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Abstract

Mechanical image stabilization using actuated gimbals

enables capturing long-exposure shots without suffering

from blur due to camera motion. These devices, however,

are often physically cumbersome and expensive, limiting

their widespread use. In this work, we propose to digi-

tally emulate a mechanically stabilized system from the in-

put of a fast unstabilized camera. To exploit the trade-off

between motion blur at long exposures and low SNR at short

exposures, we train a CNN that estimates a sharp high-

SNR image by aggregating a burst of noisy short-exposure

frames, related by unknown motion. We further suggest

learning the burst’s exposure times in an end-to-end man-

ner, thus balancing the noise and blur across the frames. We

demonstrate this method’s advantage over the traditional

approach of deblurring a single image or denoising a fixed-

exposure burst on both synthetic and real data.

1. Introduction

Through advances in imaging technology, optical sys-

tems have become lighter and more portable than ever.

These improvements, however, are sometimes negated by

the need for stabilization. Due to the natural tremor of

handheld cameras, or the movement of mounted vehicles,

camera motion is often unavoidable. As a result, images

captured this way may suffer from motion blur, which is

especially evident during long exposures or with long fo-

cal lengths. Image stabilization, the task of mitigating this

phenomenon, has been mostly explored in the optical and

mechanical domains. In the optical regime, stabilization

emerges from using high-cost, uniquely tailored lenses or

cheaper but less effective shift sensors. On the other hand,

mechanical stabilization devices, such as actuated gimbals,

can be attached to any camera with no need for complicated

optical equipment. Such systems are highly popular but

(a) Full-exposure image (b) DeblurGAN-v2 [17]

(c) KPN [19] (d) Ours

Figure 1. A qualitative evaluation of our approach on images cap-

tured by a vibrating camera with a long focal length. (See the sup-

plement for a description of our setup.) The fully-exposed image

(a) suffers from considerable motion blur, which is hard to mit-

igate using image deblurring methods (b). Employing the same

time budget to capture a fixed-exposure burst and merging it via a

burst denoising algorithm (c) results in over-smoothing and ghost-

ing artifacts. Our approach (d) of learning a non-uniform exposure

regime enables utilizing the sharpness of short-exposed frames and

the high SNR of long-exposed ones to yield a superior reconstruc-

tion.

limited in their ability to compensate for blur due to scene

motion or atmospheric turbulence. However, the most se-

vere limitation of mechanical image stabilization is its cost,

form factor, weight, and power requirements, which might

be prohibitive in many scenarios.
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In recent years, deep learning approaches have been suc-

cessfully utilized for solving traditional image processing

tasks. The field of burst and multi-frame imaging, in par-

ticular, has seen rising attention, with a variety of works on

denoising [19] and deblurring [1, 29]. These methods ex-

ploit the information entangled in different degraded real-

izations of the same scene to reassemble them into a single

high-quality image. Relying on this concept, together with

the well-known trade-off between strong blur at long expo-

sures and low SNR at short exposures, we propose solving

the image stabilization task using a burst of images, each

captured consecutively over a short period. Thus we reduce

the problem to joint burst denoising and deblurring, as the

two are already well-established. While most burst meth-

ods assume the data across the burst are complementary,

we further suggest explicitly intervening in the acquisition

pipeline and forcing diversity in noise and blur levels. We

achieve this by designing an end-to-end learned system that

includes both a deep burst image processing network and

the camera’s exposure configuration. The latter is imple-

mented using a novel network layer that numerically models

the frame acquisition process, and can potentially be further

tuned for other imaging tasks. To the best of our knowledge,

this approach has never been attempted before for still im-

age reconstruction from SNR-limited bursts in the presence

of camera motion.

2. Related work

Burst imaging aims to compensate for non-optimal op-

tics or imaging conditions by fusing frames captured se-

quentially over a short period. This ongoing research field

has been excessively studied for denoising and deblurring,

with most works focusing on a single kind of degradation.

Delbracio and Sapiro [5] propose an elegant scheme for

weighted spectral domain averaging of uniformly-blurred

bursts to produce sharp images. Wieschollek et al. [29] ex-

pand on this idea and introduce a CNN for predicting decon-

volution filters and weights for Fourier burst accumulation.

Aittala and Durand [1] suggest a permutation-invariant net-

work for fusing unordered sets of blurry images. Mildenhall

et al. [19] propose an adaptive kernel prediction network

for jointly aligning and merging noisy frames. Sim and

Kim [24] further utilize this approach for video deblurring

by fusing adjacent frames and a generated residual image.

The task of image restoration from bursts with non-

uniform exposure times was first explored using traditional

image processing tools. Ben-Ezra and Nayar [2] introduce

a hybrid imaging system that records camera motion to pre-

dict the point spread function of a blurry image. Zhang et

al. [33] use a sparse prior to adaptively combine informa-

tion from noisy and blurry inputs. Yuan et al. [31] employ

a noisy/blurry image pair of the same scene to estimate the

blur kernel and reduce ringing artifact. More recently, re-

searchers have been adopting the idea of using short- and

long- exposure pairs as the input to deep learning-based

restoration algorithms. These include tasks such as high

dynamic range (HDR) imaging [13], deblurring [34], and

low-light restoration [4]. However, these works rely on

fixed and pre-selected timing regimes, with two separately-

tuned data generation pipelines: one for the short-exposure

frames, and another one for the long-exposure ones.

In parallel, recent works by Google Research have

shown that burst imaging can mitigate smartphone cam-

eras’ limitations by increasing their dynamic range [8], spa-

tial resolution [30], and performance in low light condi-

tions [18]. These improvements are achieved by an alter-

native image signal processing (ISP) pipeline that robustly

aligns and merges frames and applies post-processing ef-

fects. Furthermore, it introduces dynamic exposure selec-

tion: either by interpolating a hand-crafted database, or by

aggregating motion prediction with inertial sensor data.

3. Approach

We assume the scenario in which a latent scene is cap-

tured by a moving camera over a temporal interval [0, T ].
With some abuse, we denote the irradiance image at time

t as a latent transformation τt of a latent irradiance E,

Et = τt(E). The irradiance images are not directly ob-

servable; instead, the camera acquires a discrete set of n

frames Y1, . . . , Yn. Each frame is captured during its inte-

gration interval [ti, ti +∆ti] ⊂ [0, T ], where ti denotes the

opening time of the shutter, and ∆ti the frame exposure.

Each frame is related to the latent image through the sensor

forward model F :

Yi = F
(

τt∈[ti,ti+∆ti](E)
)

. (1)

Assuming the exposure times ∆ti are relatively low (around

a few milliseconds), each frame in the burst suffers from

low SNR due to imaging noise. Furthermore, we expect

the frames to be slightly blurred due to the camera move-

ment. The trade-off between these two sources of degra-

dation is controlled by the exposure time ∆ti, with longer

exposures corresponding to better SNR and stronger blur,

and vice versa.

Our aim is to utilize the information entangled in these

measurements of the scene, by combining the frames into

a single sharp high-SNR estimation of the latent irradiance

image,

Ê = I (Y1, . . . , Yn) , (2)

where I is the reconstruction (inverse) operator.

We propose to learn the latter reconstruction opera-

tor concurrently with the user-controlled parameters of the

camera, which in our case is the shutter schedule {ti,∆ti}.
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Figure 2. Our reconstruction network comprises a flow network, which aligns the burst, and a KPN, which merges the aligned frames. At

train time, our forward model generates the burst from a video representing the scene’s irradiance values. This extension allows learning

the frames’ optimal exposure times.

This leads to a learning problem of the form

min
∆,I

Eℓ
(

I
({

F
(

τt∈[ti,ti+∆ti](E)
)}n

i=1

)

, E
)

. (3)

Here Eℓ denotes the expectation of a loss function measur-

ing the discrepancy between the latent E and its estimated

version Ê, and ∆ describes the burst parameters detailed in

the sequel. In what follows, we describe the construction of

differentiable forward and inverse models and their learning

scheme.

4. Sensor forward model

This section describes our numerical forward model (de-

noted as F above) of the imaging process, starting with the

scene irradiance and ending with a fully formed raw im-

age. We generally follow the noise estimation of Konnik

and Welsh [16], while paying particular attention to time-

dependent properties and visibly dominant factors at short

exposures.

4.1. Image formation

Our model describes a moving camera capturing short-

exposure images of a static scene. For simplicity, we

assume that both the camera and the light source are

monochromatic in relation to the same wavelength λ. We

further assume device-specific parameters are known, as

they are customarily supplied by manufacturers [10].

From photons to electrons. Let Et (x) be the irradiance

of a pixel x at time t. We can express it in terms of the

photon flux

γt (x) =
λAEt (x)

hc
, (4)

where λ denotes the wavelength, A is the effective pixel

area, h is the Planck constant, and c is the speed of light.

Each collected photon deposits its energy in the form of

electric charge, generating photoelectrons inside the pixel.

Their mean amount is given by

ē(x) = ηλ

∫ t+∆t

t

γt (x) dt, (5)

where [t, t + ∆t] is the time interval on which the shutter

was open, and ηλ is the quantum efficiency of the pixel at

wavelength λ.

Noise generation. The photons are not the sole source of

charge in the pixel. Some amount of current, named the

dark current, thermally deposits charge in it, even if the

scene is completely dark. The mean number of electrons

it generates grows linearly with the exposure time:

ē0 =
I0∆t

qe
, (6)

where I0 is the average dark current, and qe is the elemen-

tary charge.

The measured number of electrons fluctuates randomly,

obeying Poisson statistics due their discrete nature. This

phenomenon, known as shot noise, is often approximated

in the image processing domain by a Gaussian distribu-

tion [4, 13, 19], which is a valid assumption in high-light

regimes. However, since we are dealing with short expo-

sures, at which shot noise dominates other components, we

model photoelectron production as a realization of a Pois-

son variable,

eq(x) ∼ Poiss (ē(x) + ē0) . (7)

Another major source of noise, the readout noise, is inde-

pendent of the exposure time. It mostly originates in ther-

mal fluctuations in the analog-to-digital converter (ADC)

and follows a zero-mean Gaussian distribution with some

device-specific standard deviation, ero(x) ∼ N
(

0, σ2
ro

)

.

Therefore, we can express the total number of collected

electrons as

e(x) = eq(x) + ero(x). (8)

From electrons to digital numbers. The pixel circuits

convert the collected electrons into voltage, which is then

amplified and translated into digital numbers (DNs). Fol-

lowing the EMVA 1288 standard [10], we assume this pro-

cess to be described by an almost linear curve, whose sensi-

tivity dampens towards the full-well capacity (FWC) of the
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Figure 3. The shutter schedule is determined by the learned expo-

sure times. Green and red lines represent time intervals in which

the shutter is open and close, respectively. The idle time slot is

optional.

pixel. We model this response function as

r (e) =

{

Ke, e ≤ τ1

K
(

τ1 +
(

1− exp
(

− e−τ1
τ2

))

τ2

)

, e ≥ τ1
,

(9)

where K is the overall system gain, τ1 is the threshold from

which the curve becomes strictly concave, and τ1 + τ2 =
FWC. Moreover, since DNs have discrete values, we as-

sume the following quantization function:

Q (e) = min

{

max

{

[e]

2m − 1
, 0

}

, 1

}

, (10)

with m denoting the number of bits per pixel, and [·] the

rounding operation. The DN value of the digital image at

pixel x is given by

Y (x) = Q (r (e(x)− ē0)) , (11)

where the subtraction of the mean of the dark noise ē0 re-

flects the typical correction that many cameras apply.

4.2. Exposure parametrization

In order to make the sensor forward model amenable to

learning, we assume the total time budget T and the number

of frames n in the burst to be fixed, and parametrize the

individual frame exposure parameters as

∆ti = ∆tmin + αi (T − n (∆tmin +∆tro)) . (12)

Here ∆tmin is the minimum exposure time, and tro is the

frame readout time (including any additional blank time

needed between two consecutive frames). The parameters

αi, representing the relative frame exposures, are, in turn,

parametrized as

αi = σ (∆)i =
e∆i

∑m

j=1 e
∆j

, (13)

where σ denotes softmax. The vector ∆, serving as the

trainable camera parameters, can be set to be either n-

dimensional, in which case the burst consumes the entire

available time budget, or (n+1)-dimensional, allowing not

to utilize all the available time (Fig. 3).

4.3. Numerical approximation

The learning of the optimal burst exposure parameters ∆

mandates a differentiable calculation of the forward model

described by equations (5-11). While most of these compu-

tations are straightforward, special consideration should be

taken in steps (5,7,10).

The forward pass of (5) calculates a temporal integral

of a continuous irradiance function Et(x), scaled accord-

ing to (4). At training, we approximate this integral via the

trapezoidal method from a sequence of N ≫ n uniformly-

sampled irradiance values {Eti(x)}
N
i=1 obtained from sim-

ulated scene flow.

We discuss the backpropagation through equations

(7,10) in the supplement.

5. Reconstruction network

The following section describes our inverse model (de-

noted as I in Section 3) responsible for estimating the clean

irradiance image E given the burst frames Y1, . . . , Yn. We

base our reconstruction model on the recent work in ker-

nel prediction networks (KPN), which were first introduced

by Jia et al. [11], and have shown promising results in

various image processing tasks, including video interpola-

tion [21, 22], super-resolution [12], and deblurring [24], and

burst denoising [19]. Its success in the latter two problems

encourages its use in this work, as our goal is to merge dif-

ferent noisy and blurry realizations of the same scene. To

do so, we predict temporally- and spatially-variant kernels

and apply them to merge the captured burst into a clean and

sharp image.

Since fixed-size kernels are limited in their ability to

align frames, we pre-warp the burst according to a ref-

erence one, as customarily applied in video deblurring

works [15, 25]. Gast and Roth [7] proposed using pre-

trained flow networks as the most efficient option for the

latter operation. However, this approach is impractical in

our case, as the amount of noise and blur in the input frames

is expected to change while the exposure times are learned.

Therefore, we opted for an end-to-end training methodol-

ogy, in which the flow network parameters are co-learned,

not specifically for perfect alignment, but to compensate for

the kernels’ narrow receptive field.

A schematic representation of our network is summa-

rized in Fig. 2.

5.1. Flow network

The goal of the flow network is to align the frames

{Yi}
n

i=1 according to a pre-selected reference one Yi0 .

Since the entire burst is captured during continuous mo-

tion, we choose Yi0 to be the middle frame, as we expect

it to overlap the others significantly, making alignment eas-

ier. Aiming to deal with non-rigid motion and parallax, we
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Figure 4. Our flow network obeys the architecture proposed by

Kalantari and Ramamoorthi [13]. Our sub-CNN comprises four

5 × 5 convolutions intertwined with ReLUs, with the number

of channels being n, 100, 50, 25, 2 (n− 1). In every scale, we

feed the sub-CNN the appropriate pyramid level of the normalized

burst, each frame in its own channel. We interpret the output as

XY displacement fields for each non-reference frame.

use flow networks [6, 9, 23, 26]. However, these methods

align individual images and therefore are prone to fail on

degraded input. Kalantari and Ramamoorthi [13] handle

this concern by jointly aligning the reference’s neighbor-

ing frames, thus complementing missing information. We

follow the same architecture and simultaneously align the

entire burst.

The network utilizes a hierarchical approach [13, 23, 27],

which develops and refines a flow from a Gaussian pyramid

of the input. At each level, from coarse to fine, we apply

the same sub-CNN. At the coarsest level, we treat the sub-

CNN’s output as a displacement field, which we then up-

sample and apply to the next level before feeding it to the

sub-CNN again. Then, we sum the output flow with the

upsampled one to produce the next flow in the chain and

repeat. This architecture, depicted in Fig. 4, has the benefit

of producing large-scale and high-precision pixel displace-

ments.

Note that since the exposure times are not stable, the

burst’s brightness varies from frame to frame and during

training. Therefore, we normalize the frames according to

their portion of the exposure time budget before feeding

them into the flow network:

Y n
i =

T

∆ti
Yi. (14)

5.2. Kernel prediction network

Fig. 5 depicts our kernel prediction architecture, which

follows the noise-blind version of the network suggested by

Mildenhall et al. [19]. It is designed as an encoder-decoder

with skip connections, which predicts adaptive kernels for

each input pixel. The kernels are then applied to merge all

given frames into the resulting image.

The use of pixel-adaptive kernels has a few key benefits.

They reduce noise by pixel averaging without risking cross-

ing edges and can also fix non-uniform blur. The latter is

especially evident in our problem setting, where long focal

lengths are commonly applied [28]. Moreover, by picking

the most reliable frames for each area in the final image, the

kernels allow us to exploit the variability across the burst

(see Fig. 6). This choice is affected by each frame’s expo-

sure time and content but can also compensate for alignment

artifacts by the flow network. Thus, similarly to Kalantari

and Ramamoorthi [13], we merge the original and regis-

tered burst to allow the former to be picked over the other.

To generate the output, we first take the pixel-wise mean

of the resulting frames:

Ê = Γ





1

2n− 1





n
∑

i=1

Y n
i ⊗ kni +

∑

i 6=i0

Y a
i ⊗ kai







 .

(15)

Here {Y a
i }

n

i=1,i 6=i0
are the aligned frames, {kni }

n

i=1,

{kai }i 6=i0
are the predicted location-dependent kernels, and

⊗ denotes the application of the kernel. Furthermore, to im-

prove perceptual quality, we apply the differentiable gamma

correcting function Γ [19].

6. Training

6.1. Loss function

Given the ground-truth image E, we define our basic loss

function as:

ℓbasic

(

Ê, E
)

=
∥

∥

∥Ê − E
∥

∥

∥

1
+ µ

∥

∥

∥∇Ê −∇E
∥

∥

∥

1
, (16)

where ∇ are the combined horizontal and vertical Sobel fil-

ters, and µ is a fixed constant. We choose the ℓ1 loss as it

was shown to promote sharp outputs, while the second term

is applied as a regularization aiming to suppress patterned

artifacts [34].

In our experiments, we found that while this loss yielded

good results, the predicted kernels ignored {Y a
i }i 6=i0

, as the

flow network fails to properly align the burst. Thus, simi-

larly to Mildenhall et al. [19], we propose using an annealed
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Figure 5. Our KPN follows the architecture of Mildenhall et al. [19]. All convolutions blocks are composed of three 3 × 3 convolutions

intertwined with ReLUs. We feed the network both the original normalized burst and the aligned one, each frame in its own channel, and

predict k × k kernels for each pixel in each given frame. We then apply the kernels to merge the frames into a single image.

Figure 6. We reconstruct RGB images from the burst after apply-

ing the predicted kernels, for both KPN [19] (left) and our method

(right). While KPN primarily uses the middle frame (correspond-

ing to the color green), our algorithm manages to incorporate all

frames. Since the middle frame’s learned exposure is lower than

the others, it is mainly employed for restoring areas that suffer

from more blur, such as edges and moving objects. The other two

frames are averaged to denoise smoother surfaces or ones that are

farther away from the camera and thus less sensitive to blur.

loss term to encourage frame alignment. Unlike the men-

tioned authors, we do not apply the loss to each individual

frame, since it might hinder the network from learning het-

erogeneous timing regimes. Instead, we sum each kernel

entries to produce 1× 1 kernels, and use them to merge the

aligned burst:

Êa = Γ





κ

(2n− 1)κa



Y n
i0
⊗Kn

i0
+

∑

i 6=0

Y a
i ⊗Ka

i







 .

(17)

Here K denotes the sum over the corresponding indexed

kernel, κ is the pixel-wise sum over all 2n− 1 kernels, and

κa is the pixel-wise sum over {Ka
i }i 6=i0

and Kn
i0

. Thus, our

overall loss is

ℓ
(

Ê, Êa, E
)

= ℓbasic

(

Ê, E
)

+ βαtℓbasic

(

Êa, E
)

,

(18)

where β, α ∈ (0, 1) are fixed constant, and t is the current

iteration number. Hence, the loss in the first phase of train-

ing will produce gradients that compensate for the kernels’

narrow receptive field by improving the flow network’s per-

formance.

6.2. Synthetic dataset

While standard burst and video denoising and deblur-

ring algorithms operate on a few neighboring frames, our

method must be evaluated on burst frames matching the ir-

regular exposure regime dictated by our training on dense

irradiance maps. Therefore, in the absence of any existing

dataset that allows this flexibility, we generated our own.

Since our network is proposed as an alternative to me-

chanical gimbals, we create our data using 720p scenery

drone videos from YouTube. We divide each video into

short clips of 31 frames while skipping 500 frames between

each clip. This process yielded around 10,000 different

clips. Since undersampling may cause discontinuous ar-

tifacts in the motion trajectory, we follow other blur sim-

ulating works [3, 20] and increase the frame rate using a

CNN for frame interpolation [22]. Although deep interpo-

lation algorithms may create unreliable individual frames,

they can still handle nonlinear motion and produce naturally

looking blur when averaged. We feed each clip to the CNN

eight times, resulting in 241 frames. Since the middle frame

is not artificially generated, we use it as the ground-truth.

At each training step, we randomly choose a 512 × 512
patch from the input clip. Although it already depicts cam-

era motion, which is imperative for producing parallax and

occlusions, we further augment the set by adding a con-

trolled amount of motion using homographies. Since drone

videos are usually filmed using long focal lengths, their pri-

mary source of blur is ego-rotations [28]. We therefore ap-

ply randomly aggregated 3D rotations from frame to frame,

which are computed using a pre-selected camera intrinsic

matrix. Choosing the range of angles to rotate by affects

the amount of blur in the final burst. However, these trans-

formations may damage the original video quality and intro-

duce black margins. To mitigate this degradation, we crop
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Method PSNR SSIM

DMPHN [32] 17.99 0.6391

Analysis-synthesis network pair [14] 18.6 0.7308

DeblurGAN-v2 [17] 23.12 0.7230

KPN [19] 28.46 0.8296

Ours 31.42 0.8948

Table 1. Average PSNR and SSIM for our synthetic test set.

the patch around its center to generate a 256× 256 clip and

spatially downsample it using an anti-aliasing filter. This

process produces 128 × 128 clips suffering from evident

camera shake.

The final step is converting the clip to its correspond-

ing irradiance values. To accomplish this, we first invert

gamma correction, thus employing a linear color space, in

which the pixel values are proportional to the mean num-

ber of incoming photons. Finally, we multiply the clip by

a random scalar from a fixed range, which suits our target

SNR.

7. Experiments

7.1. Baseline

We analyze the performance of our method against

two traditional approaches: burst denoising and single im-

age deblurring. While our algorithm incorporates non-

uniformly-exposed bursts, which may suffer from both

noise and blur, these alternatives often handle a single kind

of degradation. Therefore, to allow a fair comparison, we

apply burst denoising to a uniformly-exposed burst with the

same overall budget and image deblurring to a single image

captured using the budget in its entirety.

In our comparison, we use recent state-of-the-art deep

learning algorithms. For image deblurring, we apply DM-

PHN [32], DeblurGAN-v2 [17], and the analysis-synthesis

network pair [14]. To conduct a fair comparison, we re-train

one representative method on million full-exposure images

generated from our forward model. As the latter method

does not have a publicly available training code, we re-train

DeblurGAN-v2, which showed better results than DMPHN.

As for burst denoising, we re-train KPN [19] on our dataset.

7.2. Synthetic images

We first evaluate our method on a test set of 276 clips

obtained using the same procedure as our training set, al-

though originating from different videos. We present a

quantitative comparison to our baseline in Table 1. Our

model outperforms traditional methods, obtaining an im-

provement of almost 3dB over KPN.

Fig. 7 presents an example result. As we can see, all

three single image deblurring algorithms fail to deblur the

image: DMPHN’s output is distorted, while the other two

exhibit ghosting artifacts. This is expected, as the full-

exposure image demonstrates an evident amount of blur,

which is hard to mitigate without any complementary in-

formation. Furthermore, this image also suffers from noise,

raising the task difficulty even more.

On the other hand, multi-frame methods show better per-

formance. KPN manages to clean the fixed-exposure bursts’

noise and moderately improve the resulting images’ sharp-

ness. Nevertheless, due to the lack of frame diversity, it fails

in capturing the fine details of the scene. Our approach of

learning the burst exposures is the best alternative, produc-

ing a clean and sharp output.

7.3. Real images

We further evaluate our method on real images acquired

using two different cameras at two different scenes: an in-

door one with controlled light conditions and an outdoor

one. (See the supplement for a full description of our

setup.) Fig. 1 and 8 present a qualitative comparison, show-

ing that the methods’ perceptual quality appears to be gen-

erally consistent with the synthetic assessment, with our

learned-exposure model significantly outperforming other

approaches. However, this time, the analysis-synthesis net-

work pair achieves the best results among the single im-

age deblurring methods, despite not being re-trained for the

task, while the re-trained DeblurGAN-v2 yields poor re-

sults. This deviation can be explained by the training SNR

not precisely matching the de-facto one, as evidenced by the

burst methods’ brighter output. Nevertheless, this proves

our method’s advantage even when the training conditions

are not met. Finally, we note that as the camera we used for

the indoor experiment suffers from harsh fixed-pattern noise

at low-exposures, traces of such patterns can be found in the

final output. However, this phenomenon was not replicated

by the other camera, and we expect that incorporating non-

uniformities in the forward model should mitigate it. We

leave this revision for future work.

7.4. Impact of noise and blur levels

The main factors that determine the trade-off between

deblurring and denoising are illumination and camera mo-

tion. Thus, they have a substantial effect on our method’s

learned exposures and reconstruction quality. Fig. 9 ex-

plores these factors’ impact by displaying the method’s per-

formance on the same synthetic scene, altered with varying

noise and blur levels. To achieve optimal results, we re-train

the model for each working point on suitable ranges of SNR

and blur while keeping the rest of the hyper-parameters

fixed, including the predicted kernel size, which we set to

5× 5. (We list the full configuration in the supplement.)

Interestingly, the middle frame’s exposure, which acts

as the reference frame in the flow network, corresponds
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(a) (b) (c) (d) (e) (f) (g)

Figure 7. Example result from our synthetic test set. (a,b) Full-exposure image; Reconstruction using: (c) DMPHN [32]; (d) Analysis-

synthesis network pair [14]; (e) DeblurGAN-v2 [17]; (f) KPN [19]; Our approach (g). We showcase more results in the supplement.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Example result on real images. (a,b) Full-exposure image; (c) Exemplary burst frame; Reconstruction using: (d) DMPHN [32];

(e) Analysis-synthesis network pair [14]; (f) DeblurGAN-v2 [17]; (g) KPN [19]; Our approach (h).

𝑒̅ ≈ 300

𝑒̅ ≈ 100

𝑒̅ ≈ 10

𝑑̅ ≈ 3 𝑑̅ ≈ 10 𝑑̅ ≈ 30

21.55 20.61 16.81

32.47 25.32 20.53

34.85 27.75 22.28

Figure 9. We compare our method’s performance for different

noise and blur conditions, displaying the full-exposure image

(left), the network’s output (right), its PSNR (under each image),

and the learned exposures (bottom-left). Here d̄ denotes the mean

blur kernel diameter in pixels, and ē is the mean number of photo-

electrons, both estimated at full-exposure.

directly to the mentioned conditions, with it increasing as

the SNR decreases and decreasing as camera motion in-

creases, allowing the frame to be as sharp and clean as pos-

sible. The model’s performance also varies accordingly. It

yields visually-pleasing results, even when the blur kernel

exceeds the boundaries of the predicted one. However, like

the floor’s checkered pattern, some details disappear in se-

vere cases of noise and blur.

8. Conclusions

In this work, we presented a new approach for image

stabilization via joint burst denoising and deblurring for

fast unstabilized cameras. We further proposed an end-to-

end learning scheme for optimizing the camera’s exposure

regime along with a reconstruction model, made possible

via a novel differentiable layer simulating the camera sen-

sor. This method’s key benefit is its ability to exploit the

trade-off between high SNR and strong blur at long expo-

sure, and vice versa. Synthetic and real results suggest that

this approach significantly improves current deep state-of-

the-art methods, both perceptually and quantitatively.
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