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Abstract

Predicting accurate and realistic future human poses

from historically observed sequences is a fundamental task

in the intersection of computer vision, graphics, and arti-

ficial intelligence. Recently, continuous efforts have been

devoted to addressing this issue, which has achieved re-

markable progress. However, the existing work is seriously

limited by complete observation, that is, once the historical

motion sequence is incomplete (with missing values), it can

only produce unexpected predictions or even deformities.

Furthermore, due to inevitable reasons such as occlusion

and the lack of equipment precision, the incompleteness of

motion data occurs frequently, which hinders the practical

application of current algorithms.

In this work, we first notice this challenging problem,

i.e., how to generate high-fidelity human motion predic-

tions from incomplete observations. To solve it, we pro-

pose a novel multi-task graph convolutional network (MT-

GCN). Specifically, the model involves two branches, in

which the primary task is to focus on forecasting future 3D

human actions accurately, while the auxiliary one is to re-

pair the missing value of the incomplete observation. Both

of them are integrated into a unified framework to share

the spatio-temporal representation, which improves the fi-

nal performance of each collaboratively. On three large-

scale datasets, for various data missing scenarios in the

real world, extensive experiments demonstrate that our ap-

proach is consistently superior to the state-of-the-art meth-

ods in which the missing values from incomplete observa-

tions are not explicitly analyzed.

1. Introduction

3D human motion prediction has present considerable

potential in many computer vision applications, such as hu-

man behavior understanding, machine intelligence, and au-

tonomous driving [51, 31, 6, 42, 5, 41, 47]. For instance,

robots in our daily life plan their actions in advance to

perform seamless human-machine interaction by accurately
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Figure 1. Example results. In the upper part, the middle is an in-

complete observation (single leg or arm is missing) of the original

motion. Our approach focuses particularly on generating the pre-

dicted poses directly from the incomplete data while repairing the

missing value incidentally.

anticipating the human actions [19, 30, 32].

Recently, due to its increasing significance, this fasci-

nating topic has been extensively investigated by various

emerging technologies [16, 33, 23, 58, 2]. Researchers typ-

ically regard it as a sequence-to-sequence (seq2seq) gener-

ation task and then resort to RNNs to speculate the next

plausible human movement from the historical observa-

tion [26, 21]. Current approaches have attempted to ex-

ploit GCNs to effectively access the topological relationship

of 3D human skeleton for predicting future human motion

[41, 13, 34]. These solutions fully analyze the temporal and

spatial correlation of human motion sequences.

Although encouraging progress has been achieved, from

the actual scene of human motion prediction, we suggest

that the existing literature ignores an essential aspect, i.e.,

the incompleteness of historical observations has not been

considered. Stated in a different way, state-of-the-art ap-

proaches [21, 34, 10, 13] are over-sensitive to the missing

items of the observed data that are very common in real-

world scenarios [16, 46, 22, 8]. For example, due to the

mutual occlusion of joints or the occlusion of objects in the

environment, the sensor measurement frequently involves

missing values, as shown in Figure 1. Even for professional

motion capture (MoCap) devices, the incompleteness of the
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raw motion data is also inevitable [55, 12, 38]. Current pre-

dictive algorithms never consider the realistic scenario of

incomplete historical observations, which may yield unex-

pected or even distorted predictions, leading to the failure

of the human motion prediction task.

To investigate this new issue, we develop a novel multi-

task graph convolutional network (MT-GCN), which si-

multaneously considers two supervised learning tasks, i.e.,

predicting human actions and repairing the incomplete ob-

servation. Specifically, MT-GCN mainly includes three

modules, including a shared context encoder (SCE), a se-

quence repairing module (SRM), and a human action pre-

dictor (HAP). From temporal and spatial perspectives, the

SCE resorts to the GCN [7, 28] and temporal convolutional

networks (i.e., TCNs) [4] to extract the context code of

3D skeleton sequences. In back-propagation, this shared

context is supervised by both HAP and SRM. For SRM,

in addition to GCNs, it is also embedded with a tempo-

ral self-attention mechanism to select the most related in-

formation from the whole sequence to repair the corrupted

pose [3, 57]. This strategy can also be regarded as an al-

ternative to RNNs or TCNs to capture the temporal pattern.

For HAP, we propose a multi-head graph attention network

(GAT) to aggregate information from neighboring nodes, to

bring a richer topological representation and stable training

[54]. Besides, we design a non-autoregressive pipeline to

generate each predicted frame independently, thus avoiding

error propagation over the time dimension. Meanwhile, in-

spired by neural machine translation (NMT) [14, 48], posi-

tion embedding is introduced into the HAP to ensure conti-

nuity of the predicted sequence. Finally, the above modules

are jointly optimized in a unified framework to improve the

prediction performance from the incomplete sequence.

The major contributions are threefold: (1) To best our

knowledge, this is the first research that explicitly focuses

on predicting human motion when the observed poses in-

volve missing values; (2) We propose a multi-task learning

framework to consider both tasks of repairing the corrupted

observation and predicting future human actions; (3) On

three large-scale benchmarks, our model achieves the state-

of-the-art (SoTA) performance against the existing work.

2. Related Work

Human Motion Prediction. With the availability of

large-scale MoCap datasets [25, 1, 50], typical methods re-

sort to RNNs to treat human motion prediction as a seq2seq

learning problem [19, 47, 22, 8, 9]. In [16], researchers

first introduce RNNs to address the human motion predic-

tion problem, in which two models are proposed, i.e., 3-

layer long short-term memory (LSTM-3LR) and encoder-

recurrent-decoder (ERD). Jain et al. [26] develop a struc-

tural RNN to consider the tree structure of human kinemat-

ics. However, these two methods frequently encounter a

significant discontinuity between the first predicted frame

and the last observed frame. Martinez et al. [42] allevi-

ate this limitation with a residual single-layer GRU model.

Ghosh et al. [20] construct two-level processing to help gen-

erate the planned motion trajectory. Liu et al. [37] introduce

a hierarchical recursive method combined with a Lie alge-

bra. In [10], the authors consider the influence of the en-

vironment on human action and then employ RNNs to pre-

dict future motions. Despite promising results, due to the

unavoidable error accumulation, the variants of RNNs are

prone to converge to an undesired mean pose.

Currently, state-of-the-art approaches utilize GCNs to

predict future human movements [58, 10, 36, 40]. Mao

et al. [41] first introduce an unconstrained graph to repre-

sent the human skeleton sequence. To explicitly leverage

the topological relationship of human joints, Cui et al. [13]

propose a dynamic GCN to consider the connections of both

adjacent joints and geometrically separated ones. Li et al.

[34] develop a multi-scale GCN model to comprehensively

extract the rich connections of the human body.

All of the aforementioned methods formulate human

motion prediction from a simple aspect, which is not ap-

plicable to actual situations where the observation involves

missing values. Our work fills this gap.

Motion Sequence Repairing. Researchers have at-

tempted to repair the missing information in motion se-

quences based upon sparse representation [56, 15] or low-

rank matrix completion [11, 55]. Compared with the statis-

tical approach, RNN variants are also proposed to solve this

issue [12, 35, 24]. However, these methods are not designed

for human motion prediction, and accordingly, are unsuit-

able for predicting actions from incomplete observations. In

[46], the authors consider human action prediction from the

perspective of motion repairing. Particularly, a mask matrix

is utilized to occlude the latter frames of a motion sequence,

and then repairing these missing frames is transformed into

predicting future human poses. Unfortunately, they still fail

to consider the problem that the observed sequence is cor-

rupted by missing joints.

Presumably, a trivial strategy to address this new

paradigm consists of two stages: repairing the missing

values, and then predicting actions from this repaired se-

quence. Although it seems to be more straightforward to

handle two single-task separately, it ignores the internal re-

lations between these two related problems. As shown in

our experimental section, compared with this alternative so-

lution, the proposed multi-task learning framework achieves

more realistic results.

3. Proposed Approach

3.1. Problem Definition and Notations

Let X−T+1:0 = [X−T+1, ...,X−1,X0] ∈ R
J×T×3 be the

complete observation of historical poses, where each X in-
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Figure 2. Illustration of the proposed multi-task graph convolutional network (MT-GCN). It mainly consists of three modules. The

first is the shared context encoder (SCE), which comprises multiple spatio-temporal blocks with residual connections for extracting a

flexible context code of the input sequence. The second is the sequence repairing module (SRM), in which a temporal self-attention

(TSA) is introduced to explicitly borrow information from the appropriate location to repair the missing value. The last is the human

action predictor (HAP) that embeds a multi-head graph attention network (GAT) to effectively access the human skeleton and stabilize the

training process. The aforementioned components are trained jointly to promote mutual cooperation and improve the final performance.

⊕ is addition operation, ⊗ indicates element-wise product, and ∆T = 25 . Finally, the overall model takes the incomplete observation

X̃ = {X̃t}
0
t=−T+1 to produce the predicted poses Ŷ = {Ŷt}

∆T

t=1, and the auxiliary repaired sequence X̂ = {X̂t}
0
t=−T+1.

dicates the human pose represented by 3D coordinate with

J joints. The actual future motion is formally expressed

as Y1:∆T = [Y1, ...,Y∆T−1,Y∆T ] ∈ R
J×∆T×3. Previ-

ous studies [13, 41, 5] are based upon the complete mo-

tion X−T+1:0 to learn an function F : X−T+1:0 → Ŷ1:∆T

to make the prediction Ŷ1:∆T as close as the ground truth

Y1:∆T . These works ignore the situation of observations

with missing values; hence, it may lead to the failure of the

motion prediction task. We have noticed this limitation in

the existing literature and are committed to solving it.

Suppose that M ∈ {0, 1} is a binary mask to set the

missing/unobserved part to zero, ⊗ is the element-wise

product. Our goal is, based on the incomplete observation

X̃−T+1:0 = M⊗X, to train a unified mapping F to forecast

the future human action Ŷ1:∆T , and incidentally, to obtain

the repaired sequence X̂−T+1:0:

F : X̃−T+1:0 → {X̂−T+1:0, Ŷ1:∆T }. (1)

3.2. Multitask Graph Convolutional Network

In this subsection, we illustrate the details of the MT-

GCN from the following three components: Shared Context

Encoder (SCE), Sequence Repairing Module (SRM), and

Human Action Predictor (HAP), as shown in Figure 2.

3.2.1 Shared Context Encoder (SCE)

As a spatio-temporal time-series data, 3D skeleton sequence

enjoys both spatial correlations of joints and temporal pat-

terns among poses. Therefore, to extract a shared represen-

tation, we construct the SCE by stacking multiple spatio-

temporal blocks composed of GCNs and TCNs.

Let the bones between adjacent joints be edges, and we

represent human body as an undirected graph, i.e., G =
(V, E), where V is vertex/joint set and E = {eij |i, j ∈
1, 2, ..., J} is edge set. Each skeletal pose can be formulated

as an adjacency matrix A, where Aij = 1 if and only if i-th
and j-th joints are connected (each joint connects with it-

self). Given the diagonal degree matrix D and the identity

matrix I , the following formula is used to extract the spatial

relation of the human skeleton sequence:

H l+1 = σ
(

ÃH lW l
)

, Ã = D− 1

2 (A+ I)D− 1

2 , (2)

where W l ∈ R
Cin×Cout is the learnable weight, and σ is

the Mish function [43]. H l ∈ R
J×Cin , H l+1 ∈ R

J×Cout

are the input feature and the updated state at l-th layer, re-

spectively. Cin, Cout are the channel number.

The latest studies show that TCN has an efficient expres-

sion for modeling time-series data [44, 4, 45, 18]. Follow-

ing these progresses, the TCN (with same padding) is used

to capture the temporal pattern of motion sequences.

Then, the SCE is composed of 7 GCN-TCN blocks with

the channel numbers 64, 64, 128, 128, 256, 256, 512. Fi-

nally, the input 3-d joint is mapped to a 512-d shared context

representation SCE(X̃) for two downstream modules.

3.2.2 Sequence Repairing Module (SRM)

Usually, human poses are potentially related, even similar

to, throughout the sequence. If the network is capable of
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leveraging the relevant context with the corrupted pose, it

is of great benefit to repair the missing information. To

this end, for SRM, we design a multi-head temporal self-

attention (TSA) strategy to integrate heterogeneous contri-

butions of different frames. In addition, TSA can also ex-

tract the temporal correlation without extra operations.

Let hv = (hv
1,h

v
2, ...,h

v
T ) ∈ R

T×Cin be the input fea-

ture of TSA with respect to the v-th spatial dimension,

hv
i ∈ R

Cin , for each of v ∈ V . The result of TSA is a se-

quence h′v = (h′v
1 ,h

′v
2 , ...,h

′v
T ) weighted according to its

relevance in the sequence, where h′v
i ∈ R

Cout is associated

with i-th frame. For each hv
i , we first use 3 learnable lin-

ear transformations to produce 3 different vectors: a query

qv
i ∈ Rdq , a key kv

i ∈ Rdk and a value vv
i ∈ Rdv . Then, we

use a dot product to obtain a weight for each pair (hv
i ,h

v
j ):

αv
ij = qv

i · k
v
j/
√

dk, ∀v ∈ V, (3)

where dq = dk = dv = 64. The score αv
ij indicates how

much the node v of j-th frame is relevant for the one of i-th
frame. Then, the h′v

i ∈ Rdv can be obtained:

h′v
i =

∑

j
softmax

(

αv
ij

)

vv
j . (4)

Similar to the vanilla Transformer [48], we use K indepen-

dent TSA and then concat their output to enhance the repre-

sentation. For each time step, we repeat the above operation

to produce the attentive context h′v = (h′v
1 ,h

′v
2 , ...,h

′v
T ) ∈

R
T×Cout of the node v, where the Cout = K · dv . Then,

along the spatial dimension, the newly calculated feature is

H = (h′1, h′2, ..., h′J) ∈ R
J×T×Cout for the next layer.

The SRM involves 5 blocks, formed by a TSA and GCN

layer, with same channel number Cout = 512, to help

the SRM explicitly borrow information from related loca-

tions to effectively repair the missing value. With an addi-

tional linear layer, it decodes the shared code SCE(X̃) into

the original dimension. Finally, retaining the non-missing

parts in the observation, the repaired sequence X̂−T+1:0 =
[X̂−T+1, ..., X̂−1, X̂0] is obtained:

X̂ = (1−M)⊗ SRM
(

SCE(X̃)
)

+M⊗ X̃. (5)

3.2.3 Human Action Predictor (HAP)

As the main task of our multi-task learning framework, the

HAP mainly involves three components: Multi-head Graph

Attention Network (GAT), TCN, and Position Embedding.

Intuitively, all neighbors of joint v contribute unequally

to its motion pattern. For example, during running, the

movement of elbow joint is more driven by shoulder joint

rather than wrist joint. To model this, we develop the GAT

to explicitly consider the importance of the neighbors. Fol-

lowing the previous studies [49, 52, 59], with the hidden

state of ht = (ht
1,h

t
2, ...,h

t
J) ∈ R

J×Cin , ht
i ∈ R

Cin , for

each t ∈ {1, 2, ..., T}, a single GAT layer can be defined as:

βt
ij =

exp
(

LReLU
(

aT
[

Wht
i,Wht

j

]))

∑

k∈Ni
exp

(

LReLU
(

aT
[

Wht
i,Wht

k

])) , (6)

where βt
ij is the attentive score of the vertex pair (ht

i,h
t
j).

Ni is the neighbors of i-th node in the graph, and [ , ] rep-

resents a concatenation. W ∈ R
Cout×Cin and a ∈ R

2Cout

indicate the weight matrix of a linear transformation and a

single-layer fully-connected network, respectively. LReLU

(α = 0.2) is the nonlinear activation.

The output of multi-head GAT for each node is obtained

using the average computation of K independent GATs:

h
′t
i = σ

(

1

K

K
∑

k=1

∑

j∈Ni

βtk
ij W

kht
i

)

, ∀t ∈ {1, ..., T}. (7)

Similarly, for each node, we repeat the GAT computa-

tion to obtain the output state h′t = (h′t
1 ,h

′t
2 , ...,h

′t
J ) ∈

R
J×Cout , with h′t

i ∈ R
Cout being the t-th vector in the

sequence. σ is the Mish function [43]. Then we apply

it to each temporal dimension to produce the final result

H = (h′1, h′2, ..., h′T ) ∈ R
J×T×Cout .

Typically, RNN-based models are based on previous pre-

dicted poses to forecast the next frame [42, 46, 23]. This

autoregressive pipeline inevitably leads to the problem of

error accumulation, even the convergence to the mean pose.

To break through it, inspired by [53, 32], a TCN with filter

size f=1 is used to forecast each frame independently. Our

strategy bypasses the influence of previous frames on the

current prediction, thus alleviating error accumulation.

One drawback of the above non-autoregressive scheme is

that it cannot encode the temporal continuity of successive

poses. To solve this problem, following the current progress

in NMT [14, 48], we use position embedding to map each

scalar index t to a vector in a supervised way, and then inject

it into each time step of the input features of HAP. Consid-

ering two indexes t1, and t2, the closer they are, the more

similar the positional vectors are, and vice versa. In this

way, our non-autoregressive HAP clearly distinguishes the

input context at different positions, thus explicitly ensuring

the temporal continuity and the ordinal relation of the gen-

erated sequence. Then, each predicted frame Ŷt is indepen-

dently computed as:

Ŷt = X̂0 +HAP
(

P (t), SCE(X̃)
)

, (8)

where X̂0 is the last frame (seed pose) of the repaired se-

quence. P is the position embedding that transforms each

index t into a vector. SCE(X̃) is the shared code from

the SCE. Finally, the HAP generates the smooth prediction

Ŷ1:∆T = [Ŷ1, ..., Ŷ∆T−1, Ŷ∆T ] in parallel, in which each

predicted frame is not affected by previous ones.

3.3. Training

Following previous work [34, 41, 12, 10], the model is

trained to minimize L2 distance and the bone length error.
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Figure 3. Qualitative Comparison. From top to bottom: Ground Truth (GT); and MT-GCN, STMIGAN [46], TrajGCN [41], LDRGCN

[13], DMGNN [34], directly generated from incomplete observations; as well as R+STMIGAN [46], R+TrajGCN [41], R+LDRGCN [13],

R+DMGNN [34], based upon the repaired sequence. As highlighted in the rectangle, patently unreasonable or abnormal predictions are

exhibited. We observe that, even when the baselines are based on the repaired sequence, the proposed model still outperforms them.

The final objective function is then expressed as:

L =λP ||Y1:∆T − Ŷ1:∆T ||2 + λB1
LB

(

Y, Ŷ
)

(9)

+ λR||X−T+1:0 − X̂−T+1:0 ||2 + λB2
LB

(

X, X̂
)

,

where the X̂ and Ŷ denote the repaired sequence and the

prediction respectively, X and Y are the corresponding GT.

The function of LB is used to calculate the bone length

difference of two motion sequences [13, 12]. In all ex-

periments, we set λP = 1, λB1
= 0.04, λR = 0.5,

λB2
= 0.015. Such a hyper-parameter setting brings sev-

eral significant advantages: (1) Balancing the scale of each

loss term; (2) Distinguishing the importance of two tasks;

(3) Ensuring that HAP and SRM converge synchronously

as much as possible to stabilize the training process.

3.4. Implementation Details

In our work, the 3D position-based sequence is used as

the input and output. Compared with the action-specific

model, we consider training the proposed MT-GCN under

all action categories to achieve a general model.

As shown in Figure 2, our model is mainly composed of

three modules: SCE, SRM, and HAP. The SCE is stacked

with 7 residual spatial-temporal blocks, each of which is

formed by a GCN and a TCN layer, with the channel num-

ber of 64, 64, 128, 128, 256, 256, 512. The filter size of

TCNs is f = 5. The SRM and HAP contain 5 blocks with

channel number 512, each of which follows an additional

linear layer to map the output into the original dimension.

In the SRM, the block is formed by a GCN and a multi-

head TSA, while in the HAP, it is formed by a multi-head

GAT and a TCN with a filter size f = 1. The head num-

ber of multi-head TSA and multi-head GAT is K = 8.

In addition, for SRM, we use the skip-connection to con-

nect the incomplete input and the repaired sequence, while

for HAP, each predicted pose is added to the last repaired

frame (seed pose) X̂0. Then, a Mish function is used as

the activation [43]. The length of input and output is equal

(T = ∆T = 25). The position embedding module takes

each index t as the input and returns its 512-d embedding

from a learnable lookup table [17].

Throughout the model, each layer is followed by batch

normalization, with dropout rate of 0.3. The mini-batch size

is 64. We use Adam [27] to train the network, where the

initial learning rate is 0.01, with a 0.98 decay every 2 epoch.

4. Experiments

4.1. Preliminaries

Dataset-1: H3.6M [25] is the largest benchmark for hu-

man action prediction, which involves 15 activity categories

performed by 7 professional actors. Following the previous

literature [34, 13, 33], the constant joints are removed so

that each pose contained 17 joints (J=17). Then, all se-

quences are down-sampled to a frame rate of 25 frames per

second (fps). Finally, the activities of subject-5 (S5) are

used as the testing set, the S11 is the validation, and the

remaining is the training samples.
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Walking Eating Smoking Discussion Directions

Milliseconds (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

MT-GCN (Ours) 11.5 18.8 34.1 41.7 60.4 9.1 17.2 35.2 42.3 74.9 9.0 15.7 30.2 39.7 70.8 10.8 22.7 53.3 64.6 115.7 8.4 23.2 42.7 56.7 108.5

Residual sup. [42] 32.5 50.8 72.2 85.4 112.3 26.1 41.3 69.4 87.1 131.7 27.8 47.2 70.5 93.6 137.8 35.2 64.3 103.0 115.3 158.9 30.5 55.2 91.2 113.1 151.4

ConvSeqSeq [33] 26.5 46.2 67.1 77.4 108.2 20.7 34.8 64.3 82.7 113.4 18.7 45.3 65.6 87.4 107.7 26.2 49.4 87.5 107.1 150.1 20.3 41.5 72.4 87.7 142.6

TrajGCN [41] 17.5 29.0 49.8 57.7 102.4 14.1 26.6 48.7 61.5 127.1 16.0 24.3 50.2 76.4 98.4 17.2 34.1 78.4 88.3 138.8 12.5 33.6 60.3 78.0 129.1

LDRGCN [13] 15.3 27.7 50.5 56.6 97.0 13.2 23.4 53.7 60.3 117.8 13.4 20.8 51.9 72.1 97.2 15.6 30.2 69.1 87.4 131.8 14.2 32.5 57.4 74.5 125.7

DMGNN [34] 14.8 27.3 48.0 55.4 90.9 14.1 23.6 52.5 59.1 115.1 13.5 20.7 46.2 64.8 94.3 15.0 29.4 68.7 86.5 129.6 15.1 31.0 58.4 73.2 124.4

STMIGAN [46] 16.3 39.5 55.7 64.5 94.3 17.2 36.6 81.1 93.1 101.8 16.3 37.5 52.0 61.1 100.5 23.1 47.6 86.9 97.6 147.9 22.4 47.3 70.2 79.2 131.2

R+Residual sup. [42] 25.6 43.5 68.3 73.2 92.1 20.2 37.2 65.6 82.3 114.4 23.2 29.3 63.1 85.6 118.3 30.4 53.1 92.3 105.6 145.5 27.7 50.2 83.1 95.6 138.3

R+ConvSeqSeq [33] 20.2 37.3 61.2 68.3 88.5 15.6 29.4 54.4 70.3 96.7 13.1 35.2 56.4 69.8 89.7 20.2 42.3 73.5 87.2 133.8 18.4 36.3 65.6 80.9 121.6

R+TrajGCN [41] 13.4 25.1 43.4 48.1 67.3 9.2 19.3 38.1 46.3 83.6 10.3 20.3 38.2 51.6 80.2 14.5 27.9 59.2 69.5 120.1 11.4 24.4 50.6 65.8 119.3

R+LDRGCN[13] 12.4 22.2 42.1 46.6 65.3 10.1 19.4 41.8 44.2 81.6 11.2 17.2 35.9 48.3 77.4 13.9 24.4 56.5 65.7 117.1 10.9 23.2 45.4 61.7 117.4

R+DMGNN [34] 12.7 20.3 38.6 47.2 64.2 11.3 18.2 40.6 43.8 77.5 11.6 17.0 34.4 45.1 79.7 12.0 23.7 54.8 64.4 117.9 11.3 23.5 46.4 59.4 115.8

R+STMIGAN [46] 15.4 32.3 45.6 57.3 78.3 14.3 27.8 53.0 71.1 89.2 15.2 22.5 43.9 56.2 85.5 21.3 34.7 85.3 92.5 133.6 18.8 33.4 56.1 81.3 124.1

Table 1. Comparisons of 3D error on five representative activities from H3.6M dataset. The upper is the numerical result that is directly

generated from the incomplete observation with missing values. In the lower part, the prefix ’R’ means that the results are obtained from

the repaired sequence. Note that for our MT-GCN, we only consider the challenging but practical solution of predicting human motion

from the raw observation with missing information. The best result is highlighted in bold, and the second is underlined.

Dataset-2: We also report our experimental results on

CMU MoCap [1]. Consistent with the previous work

[21, 41, 42], the selected samples contain eight actions, with

a total of about 86k poses. We use a similar test/training par-

tition strategy as they published code. Notably, due to data

limitations, the validation set is unavailable. Other prepro-

cessing solutions are the same as the H3.6M dataset.

Dataset-3: 3DPW MoCap [50] is recently released hu-

man action analysis dataset. It involves more than 51k in-

door or outdoor frames. For a fair comparison, we use the

official training, testing and validation sets. A pose is repre-

sented as the 17-joint skeleton. Compared with the H3.6M

and CMU MoCap, the frame rate of the 3DPW dataset is

30fps. Therefore, the input observation involves 30 frames,

i.e., X̂ ∈ R
J×30×3. Other configurations are consistent with

those of the H3.6M and CMU MoCap.

Baselines. We compare the our MT-GCN with 5 rep-

resentative approaches, i.e., a RNN-based (Residual sup.

[42]), a CNN-based (ConvSeq2Seq [33]), three GCN-based

(TrajGCN [41], LDRGCN [13], DMGNN [34]), as well as

STMIGAN [46]. For an unbiased comparison, the baseline

models are retrained under incomplete observations, and the

other experimental settings are consistent with their papers.

Evaluation Metric. We first animate the predicted pose

for qualitative comparison. Then, following the previous

work [41, 13, 33], we also provide 3D errors using Mean

Per Joint Position Error (MPJPE) [25] in millimeter (mm).

4.2. Result Analysis

Qualitative comparison. We visualize the character

animation of each predicted pose on H3.6M dataset. For

the competing methods, we utilize two different solutions:

First, directly forecast future actions from incomplete ob-

servations (40% of the length of the left arm and right leg

joint is invisible); Second, repair first using [12], and then

generate the prediction based upon the repaired sequence;

while for our MT-GCN, we only consider the former chal-

lenging but more practical solution. The generated results

are shown in Figure 3, in which the vertical dashed lines

separate the observation, the short-term prediction (400 ms)

and the long-term prediction (1000 ms). We observe that

once the observation involves missing values, the TrajGCN,

LDRGCN, and DMGNN yield distorted results. We also

simply modify the STMIGAN to accommodate the prob-

lem of predicting actions from incomplete observation. Al-

though it has achieved specious visualization, with the in-

creasing of the predictive horizon, the results are signifi-

cantly different from GT. Moreover, the long-term predic-

tion tends to converge to the mean pose. We suggest that

a possible reason is that STMIGAN inevitably leads to the

error accumulation. However, our MT-GCN explicitly con-

siders the missing value in the observation, thus achieving

remarkable improvements. Even if the baseline methods

are based on the repaired sequence, they only achieve a

slight progress. In contrast, our model directly infers from

incomplete observations and obtains more accurate predic-

tions that are almost indistinguishable from the GT.

Quantitative comparison. Table 1 shows the 3D er-

ror on five representative activities from the H3.6M dataset,

which is evaluated directly from incomplete observations

or the repaired sequence, respectively. The construction of

incomplete observation is the same as the previous quali-

tative comparison part. Notably, the prefix ’R’ means that

the result is obtained from the repaired sequence. We ob-

serve that due to error accumulation, Residual sup. grad-

ually obtains higher errors with the predicted range. Con-

vSeq2Seq is difficult to extract the structural relation, thus

only achieving a lower accuracy. The GCN-based methods

generate the sub-par result because they efficiently extract

the spatio-temporal relationship of 3D skeleton sequences.

Compared with these baselines, STMIGAN achieves better

results under the incomplete observation because it solves

the problem of human motion prediction from the perspec-

tive of repairing missing frames. In addition, the competi-

tors usually produce a slightly better performance on the re-

paired sequence than on the incomplete observation. How-
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Greeting Phoning Posing Purchase Sitting

Millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

MT-GCN (Ours) 13.9 28.9 65.2 78.6 138.6 8.8 17.4 37.3 47.1 103.4 9.6 20.1 54.0 77.5 154.3 13.4 28.9 67.9 75.1 136.8 9.8 21.1 48.5 54.4 116.9

R+TrajGCN [41] 18.2 39.4 75.1 92.8 145.0 11.1 23.3 45.4 57.7 111.3 14.7 31.5 64.5 89.7 173.8 18.5 39.5 70.3 86.1 152.2 11.2 26.5 54.1 67.4 124.3

R+LDRGCN[13] 16.2 33.3 72.7 86.6 143.1 10.4 22.6 41.4 52.1 110.5 12.5 26.3 62.1 89.2 169.5 17.1 38.0 67.6 80.4 149.9 12.5 28.7 50.5 61.1 120.8

R+DMGNN [34] 15.3 30.7 71.3 85.0 142.1 11.2 21.8 39.8 51.3 114.5 11.7 28.9 59.8 85.8 164.1 18.3 39.4 68.8 79.0 147.4 12.6 30.3 47.7 59.7 121.7

R+STMIGAN [34] 16.3 38.1 77.8 94.0 151.2 12.7 25.3 44.2 59.1 139.9 13.3 30.2 70.3 93.5 176.4 20.1 43.5 74.2 84.3 149.3 13.6 30.9 56.7 66.4 131.8

Sitting down Taking photo Waiting Walking dog Walking together

Millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

MT-GCN (Ours) 13.7 29.6 57.3 70.8 140.2 8.9 18.0 39.5 48.1 117.3 8.4 18.7 42.9 52.7 108.8 21.1 41.1 77.0 90.6 145.6 8.4 21.3 33.7 44.2 69.0

R+TrajGCN [41] 17.9 36.3 61.6 78.5 153.1 10.5 22.4 49.4 60.1 128.7 10.9 23.0 53.1 72.8 120.5 23.5 46.4 83.6 97.3 160.5 11.2 22.1 40.3 48.7 76.4

R+LDRGCN[13] 16.4 34.3 60.2 76.1 149.0 10.2 23.3 47.7 57.7 127.7 10.1 21.7 51.4 59.3 117.9 24.6 45.8 80.4 95.1 157.6 11.4 20.6 38.5 47.1 75.2

R+DMGNN [34] 15.5 33.4 59.2 76.7 147.9 9.8 24.9 46.7 55.9 124.3 10.5 21.5 50.3 54.5 115.4 25.0 43.9 79.2 94.6 156.7 10.3 22.1 35.7 45.2 74.7

R+STMIGAN [34] 16.8 36.7 60.2 83.4 158.5 11.3 25.4 49.6 65.0 137.1 12.9 27.0 57.7 70.1 130.9 30.2 58.4 92.5 109.7 176.3 13.6 21.4 43.1 52.5 80.2

Table 2. 3D error comparisons on the remaining 10 actions of H3.6M dataset. The results of our MT-GCN are directly from the incomplete

observation, while others are generated from the repaired sequence.

ever, the price of this improvement is the addition of an ad-

ditional sequence repairing procedure. Our MT-GCN gen-

erates superior results only based on the incomplete obser-

vation, which is more practical and efficient. The numerical

results on the remaining 10 activities are shown in Table 2,

and the conclusions are consistent with the above.

Different scenarios of missing value. We report the

predicted 3D error (1000 ms) on different types of miss-

ing values on H3.6M dataset. Except for the data missing

scenario, other experimental configurations are the same as

before. As shown in Table 3, under various types of missing

values, the results of our MT-GCN are reliable.

Results on CMU and 3DPW MoCap. As with the eval-

uation of H3.6M, we also investigate the quantitative 3D er-

ror on the CMU and 3DPW datasets. For baseline methods,

we predict human motion based on two different historical

sequences, including a.) raw incomplete observation; b.)

the repaired observation after filling the missing value using

the model in [12]. As shown in Table 4 and Table 5, our MT-

GCN still achieves better performance than all competitors,

which coincides with the conclusion on H3.6M dataset.

Limit testing. Because the person is occluded by a pil-

lar, the whole pose may be invisible to the sensor for a pe-

riod. To simulate this challenging situation, we remove con-

tinuous frames with different lengths from the observation

to evaluate the 3D error (1000 ms). From Table 6, with the

increase of the missing number, our model still yields reli-

able results, which evidences our superiority again.

4.3. Repairing Missing Values

We select several sequence repairing algorithms to ver-

ify our model in repairing missing values. From Table 7, we

observe that MT-GCN achieves higher accuracy in terms of

filling the missing value. We suggest that, with two su-

pervised tasks, the SRM additionally utilizes a complete

knowledge from the future poses to repair missing values,

thus achieving a better repaired results. This also reflects

from the side why our method is capable of generating high-

fidelity predictions from incomplete observations.

Scenario
Joint Random

Missing
Structured

Missing
Random
Missing

MT-GCN (Ours) 110.7 115.2 112.3

TrajGCN [41] 144.3 163.2 139.1
LDRGCN [13] 135.7 149.3 139.3
DMGCN [34] 133.0 146.3 138.2

STMIGAN [46] 138.1 144.6 135.9

R+TrajGCN [41] 123.6 131.5 122.6
R+LDRGCN [13] 120.7 127.1 120.4
R+DMGCN [34] 117.1 126.5 118.5

R+STMIGAN [46] 132.6 128.2 135.2

Table 3. Predicted 3D errors on different types of missing val-

ues. Joint Random Missing: 40% of the right leg is randomly

missing. Structured Missing: 40% of the length of the right leg

joint is continuously missing. Random Missing: 30% of the ran-

dom entries in the whole sequence is missing.

4.4. Robustness to Noise

The captured motion data are often damaged by noise

[29, 24, 39]; however, the existing work seldom considers it.

We add Gaussian noise N (0, σ2) to the observed data and

then randomly remove 50% of the leg joints. Then, based on

this severely corrupted observation, the different methods

are evaluated. As shown in Table 8, our model performs

better than those non-multitask learning frameworks.

5. Ablation Studies

Here, we analyze the effect of several essential compo-

nents on predictive performance on H3.6M dataset.

We first investigate the impact of (1) different defini-

tions of human skeleton, including a.) the undirected

graph in this work, b.) the directed graph from parent joint

to child joint, c.) the reverse graph from child joint to par-

ent joint, as well as d.) an unconstrained adjacency matrix

to adaptively learn the topological relation. From Table 9,

we observe that the undirected graph shows better perfor-

mance, which implies that, for predicting human actions

from incomplete observations, it is necessary to consider

both the positive and reverse correlation of adjacent joints.

To verify the relevance of two branches (SRM, HAP),

we separately analyze the results of sequence repairing and

motion prediction when (2) one of them is reserved. From

Table 10, when considering these two branches jointly, it

achieves better results than the single one. This evidences
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Basketball Basketball signal Drecting traffic Jumping

Millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

MT-GCN (Ours) 13.2 22.1 41.6 54.2 102.3 4.0 6.3 12.0 14.3 50.5 6.6 17.1 26.1 37.7 137.5 13.1 30.9 67.2 90.7 150.6

R+TrajGCN [41] 15.3 27.3 51.7 63.1 112.4 3.9 7.1 13.4 17.8 59.6 7.2 17.0 33.4 41.9 153.7 17.4 33.5 67.8 93.5 166.2

R+LDRGCN[13] 14.3 26.5 48.7 60.7 111.1 4.2 7.9 13.2 16.7 54.8 7.0 17.5 30.5 39.4 150.4 16.8 32.7 66.6 92.1 158.5

R+DMGNN [34] 15.1 24.9 50.1 57.4 108.2 4.4 7.4 12.9 16.2 52.5 7.1 17.9 29.5 39.5 147.2 15.6 32.6 65.7 93.2 157.7

Running Soccer Walking Wash window

Millisecond (ms) 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000 80 160 320 400 1000

MT-GCN (Ours) 16.4 19.8 24.3 34.2 49.1 11.3 20.9 41.1 50.5 94.9 7.5 10.8 17.3 20.3 37.6 6.0 12.5 26.5 38.4 56.7

R+TrajGCN [41] 19.4 27.8 31.5 40.1 60.1 14.4 26.4 47.8 62.2 101.2 9.8 15.7 27.1 28.3 40.6 7.4 15.5 30.3 48.7 65.3

R+LDRGCN[13] 18.7 25.4 28.0 38.4 52.8 13.8 24.2 43.6 54.9 99.0 8.9 13.0 23.3 24.7 39.4 8.2 13.3 29.1 42.1 63.9

R+DMGNN [34] 17.4 23.6 27.0 37.1 54.5 13.3 23.4 43.7 53.4 102.6 8.2 12.1 23.7 26.1 39.0 8.3 13.8 28.2 42.6 61.2

Table 4. Comparisons of 3D error on 8 activities of CMU MoCap dataset. Our model is evaluated on incomplete observation, while the

baselines are based on the repaired sequence; even so, the proposed MT-GCN also achieves better results.

Millisecond (ms) 200 400 600 800 1000

MT-GCN (Ours) 39.3 60.8 90.3 106.1 123.5

R+TrajGCN [41] 47.1 73.0 103.7 126.6 146.7

R+LDRGCN [13] 42.3 65.5 97.4 115.6 134.2

Table 5. Mean 3D error on whole testing set of 3DPW dataset.

Number of Missing Frames 1 3 5 7

MT-GCN (Ours) 109.4 111.9 122.0 139.1

Table 6. Limit Testing for missing frames of different numbers.

Missing Time (ms) 80 160 320 400 480 560

MT-GCN (Ours) 9.2 12.3 14.5 19.4 21.9 26.6

BAN [12] 10.2 14.6 18.7 22.7 26.1 30.3

NonLinear MC [55] 15.3 20.3 25.1 33.2 37.3 42.7

STMIGAN [46] 12.2 13.5 17.2 22.4 25.5 31.4

Table 7. Sequence Repairing Results, which evaluates the L2 dis-

tance between the repaired observation and the real one when both

left arm and right leg with different lengths are missing.

Models MT-GCN R+TrajGCN R+LDRGCN R+DMGNN

σ = 25mm 114.3 127.1 126.4 124.4

σ = 50mm 119.7 135.0 133.6 132.7

Table 8. Robustness to noise. Predicted 3D error (1000 ms) when

the incomplete observation is attached to a Gaussian noise.

that the human motion prediction and repairing incomplete

observations are related tasks, and considering the both can

improve their respective performance.

The last repaired frame X̂0, as a seed pose, is added to

each predicted frame. To verify its effectiveness, we inves-

tigate (3) the impact of the seed pose on the predictive per-

formance. Besides, we also analyze the effect of (4) differ-

ent filter sizes of TCNs. These results are shown in Table

11 and Table 12. We observe that the proposed components

indeed facilitate the final generation.

Notably, Table 9, 11, and 12 are evaluated on the condi-

tion of 40% length of left arm and right leg are missing.

6. Conclusion

In this work, we explore a new problem, namely, pre-

dicting future accurate human motions from historically in-

complete sequences. Moreover, we also propose a novel

multi-task graph convolutional network (MT-GCN) to solve

it. Our approach jointly considers two supervised tasks of

repairing missing values in the observed sequence and pre-

Graph Type Undirected Directed Reverse Unconstrained

MT-GCN (Ours) 112.0 126.4 131.2 117.5

Table 9. Top: Effects of various definitions of human body; Bot-

tom: Effects of the number of heads in multi-head GAT. The re-

sults show the predicted 3D error of 1000 ms on H3.6M dataset.

Sequence repairing Motion prediction

SRM HAP 10% 20% 30% 40% 10% 20% 30% 40%

X × 9.1 14.4 20.6 26.9 - - - -

× X - - - - 110.2 117.3 121.4 126.5

X X 8.6 13.7 18.7 24.5 109.4 110.5 112.3 114.4

Table 10. The repaired and predicted result at 1000 ms with

different random missing ratio, using SRM, HAP, or the both.

Seed Pose 80 160 320 400 1000

w/o 11.7 23.8 49.2 61.5 114.5

w/ 11.0 22.8 47.9 58.9 110.7

Table 11. Effects of the seed pose on each predicted pose.

Filter Size 80 160 320 400 1000

3 11.4 24.7 50.6 62.6 114.6

5 11.1 22.8 47.9 58.9 110.7

7 11.0 23.1 49.5 60.6 115.7

Table 12. Effects of different filter size of TCNs.

dicting human actions, rather than dealing with them sepa-

rately. Compared with traditional algorithms which produce

unreasonable or even abnormal results under incomplete

observations, the proposed model achieves higher-quality

and more realistic predictions, even if the baseline methods

are based on the repaired sequence. In addition, on several

large-scale human motion benchmarks, our MT-GCN sur-

passes the state-of-the-art approaches in various scenarios

of joint missing. Therefore, we reasonably conclude that

the proposed model is more convenient for the practical ap-

plication of human motion prediction.
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M. F. Moura. Few-Shot Human Motion Prediction via Meta-

learning. In ECCV, pages 432–450, 2018.

[23] Xiao Guo and Jongmoo Choi. Human Motion Prediction

via Learning Local Structure Representations and Temporal

Dependencies. In AAAI, pages 2580–2587, 2019.

[24] Daniel Holden. Robust solving of optical motion capture

data by denoising. ACM Transactions on Graphics (TOG),

37(4):1–12, 2018.

[25] Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian

Sminchisescu. Human3.6M: Large Scale Datasets and Pre-

dictive Methods for 3D Human Sensing in Natural Environ-

ments. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 36:1325–1339, 2014.

[26] Ashesh Jain, Amir Roshan Zamir, Silvio Savarese, and

Ashutosh Saxena. Structural-RNN: Deep Learning on

Spatio-Temporal Graphs. In CVPR, pages 5308–5317, 2016.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A Method for

Stochastic Optimization. In ICLR, 2015.

[28] Thomas N Kipf and Max Welling. Semi-supervised Classi-

fication with Graph Convolutional Networks. arXiv preprint

arXiv:1609.02907, 2016.

[29] Taras Kucherenko, J. Beskow, and Hedvig Kjellstrom. A

Neural Network Approach to Missing Marker Reconstruc-

tion in Human Motion Capture. arXiv: Learning, 2018.

[30] Jogendra Nath Kundu, Maharshi Gor, and R. Venkatesh

Babu. BiHMP-GAN: Bidirectional 3D Human Motion Pre-

diction GAN. In AAAI, volume 33, pages 8553–8560, 2019.

[31] Andreas M. Lehrmann, Peter V. Gehler, and Sebastian

Nowozin. Efficient Nonlinear Markov Models for Human

Motion. In CVPR, pages 1314–1321, 2014.

[32] Bin Li, Jian Tian, Zhongfei Zhang, Hailin Feng, and Xi Li.

Multitask non-autoregressive model for human motion pre-

diction. IEEE Transactions on Image Processing, 2020.

[33] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Con-

volutional Sequence to Sequence Model for Human Dynam-

ics. In CVPR, pages 5226–5234, 2018.

[34] Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yan-

feng Wang, and Qi Tian. Dynamic Multiscale Graph Neural

Networks for 3D Skeleton Based Human Motion Prediction.

In CVPR, pages 214–223, 2020.

4809



[35] Shujie Li, Yang Zhou, Haisheng Zhu, Wenjun Xie, Yang

Zhao, and Xiaoping Liu. Bidirectional Recurrent Autoen-

coder for 3D Skeleton Motion Data Refinement. Computers

& Graphics, 81:92–103, 2019.

[36] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song

Feng, and Raquel Urtasun. Learning Lane Graph Represen-

tations for Motion Forecasting. In ECCV, pages 541–556,

2020.

[37] Zhenguang Liu, Shuang Wu, Shuyuan Jin, Minghua Tang,

Shijian Lu, Richard Zimmermann, and Li Chen Cheng. To-

wards Natural and Accurate Future Motion Prediction of Hu-

mans and Animals. In CVPR, pages 10004–10012, 2019.

[38] Suhas Lohit, Rushil Anirudh, and Pavan Turaga. Recov-

ering trajectories of unmarked joints in 3d human actions

using latent space optimization. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer

Vision (WACV), pages 2342–2351, 2021.

[39] Utkarsh Mall, G Roshan Lal, Siddhartha Chaudhuri, and

Parag Chaudhuri. A deep recurrent framework for clean-

ing motion capture data. arXiv preprint arXiv:1712.03380,

2017.

[40] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History

Repeats Itself: Human Motion Prediction via Motion Atten-

tion. In ECCV, pages 474–489, 2020.

[41] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong

Li. Learning Trajectory Dependencies for Human Motion

Prediction. In ICCV, pages 9489–9497, 2019.

[42] Julieta Martinez, Michael J Black, and Javier Romero. On

Human Motion Prediction using Recurrent Neural Networks.

In CVPR, pages 2891–2900, 2017.

[43] Diganta Misra. Mish: A Self Regularized Non-Monotonic

Neural Activation Function. In BMVC, 2020.

[44] Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen

Simonyan, and Koray Kavukcuoglu. WaveNet: A Generative

Model for Raw Audio. In SSW, 2016.

[45] Dario Pavllo, Christoph Feichtenhofer, David Grangier, and

Michael Auli. 3D Human Pose Estimation in Video with

Temporal Convolutions and Semi-Supervised Training. In

CVPR, pages 7753–7762, 2019.

[46] Alejandro Hernandez Ruiz, Juergen Gall, and Francesc

Moreno-Noguer. Human Motion Prediction via Spatio-

Temporal Inpainting. In CVPR, pages 7134–7143, 2018.

[47] Yongyi Tang, Lin Ma, Wei Liu, and Wei-Shi Zheng. Long-

Term Human Motion Prediction by Modeling Motion Con-

text and Enhancing Motion Dynamics. In IJCAI, 2018.

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is All You Need. In NeurIPS, pages

5998–6008, 2017.
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