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Abstract

With the development of deep learning techniques, the

combination of deep learning with image compression has

drawn lots of attention. Recently, learned image compres-

sion methods had exceeded their classical counterparts in

terms of rate-distortion performance. However, continuous

rate adaptation remains an open question. Some learned

image compression methods use multiple networks for mul-

tiple rates, while others use one single model at the ex-

pense of computational complexity increase and perfor-

mance degradation. In this paper, we propose a contin-

uously rate adjustable learned image compression frame-

work, Asymmetric Gained Variational Autoencoder (AG-

VAE). AG-VAE utilizes a pair of gain units to achieve dis-

crete rate adaptation in one single model with a negligi-

ble additional computation. Then, by using exponential in-

terpolation, continuous rate adaptation is achieved without

compromising performance. Besides, we propose the asym-

metric Gaussian entropy model for more accurate entropy

estimation. Exhaustive experiments show that our method

achieves comparable quantitative performance with SOTA

learned image compression methods and better qualitative

performance than classical image codecs. In the ablation

study, we confirm the usefulness and superiority of gain

units and the asymmetric Gaussian entropy model.

1. Introduction

Image compression is one of the most fundamental and

valuable problems in image processing and computer vi-

sion. In the last decades, many researchers have worked

for the development and optimization of the classical image

compression codecs, such as JPEG [32], JPEG2000 [27]

and BPG [8]. To remove redundancy within images, basic

modules of the classical codes, including transform coding,

entropy coding and quantization, have been sophistically

designed and applied. Since these modules are artificially

designed and optimized separately, it is not easy to obtain
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Figure 1. AG-VAE framework. We achieve rate adaptation by in-

serting a gain unit after encoder and an inverse gain unit before

decoder. The bit rate could be adjusted continuously with the

change of the gain vector index s and the interpolation coefficient

l. The asymmetric Gaussian entropy model estimates entropy of

the gained and quantized latent representation accurately.

an optimal solution for different evaluation indicators.

Recently, deep learning has achieved significant break-

throughs in various learning problems such as image clas-

sification, object detection. Thanks to variational autoen-

coder (VAE) and scalar quantization assumption [5, 4, 6,

25, 28, 1], end-to-end learned image compression frame-

work also has derived significant interests. With the opti-

mization of entropy estimation modules [7, 20, 16] and au-

toencoder network structure [26, 3, 17, 19, 31, 42, 18, 9], the

VAE-based image compression methods have achieved bet-

ter rate-distortion (R-D) performance than the classical im-

age compression codecs on common metrics, such as Peak

Signal-to-Noise Ratio (PSNR) and Multi-Scale-Structural

Similarity Index measure (MS-SSIM) [33].

Some VAE-based image compression methods need to

train multiple fixed-rate models to realize rate adaption,

each model for one rate. Therefore, the training cost and

memory requirement increase dramatically with the growth

and refinement of the desired rate range. Instead of using

multiply models, some other methods achieve the rate adap-

tation using one single model. The RNN-based schemes

[29, 30, 13] encode the input image progressively, but they

suffer from bad R-D performance. The conditional autoen-
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coder [10, 34] incorporates fully connected layers into the

convolution unit to achieve discrete rate adaptation while in-

creasing the network’s computational complexity and mem-

ory requirement. Mixed bin sizes [10] are introduced to

extend the range coverage from finite discrete points to a

broad rate range, but they induce R-D performance degra-

dation. Bottleneck scaling scheme [28, 2] ignores compati-

bility between autoencoder and scaling parameters and has

a poor performance in low bit rate range. Although provid-

ing feasible solutions to rate adaptation in a single model,

the methods mentioned above have various practical prob-

lems such as performance degradation, computational com-

plexity increase and memory increase.

As shown in Figure 1, we propose a novel image com-

pression framework, AG-VAE. It can continuously adjust

the bit rate in one single model and achieves comparable

R-D performance with SOTA learned image compression

methods in quantitative metrics and qualitative visual qual-

ity. Based on the unevenness of channel redundancy, we

design a plug-and-play variable-rate block, gain unit. By

simple channel-wise multiplication, the gain unit rescales

the latent representation. The degree of information loss is

then controlled in the quantization process.

We address two critical challenges of the proposed

framework. First, the inverse-gain unit is introduced to

avoid performance degradation. Second, we study the re-

construction assumption of gain units to deduce the expo-

nent interpolation formula, enabling continuous rate adap-

tation without extra training. To avoid entropy estimation

error for the samples with the asymmetric distribution, we

also introduce the asymmetric Gaussian entropy model to

achieve good R-D performance. To demonstrate the uni-

versality of gain units, we further integrate them into other

backbone architectures [7, 20]. Besides, we also compare

gain units with previous rate adaptation methods from addi-

tional computation and performance degradation.

Our contributions can be summarized as follows:

• We introduce gain units to achieve discrete rate adap-

tation in one single model. With negligible additional

computational cost, our method has a similar perfor-

mance with SOTA learned image compression method.

• We propose the exponent interpolation, which can gen-

erate gain vectors at the arbitrary bit rate. The expo-

nent interpolation formula extends the rate’s coverage

from finite discrete points to a broad continuous range

without an extra training process.

• Gain units with exponent interpolation can be eas-

ily generalized to all VAE-based image compression

methods while avoiding performance degradation.

• We propose the asymmetric Gaussian entropy model

to achieve more accurate entropy estimation. Less bit

rate is required to reach the same distortion level.

2. Related Works

Learned Image Compression. The VAE-based framework

could be counted as a nonlinear transforming coding model

[5, 6]. The transforming process could be mainly divided

into four parts: The encoder that maps an image x into

a latent representation, y = fθ (x); The quantizer that

transforms the latent representation into the discrete values,

ŷ = Q (y); The entropy model that estimates the distribu-

tion of ŷ to get the minimum rate achievable with lossless

entropy source coding [11], Rϕ (ŷ); And the decoder that

transforms the quantized latent representation to the image,

x̂ = gφ (ŷ). The entire framework can be trained jointly by

optimizing the following loss function as:

min
θ,φ,ϕ

Rϕ (Q (fθ (x))) + β ·D (x, gφ (Q (fθ (x)))) , (1)

where Rϕ (·) represents the expected code length (bit rate)

of the quantized latent representation and D (·) measures

the distortion between the input image and the reconstructed

image. The Lagrange multiplier β is a constant in the train-

ing process to specify the R-D tradeoff of the trained model

[24]. Therefore, the VAE-based image compression meth-

ods need to use multiple fixed-rate models trained under

different β to adjust the different compression performance

of images. However, the multi-model scheme only realizes

variable rates in several discrete points of the R-D curve,

while memory consumption increases proportionally.

Rate Adaptation Methods. The first variable-rate learned

image compression was proposed by Toderici et al. [29].

Instead of autoencoder structure, they adopt convolutional

LSTM networks. The network is only trained once and can

progressively transmit bits. The more bits are sent, the more

accurate the image reconstruction is. Subsequently, the

LSTM-based scheme was widely adopted, and new tech-

niques were absorbed in it, such as residual scale recon-

struction, better entropy coding, and spatial adaptive bit

rates [30, 13]. However, the LSTM-based schemes can not

outperform JPEG2000 [27] in terms of R-D performance

and can not achieve continuous variable-rate adaptation.

The LSTM network needs to be inferred multiple times to

reconstruct a high-quality image, which is time-consuming

and impractical for real-world applications.

Choi et al. [10] proposed a variable rate image com-

pression framework with a conditional autoencoder, which

incorporated fully connected networks into the convolution

unit and adjusted compression performance with the La-

grange multiplier. Mixed bin sizes were introduced to con-

trol quantization loss and finetune bit rate in [10]. However,

additional fully connected layers of the conditional convo-

lution increase the computational complexity and memory

of the network. Besides, the adjustment of the bin size influ-

ences the R-D performance to some extent. It also causes

the dilemma of selecting the best combination of the La-

grange multiplier and quantization size in the intersection
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of adjacent coarse-adjusting coverages. Yang et al. [34]

proposed a modulated autoencoder to realize rate adapta-

tion in several discrete points of the R-D curve. Similar to

conditional autoencoder [10], the modulated network intro-

duced fully-connected layers into the autoencoder, which

also caused the increase of memory and computation.

Thesis et al. [28] first trained the autoencoder networks

at a high bit rate. The pre-trained autoencoder was then

fixed and incorporated with scale parameters to achieve rate

adaptation. Nevertheless, the incompatibility between au-

toencoder and scaling parameters led to performance degra-

dation, especially in the R-D curve’s low-rate segmenta-

tions. Akabari et al. [2] proposed a stochastic rounding-

based quantization scheme and replaced the loss term with

rate estimation of the loss function to enable a single model

to operate at different bit rates. However, the alteration of

loss function made its performance in PSNR much lower

than BPG [8]. Compared to the closely related bottleneck

scaling methods [8, 28], the proposed gain units provide

more insights on strengthening autoencoder’s suitability,

gain unit, and inverse gain unit to avoid R-D performance

degradation. Based on the reconstruction assumption, we

deduce the exponent interpolation formula to achieve con-

tinuous rate adaptation in the whole R-D curve.

By incorporating the proposed gain units and a series of

optimization schemes [36, 43, 35, 23], we have participated

in the Workshop and Challenge on Learned Image Com-

pression 2020 (CLIC2020) [40] and achieved good perfor-

mance for low bit-rate image compression task [12]. In this

paper, we will introduce the motivations and principles of

the gain units with exponential interpolation in detail, which

can be easily generalized to all VAE-based image compres-

sion methods to achieve continuous rate adaptation.

Entropy Estimation Model. To obtain accurate entropy

estimation of the latent representation, Ballé et al. [7]

firstly proposed a zero-mean to model the latent represen-

tation. Subsequently, Minnen et al. [7] proposed to esti-

mates the distribution of the latent representation and hyper-

prior with a mean-and-scale Gaussian entropy model and

a non-parametric, fully factorized density model respec-

tively to get the minimum rate achievable with lossless en-

tropy source coding [11], which was still in use by the cur-

rent learned image compressions methods [20, 10, 19, 42].

However, the symmetric Gaussian entropy model has insuf-

ficient degrees of freedom and may induce large estimation

errors for natural images with other distributions.

3. Proposed Method

In this section, we present our proposed image compres-

sion framework AG-VAE, as shown in Figure 1. First, we

introduce the principles of the gain units for discrete rate

adaption. Then, we depict how the exponent interpolation

formula enables the gain units to achieve continuous rate
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Figure 2. Illustration of channel influences on reconstruction dis-

tortion. Left: PSNR degradation of each channel(channel by chan-

nel, the first 32 channels of the quantized feature map). Right:

PSNR degradation of one channel with various scale factors.

adaption. Furthermore, we extend the gain unit to hyper-

prior to save more bit rates. Finally, we discuss the effec-

tiveness of the asymmetric Gaussian entropy model.

3.1. Gain Unit

Here, we first conduct a simple experiment to show

the channel-wise uneven redundancy in latent representa-

tion that widely exists in VAE-based learned image com-

pression frameworks. We taken one image as input of

the encoder to obtain its latent representation, denoted as

y ∈ Rc×h×w, where c, h, w represents the number of chan-

nels, height, and width of the latent representation respec-

tively. Each channel of y can be denoted as yi ∈ Rh×w,

where i = 0, 1, · · · , c − 1 (If not explicitly mentioned, c

is 192 in our framework). We take kodim20 from Kodak

dataset as an example and set the first 32 channels of the la-

tent representation to zero individually. The modified latent

representation is then converted back to the RGB domain,

and the PSNR degradation of the reconstruction by the ab-

sence of different channels is shown in the left part of Fig-

ure 2. The Channel-29 is selected as an example due to the

worst degradation in the absence experiment, and the corre-

sponding PSNR of the reconstruction under different scale

factors is depicted in the right part of Figure 2. With the de-

crease of the scaling factor, the quality of the reconstruction

is also reduced. We can conclude that the channels’ impor-

tance varies and can be scaled to control the reconstruction

quality. However, lots of the learned image compression

methods ignore the uneven redundancy between channels

and treat them equally in the quantization process[37].

To fully utilize the above-mentioned property and scale

the latent representation flexibly, we design the gain unit.

The gain unit is made up of a gain matrix M ∈ Rc×n,

where n represents the number of gain vectors. The gain

vector can be denoted as ms = {ms,0,ms,1, · · · ,ms,c−1},

where s represents the index of the gain vectors in the gain

matrix. And ms,i ∈ R represents the ith gain value in the

gain vector ms and i ranges from 0 to c − 1. Each channel

is associated with its own scale value. The rescale operation

of the latent representation is depicted as:

ȳs,i = yi ×ms,i (2)

In this way, the quantization loss of the latent represen-
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Figure 3. The R-D performance of our DVR method with gain

units on 24 Kodak images. In this experiment, we set n to 5 so

that it can produce 5 points of the R-D curve in a single model.

tation can be finely adjusted by the gain vector channel-

wisely. Therefore, the network is guided to allocate more

bit rates for the channels, which influence the reconstruc-

tion quality significantly. The calculation process of the

gain unit can be described as:

ȳs = Gψ (y, s) = y ⊙ms, (3)

where ȳs is the gained latent representation, Gψ (·) repre-

sents the gain process, and ⊙ represents channel-wise mul-

tiplication in Eq 2. What needs to be mentioned is that the

gain matrix is trained jointly with the autoencoder network

to ensure compatibility between them.

3.2. Discrete Variable Rate with Gain Units

In the VAE-based image compression methods, the

quantizer is applied element-wisely to round the latent rep-

resentation y to the nearest integer. In the Section 3.1, we

show that the channel redundancy of the y is uneven. By

scaling the y to different intervals channel wisely, the gain

unit can adjust the channel redundancy, thus control infor-

mation loss of the quantization process effectively. The

quantization process can be formulated as:

ŷs = Q(ȳs) = round(ȳs), (4)

where ŷs represents the quantized gained latent representa-

tion, Q (·) is the quantization process and round(·) denotes

element-wisely rounding operation.

Before giving the rescaled and quantized latent represen-

tation ŷs to the decoder, an inverse rescale operation needs

to been done. This operation is used to map ŷs back to the

same numerical intervals as y, thus ensuring the reconstruc-

tion’s correctness. [28] limits the scale and inverse-scale

operation to be strictly reciprocal. However, they ignore

that the latent representation can not be mapped to the same

numeral intervals due to quantization operation by recipro-

cal inverse scale operation. Here, we adopt another train-

able gain unit before the decoder to adaptively rescale ŷs,

named as the inverse gain unit. Consequently, the gain ma-

trix and gain vector in the inverse-gain unit are denoted as

inverse-gain matrix M ′ ∈ Rc×n and inverse gain vector

m′
s =

{

m′
s,0,m

′
s,1, · · · ,m

′
s,c−1

}

,m′
s,i ∈ R. The inverse-

gain process can be represented as:

y′s = IGτ (ŷs, s) = ŷs ⊙m′
s, (5)

where IGτ (·) represents the inverse gain process. And ⊙
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Figure 4. PSNR and MS-SSIM comparison between our DVR

method and our CVR method on 24 Kodak images. CVR method

owns the same architecture and parameters as DVR method.

represents channel-wise multiplication similar with Eq 2.

The inverse gain vector m′
s and the corresponding gain

vector ms always appear in pairs, which could be expressed

as {ms,m
′
s}. In the training process, each pair of gain

vectors {ms,m
′
s} corresponds to a specific Lagrange multi-

plier βs from the predefined finite set of the Lagrange mul-

tipliers, B ∈ Rn. The gain vector, inverse-gain vector, and

Lagrange multiplier are bound together with the subscript s.

Thus, the loss function of the discrete variable rate (DVR)

framework is defined as below:

min
θ,φ,ϕ,ψ

n−1
∑

s=0

Rϕ (Q (Gψ (fθ (x) ,s)))

+βs ·D (x,gφ (IGτ (Q (G (fθ (x) ,s)) ,s))) ,

(6)

where Gψ (·) and IGτ (·) represents the gain process and

inverse gain process respectively, Rϕ (·) represents the ex-

pected bit rate of the quantized gained latent representation.

In the inference process, we change s to obtain the corre-

sponding gain and inverse-gain vector pair, which could be

used to scale the distribution of y and y′s respectively. By

this means, we can obtain the desired compression perfor-

mance limited to several discrete points of the R-D curve.

The the R-D curve range depends on the number and value

of Lagrange multiplier βs ∈ B. We denote the VAE-based

image compression method with gain units as the discrete

variable rate (DVR) method. It can be seen from Figure 3

that the DVR method could achieve rate adaptation among

several discrete points of the R-D curve in a single model.

3.3. Exponential Interpolation

Since we use different gain unit pairs to achieve discrete

rate adaptation, continuous one can be achieved by interpo-

lation between gain units. In this section, we derive the ex-

ponential interpolation based on the property of gain units.

The gain unit pair ensures the numerical intervals of ŷ and

y to be the same, which can be formulated as:

mt ·m
′

t = mr ·m
′

r = C, (7)

where {mt,m
′
t} and {mr,m

′
r} (r, t ∈ [0, 1, · · · , n− 1])

represent the gain vector pairs corresponding to different bit

rates, and C ∈ Rc is a constant vector. According to Eq 7,
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Figure 5. The network architecture of the HCVR. Based on the

CVR framework, the HCVR just adds a pair of gain units to the

hyperprior autoencoder to obtain flexible entropy estimation.

we can derive the exponent interpolation formula as:

(

mr ·m
′

r

)l

·
(

mt ·m
′

t

)1−l

=C,

[

(mr)
l
·(mt)

1−l
]

·

[

(

m
′

r

)l

·
(

m
′

t

)1−l
]

=C,

mv=
[

(mr)
l
·(mt)

1−l
]

,m
′

v=

[

(

m
′

r

)l

·
(

m
′

t

)1−l
]

,

(8)

where {mv,m
′
v} is the generated gain vector pair and l ∈ R

is an interpolation coefficient, which controls the corre-

sponding bit rate of the generated gain vector pair. Since

l is a real number, utilizing the exponent interpolation of

the gain vector pairs could achieve an arbitrary bit rate be-

tween t and r. And when l is equal to 0 or 1, it represents

{mt,m
′
t} or {mr,m

′
r} respectively. Without an extra train-

ing process and supplementary blocks, we apply the expo-

nent interpolation formula between the adjacent gain vec-

tor pairs in the inference process to obtain the Continuously

Variable Rate (CVR) method. It could be proved in Figure 4

that the CVR method extends the coverage from finite dis-

crete points to the whole continuous range of the R-D curve

while R-D performance not degrades.

3.4. Variable Rate of Hyperprior

The hyperprior network [7, 20] can capture the latent

representation’s spatial dependencies and achieve a more

accurate estimation of its distribution. The hyperprior net-

work also adopts the autoencoder structure. It generates

the hyperprior latent presentation z, which is modelled by

a non-parametric, fully factorized entropy model. z also

needs to be arithmetically encoded and transmitted, and

contributed as a part of the final loss. Therefore, the rate

adaption of z helps to reduce the rate of the learned image

compression methods containing the hyperprior network.

The structure of our proposed Hyperprior Continuously

Variable Rate (HCVR) method is shown in Figure 5. An-

other pair of the gain units are introduced into the hyper-

prior network to scale the hyperprior z. As the hyperprior

z can be scaled flexibly, the HCVR method reduces the rate

consumption of z without the harm of performance. We will

demonstrate the superiority of the HCVR method over the

CVR method in the following experiments of Section 4.4.

3.5. Gaussian Entropy Model

The matching degree of the parameterized distribution

model and real marginal distribution of the latent represen-

tation is a significant factor for the expected code length (bit

rate) of the quantized latent representation, which decides

R-D performance. As the current mainstream model to es-

timate the distribution of the latent representation, the mean

and scale Gaussian entropy model [7] can be formulated as:

pŷ|ẑ(ŷ|ẑ) ∼ N(µ, σ2), (9)

where µ and σ2 represent the estimated mean and scale pa-

rameters of the latent representation. However, the sym-

metric Gaussian entropy model has insufficient degrees of

freedom and may induce large estimation error for natural

images with other distributions. Therefore, we propose the

asymmetric Gaussian entropy model [21] as follows:

pŷ|ẑ(ŷ|ẑ) ∼ N(µ, σ2

l , σ
2

r), (10)

where σ2

l and σ2
r represent the estimated left-scale and

right-scale parameter of the latent representation. The

asymmetric Gaussian model can achieve better entropy esti-

mation for samples, which do not obey the symmetric gaus-

sian distribution strictly. Besides, all the parameter, includ-

ing µ, σ2

l and σ2
r , are learnable during the training process

so that to the extreme that σ2

l and σ2
r are the same, the

asymmetric Gaussian model could degrade to the symmet-

ric Gaussian model. Therefore, the proposed asymmetric

Gaussian entropy model is more flexible and accurate for

entropy estimation of the latent representation.

3.6. Network Architecture

Our image compression framework AG-VAE is depicted

in Figure 6. We adopt the network in [20] as the basic ar-

chitecture and introduce gain units to realize continuous rate

adaptation. The number of channels of the latent represen-

tation y is set to 192 and the kernel size is set to 3× 3. The

asymmetric Gaussian entropy model is used to replace the

symmetric Gaussian entropy model [20] to achieve more

accurate entropy estimation. Thus, 192× 3 channels are re-

quired for the mean, left-scale, and right-scale parameters

of the asymmetric Gaussian entropy estimation. Besides,

we also adopt some optimization methods such as the atten-

tion module [36], Universal quantization [43, 35], parallel

context models [23], which have been introduced into the

deep image compression methods [42, 10, 41], to enhance

the R-D performance of the AG-VAE framework.

4. Experiments

4.1. Implemental Details

Training The training set consists of a self-building dataset

and a training dataset provided in the CLIC2020 [40]. The

self-building dataset contains 5, 000 high-quality images

collected in various scenes. These images are sampled to
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Figure 6. The network architecture of AG-VAE. Convolution parameters are denoted as the number of filters×kernel height×kernel width

/ stride, where ↑ and ↓ represent upsampling and downsampling respectively. GDN and IGDN represent generalized divisive normalization

and the inverse counterpart respectively [4]. Attention Module is used to improve network performance [36]. AE and AD represent the

arithmetic encoder and decoder. Masked convolution [23] is utilized to enhance entropy estimation accuracy. The gain unit and inverse

gain unit have been interpreted above to achieve rate adaptation. UnivQuant represents universal quantization [43, 35].
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Figure 7. PSNR and MS-SSIM comparison between our variable-rate model AG-VAE and the state-of-the-art image compression methods

[16, 20, 9, 10, 13, 8, 38] on 24 Kodak images.

2, 000 × 2, 000 pixels and saved as lossless PNGs to avoid

compression artifacts. We extract two million patches from

these downsampled images with a size of 256 × 256 to

train the network. We train the model with Adam optimizer

[14] for 12 epochs, where the batch size is set to 8, and

the learning rate is initially set to 10−4 and reduced to half

at the 6th epoch. In our experiments, n denotes the num-

ber of gain vector pairs jointly trained with the AG-VAE

framework, which is the same as the number of Lagrange

multipliers. We prepare two sets of Lagrange multipliers

Bmsssim = {0.07, 0.03, 0.007, 0.003, 0.001, 0.0006} and

Bmse = {0.05, 0.03, 0.007, 0.003, 0.001, 0.0003}, which

correspond to the models trained with MS-SSIM and MSE

loss respectively. In the training process, we randomly

select s from 1 to 6 in each iteration to obtain the gain

vector ms, inverse-gain vector m′
s and Lagrange multi-

plier βs from gain matrix M , inverse-gain matrix M ′ and

Bmsssim/mse. The selected gain/inverse-gain vector will

be optimized jointly with the entire framework under the

corresponding Lagrange multiplier.

Inference Given the target image and the target rate, we

can obtain large-scale discrete rate adaptation by selecting

the index s, while adjusting the interpolation coefficient l

to achieve fine continuous rate adaptation. The bit rate in-

creases as the values of s and l increase. When l is equal

to 0 or 1, the discrete rate at s or s + 1 can be achieved. In

practical use, the parameters s and l are also arithmetically

encoded and decoded along with the latent representation.

4.2. Performace Comprasion

Rate-distortion Performance As shown in Figure 7, We

compare the performance of our variable-rate framework

AG-VAE to the state-of-the-art learned image compression

methods [16, 20, 9] deploying multiple fixed-rate mod-

els, the variable-rate learned image compression methods

[10, 13], and the classical image compression codecs [8, 38]

on the Kodak dataset [15]. The results optimized by MSE or

MS-SSIM are presented in two separate plots. With a sin-

gle model, AG-VAE achieves better R-D performance than

those of multiple-networks methods [16, 20, 9] in PSNR,
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Figure 8. Visualization comparion of reconstructed images

kodim04 from Kodak dataset with approximately 0.1 bpp.

which are believed to be the state-of-the-art ANN-based ap-

proach. In MS-SSIM, AG-VAE obtains comparable R-D

performance with that of Cheng et al. [9] and even better

R-D performance than multiple-networks methods [16, 20].

Compared with other variable-rate learned image compres-

sion methods [13, 10], AG-VAE achieves better R-D perfor-

mance and adjusts rate flexibly while avoiding performance

degradation. In particular, the AG-VAE obtains better re-

sults than the widely used classical image codec BPG [8]

and yields competitive results with VTM [38] in PSNR,

which is considered to be the best intra-frame encoding

methods of the next-generation compression standard Ver-

satile Video Coding (VVC) [22].

Visual Results Figure 8 shows the reconstructed images

kodim04 with approximately 0.10 bpp from the Kodak

dataset [15], which are generated from the AG-VAE meth-

ods and classical image compression codecs [8, 38] to as-

sess qualitative performance. We observe that the classical

codecs suffer from blurring artifacts [8, 38]. In contrast, the

proposed AG-VAE optimized by MSE or MS-SSIM recover

more details and alleviate the blurring artifacts better. More

qualitative results are included in supplementary materials.

4.3. Comparison of Variable­Rate Methods

Rate-distortion Performance To demonstrate the supe-

riority of gain units, we incorporate the proposed HCVR

method or previous rate adaptation methods [28, 10] into

the mainstream VAE-based image compression architecture

[20]. We also compare those methods with the RNN-based

variable-rate image compression method [13]. From Fig-

ure 9, we can find that the proposed HCVR method could

adjust bit rate flexibly and maintain good performance in

the whole range of the R-D curve. However, the method

[10] suffers from performance degradation in high-rate seg-

mentations of the R-D curve and intersection of different
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Figure 9. PSNR and MS-SSIM comparison between the proposed

HCVR method, [10], [28] and the corresponding method [20] with

multiple fixed-rate models on 24 Kodak images.

Basic Method
HCVR Thesis et al. [28] Choi et al. [10]

Para. FLOPs Para FLOPs Para. FLOPs

Ballé et al.

[7]
0.076 0.0004 0.023 0.0004 0.315 0.0428

Minnen et al.

[20]
0.040 0.0002 0.010 0.0002 0.140 0.0193

Table 1. The percentages of additional parameters and computa-

tion in the proposed HCVR method, the bottleneck-scaling method

[28], and the Conditional Conv [10].

bit rate areas of the R-D curve. Meanwhile, the method

[28] suffers from bad performance degradation due to the

incompatibility between autoencoder and rate-scaling fac-

tors. The RNN-based method [13] has far lower R-D per-

formance than counterparts of other methods.

Additional Computation and Parameters Parameter and

computational quantity are important metrics of whether

the learned image compression methods can be popularized

and applied. Variable-rate blocks avoid the multiplication

of network memory but introduce new computation mod-

ules. The RNN-base method achieves better reconstruc-

tion quality with iterations, the running time of which in-

creases proportionally. Therefore, We compare the addi-

tional parameter percentages Para. and computation per-

centages FLOPs between the single fix-rate model [7, 20]

and other classical variable-rate methods, including the pro-

posed HCVR (nhp = 6), the bottleneck-scaling scheme

[28], and the Conditional Conv [10]. It can be seen in Ta-

ble 1 that, compared with the previous classical solution to

rate adaptation [10], the additional parameter percentages of

our HCVR method and the bottleneck-scaling method [28]

are nearly seven times smaller. The additional FLOPs per-

centages of our HCVR method is nearly 100 times smaller.

But the bottleneck-scaling method [28] suffer from severe

performance degradation in the low-rate region. Therefore,

we can conclude that the proposed HCVR method utilizes

the trivial additional parameters and computation to endow

the fixed-rate models with continuous rate adaptation while

avoiding performance degradation.

4.4. Ablation Study

Generalizability of Gain Unit Since there is no need to

modify the internal structure of the network, gain units can

be easily introduced to almost all the VAE-based image

compression methods. We verify the performance of gain

units on different VAE-based image compression methods,
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Figure 10. PSNR and MS-SSIM comparison between the proposed

HCVR and the corresponding learned image compression methods

with multiple fixed-rate models on 24 Kodak images. The basic

models in the upper row and the bottom row are the method in [7]

and the method in [20] respectively.
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Figure 11. PSNR and MS-SSIM comparison between the HCVR

and the CVR on 24 Kodak images. The basic models are the AG-

VAE framework proposed in the paper and the learned image com-

pression method proposed by Minnen et al. [20].

including Ballé et al. [7] and Minnen et al. [20]. Ac-

cording to the process introduced in [7, 20], we have re-

produced the networks, all of which are trained with dif-

ferent Lagrange multipliers separately to get multiple fixed-

rate models in different bit rates. Then, we adopt a single

model of methods in [7, 20] as the basic architectures and

utilize the CVR method mentioned above to enable them

to achieve continuously variable rate in a single model. In

Figure 10, we compare our variable-rate networks with cor-

responding multiple fixed-rate models in PSNR and MS-

SSIM respectively. It could be observed that our variable-

rate networks in a single model obtain similar R-D perfor-

mance with those of the multiple fixed-rate models individ-

ually optimized for several discrete fixed Lagrange multipli-

ers. Besides, our variable-rate networks based on the basic

architectures [7, 20] also utilize the exponent interpolation

formula to achieve continuous rate adaptation in a single

model, like the proposed AG-VAE framework.

HCVR Method By adjusting the bit rate of hyperprior z

flexibly, the HCVR method could achieve more accurate

entropy estimation for the distribution of the variable-rate

latent representation ŷs. We adopt the AG-VAE and the im-

age compression method in [20] as the basic frameworks

to demonstrate the superiority of the HCVR method over
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Figure 12. PSNR and MS-SSIM comparison between the AG-VAE

and the SG-VAE on 24 Kodak images.

the CVR method. As shown in Figure 11, methods with

the HCVR method could achieve slightly better R-D per-

formance than the counterpart of methods with the CVR

method in the whole bit-rate range. The results demonstrate

the effectiveness of the HCVR methods in the learned image

compression methods containing the hyperprior network.

Asymmetric Gaussian Model The images in nature don’t

always follow a symmetrical Gaussian distribution, which is

used to realize entropy estimation in the current learned im-

age compression methods. Therefore, we utilize the asym-

metric Gaussian entropy model with a high degree of free-

dom to reduce entropy estimation errors in the learned im-

age compression methods. When the AG-VAE adopts the

previous symmetric Gaussian entropy model, we name it

as SG-VAE. To show the difference of compression perfor-

mance clearly, we cut off R-D curves from 0.4 to 0.6 bpp.

As shown in Figure 12, AG-VAE achieves better R-D per-

formance than the counterpart of SG-VAE on both metrics.

5. Conclusion

We propose a novel continuously variable-rate deep

image compression framework AG-VAE, which achieves

comparable quantitative performance with the SOTA

learned image compression methods and even better quali-

tative performance than the classical image codecs. By uti-

lizing the unevenness of channel redundancy, we design the

gain units to achieve discrete rate adaptation while avoid-

ing performance degradation effectively. We then deduce

the exponent interpolation to enable gain units to achieve

continuous rate adaptation without extra training or mod-

ules. From the aspect of additional computation, additional

parameters, and performance degradation, gain units are

the state-of-the-art solution to rate adaptation for the VAE-

based image compression methods. Experimental results

demonstrate the effectiveness and efficiency of the gain

units with the exponent interpolation. Besides, the pro-

posed asymmetric Gaussian entropy model achieves flexi-

ble entropy estimation for raw images, which can also be

extended to other learned image compression methods. We

also want to utilize the AG-VAE framework on MindSpore

[39], which is a new deep learning computing framework.

These works will be finished in the future.
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[7] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin

Hwang, and Nick Johnston. Variational image compression

with a scale hyperprior. ICLR, 2018. 1, 2, 3, 5, 7, 8

[8] Fabrice Bellard. Bpg image format. https://bellard.org/bpg,

2014. 1, 3, 6, 7

[9] Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro

Katto. Learned image compression with discretized gaussian

mixture likelihoods and attention modules. In CVPR, 2020.

1, 6, 7

[10] Yoojin Choi, Mostafa Elkhamy, and Jungwon Lee. Variable

rate deep image compression with a conditional autoencoder.

ICCV, 2019. 2, 3, 5, 6, 7

[11] Thomas M. Cover and Joy A. Thomas. Elements of informa-

tion theory. John Wiley and Sons, 2012. 2, 3

[12] TianSheng Guo, Jing Wang, Ze Cui, Yihui Feng Yunying Ge,

and Bo Bai. Variable rate image compression with content

adaptive optimization. CVPRW, 2020. 3

[13] Nick Johnston, Damien Vincent, David Minnen, Michele

Covell, Saurabh Singh, Troy Chinen, Sung Jin Hwang, Joel

Shor, and George Toderici. Improved lossy image compres-

sion with priming and spatially adaptive bit rates for recur-

rent network. CVPR, 2018. 1, 2, 6, 7

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. ICLR, 2015. 6

[15] Eastman Kodak. Kodak lossless true color image suite (pho-

tocd pcd0992), 1993. http://r0k.us/graphics/kodak. 6, 7

[16] Jooyoung Lee, Seunghyun Cho, and Seung-Kwon Beack.

Context-adaptive entropy model for end-to-end optimized

image compression. ICLR, 2019. 1, 6, 7

[17] Haojie Liu, Tong Chen, Peiyao Guo, Qiu Shen, Xun Cao,

Yao Wang, and Zhan Ma. Non-local attention optimized

deep image compression. CVPR, 2019. 1

[18] Haojie Liu, Tong Chen, Qiu Shen, and Zhan Ma. Practical

stacked non-local attention modules for image compression.

CVPRW, 2019. 1

[19] Fabian Mentzer, Eirikur Agustsson, Michael Tschannen,

Radu Timofte, and Luc Van Gool. Conditional probability

models for deep image compression. CVPR, 2018. 1, 3

[20] David Minnen, Johannes Ballé, and Toderici George. Joint
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