroscedastic output layer is only ever used for upstream

pre-training. The output layer of the network is removed and

replaced with a untrained homoscedastic output layer for

fine-tuning. For downstream fine-tuning we use the standard

hyperparameters and data augmentation settings specified

by Kolesnikov et al. [26]. The VTAB1K score is an average

of the accuracy on all 19 datasets.

Table 6 shows VTAB1K scores. Our parameter-efficient

heteroscedastic model, which captures correlations in the

JFT label noise, improves the VTAB1K score by 0.88%

over the homoscedastic baseline and by 0.22% over the

heteroscedastic diagonal model. We stress that the down-

stream models are trained without a heteroscedastic output

layer, so our experiment demonstrates that a model trained

upstream on JFT with a heteroscedastic output layer learns

representations which transfer better than a homoscedastic

or a heteroscedastic diagonal model.

4.3. Deep Ensembles for Full Predictive Uncertainty

Method Top-1 Acc NLL ECE

Hom. Single Model 76.1 0.943 0.0392

Hom. Ensemble 4⇥ 77.5 0.877 0.0305

Het. Single Model 77.5 0.898 0.033

Het. Ensemble 4⇥ 79.5 0.79 0.015

Table 7: Deep Ensemble results ResNet-50 on Imagenet

ILSVRC12. For heteroscedastic models, ⌧∗ = 1.5.

Our method estimates heteroscedastic aleatoric uncer-

tainty i.e., input-dependent fundamental label noise in the

data. Most approaches in the Bayesian neural networks lit-

erature focus on estimating epistemic uncertainty over the

network’s parameters [13, 14, 4, 34, 46, 44, 28]. Our method

can be easily combined with many of these methods, giving

an estimate of full predictive uncertainty. We successfully

combine our method with Deep Ensembles [28], a method

inspired by Bayesian approaches, that compares favorably in

uncertainty modelling benchmarks [38, 17]. To form a deep

heteroscedastic ensemble we train each ensemble member

with our heteroscedastic layer and average the predictions

of the ensemble members, as in a standard (homoscedastic)

Deep Ensemble.

A ResNet-50 [19] trained on Imagenet ILSVRC12 is

a standard uncertainty quantification benchmark [12, 43].

We train our method and a standard homoscedastic method

using 4 different random seeds. We then create an ensemble

of each method. We use rank 15 covariance matrices and

softmax temperature of 1.5 for the heteroscedastic method

and train for 180 epochs. Homoscedastic models are trained

for 90 epochs as this maximizes validation set log-likelihood.

Table 7 shows the results. We also report expected calibration

error [15], a standard metric for uncertainty benchmarks

which measures how calibrated a network’s predictions are

independent of its performance.

Going from a single homoscedastic model to a ensemble

of homoscedastic models provides a substantial improve-

ment in all metrics as does going from a single homoscedas-

tic to our heteroscedastic model. However the best top-1

accuracy, negative log-likelihood and ECE are achieved

by a Deep Ensemble of heteroscedastic models. The im-

provement in top-1 accuracy for the heteroscedastic ensem-

ble (79.5%) compared to the homoscedastic model (76.1%)

is greater than the combined gains from ensembling ho-

moscedastic models and the heteroscedastic single model,

perhaps due to additional diversity of the ensemble mem-

bers. Code to reproduce these results and a leaderboard of

methods is available publicly1.

5. Conclusion

We have introduced a new probabilistic method for deep

classification under input-dependent label noise. Our method

models inter-class correlations in the label noise. We show

that the learned correlations correspond to known sources

of label noise such as two classes being visually similar or

co-occurring. The proposed method scales to very large-

scale datasets and we see significant gains on Imagenet

ILSVRC12, Imagenet-21k and JFT. We set a new state-of-

the-art top-1 accuracy on WebVision. The representations

learned by our model on JFT transfer better when fine-tuned

on 19 datasets from the VTAB. We combine our method

with Deep Ensembles, giving a method for full predictive un-

certainty estimation and see substantially improved accuracy,

log-likelihood and expected calibration error on ILSVRC12.

1https://github.com/google/uncertainty-

baselines/tree/master/baselines/imagenet
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