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Abstract

Neural Architecture Search (NAS) yields state-of-the-

art neural networks that outperform their best manually-

designed counterparts. However, previous NAS methods

search for architectures under one set of training hyper-

parameters (i.e., a training recipe), overlooking superior

architecture-recipe combinations. To address this, we

present Neural Architecture-Recipe Search (NARS) to search

both (a) architectures and (b) their corresponding training

recipes, simultaneously. NARS utilizes an accuracy pre-

dictor that scores architecture and training recipes jointly,

guiding both sample selection and ranking. Furthermore,

to compensate for the enlarged search space, we leverage

“free” architecture statistics (e.g., FLOP count) to pretrain

the predictor, significantly improving its sample efficiency

and prediction reliability. After training the predictor via

constrained iterative optimization, we run fast evolution-

ary searches in just CPU minutes to generate architecture-

recipe pairs for a variety of resource constraints, called

FBNetV3. FBNetV3 makes up a family of state-of-the-art

compact neural networks that outperform both automati-

cally and manually-designed competitors. For example, FB-

NetV3 matches both EfficientNet and ResNeSt accuracy on

ImageNet with up to 2.0× and 7.1× fewer FLOPs, respec-

tively. Furthermore, FBNetV3 yields significant performance

gains for downstream object detection tasks, improving mAP

despite 18% fewer FLOPs and 34% fewer parameters than

EfficientNet-based equivalents.

1. Introduction

Designing efficient computer vision models is a challeng-

ing but important problem: A myriad of applications from

autonomous vehicles to augmented reality require compact

models that must be highly accurate – even under constraints
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Figure 1: ImageNet accuracy vs. model FLOPs comparison of

FBNetV3 with other efficient convolutional neural networks. FB-

NetV3 achieves 80.8% (82.8%) top-1 accuracy with 557M (2.1G)

FLOPs, setting a new SOTA for accuracy-efficiency trade-offs.

on power, computation, memory, and latency. The number of

possible constraint and architecture combinations is combi-

natorially large, making manual design a near impossibility.

In response, recent work employs neural architecture

search (NAS) to design state-of-the-art efficient deep neu-

ral networks. One category of NAS is differentiable neural

architecture search (DNAS). These path-finding algorithms

are efficient, often completing a search in the time it takes

to train one network. However, DNAS cannot search for

non-architecture hyperparameters, which are crucial to the

model’s performance. Furthermore, supernet-based NAS

methods suffer from a limited search space, as the entire

supergraph must fit into memory to avoid slow convergence

[5] or paging. Other methods include reinforcement learn-

ing (RL) [45], and evolutionary algorithms (ENAS) [41].

However, these methods share several drawbacks:

1. Ignore training hyperparameters: NAS, true to its

name, searches only for architectures but not the asso-

ciated training hyperparameters (i.e., “training recipe”).

This ignores the fact that different training recipes may
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Model

Training
Recipe-1 Recipe-2

ResNet18 (1.4x width) 70.8% 73.3%

ResNet18 (2x depth) 70.7% 73.8%

Table 1: Different training recipe could switch the ranking of

architectures. ResNet18 1.4x width and 2x depth refer to ResNet18

with 1.4 width and 2.0 depth scaling factor, respectively. Training

recipe details can be found in Appendix A.1.

drastically change the success or failure of an architec-

ture, or even switch architecture rankings (Table 1).

2. Support only one-time use: Many conventional NAS

approaches produce one model for a specific set of re-

source constraints. This means that deploying to a line

of products, each with different resource constraints,

requires rerunning NAS once for each resource setting.

Alternatively, model designers may search for one model

and scale it suboptimally, using manual heuristics, to fit

new resource constraints.

3. Prohibitively large search space to search: Naïvely

including training recipes in the search space is either im-

possible (DNAS, supernet-based NAS) or prohibitively

expensive, as architecture-only accuracy predictors are

already computationally expensive to train (RL, ENAS).

To overcome these challenges, we propose Neural

Architecture-Recipe Search (NARS) to address the above

limitations. Our insight is three-fold: (1) To support re-use

of NAS results for multiple resource constraints, we train an

accuracy predictor, then use the predictor to find architecture-

recipe pairs for new resource constraints in just CPU minutes.

(2) To avoid the pitfalls of architecture-only or recipe-only

searches, this predictor scores both training recipes and ar-

chitectures simultaneously. (3) To avoid prohibitive growth

in predictor training time, we pretrain the predictor on proxy

datasets to predict architecture statistics (e.g., FLOPs, #Pa-

rameters) from architecture representations. After sequen-

tially performing predictor pretraining, constrained itera-

tive optimization, and predictor-based evolutionary search,

NARS produces generalizable training recipes and compact

models that attain state-of-the-art performance on ImageNet,

outperforming all the existing manually designed or auto-

matically searched neural networks. We summarize our

contributions below:

1. Neural Architecture-Recipe Search: We propose a

predictor that jointly scores both training recipes and

architectures, the first joint search, over both training

recipes and architectures, at scale to our knowledge.

2. Predictor pretraining: To enable efficient search over

this larger space, we furthermore present a pretraining

ResNet50 ResNet101 ResNet152 ResNeXt101

76

78

80

82

A
cc
u
ra
cy

(%
,
T
op

-1
Im

ag
eN

et
)

Baseline

WSL(1B)

Ours

Figure 2: Accuracy improvement on existing architectures with

the searched training recipe. WSL refers to the weakly supervised

learning model using 1B additional images [33].

technique, significantly improving the accuracy predic-

tor’s sample efficiency.

3. Multi-use predictor: Our predictor can be used in fast

evolutionary searches to quickly generate models for a

wide variety of resource budgets in just CPU minutes.

4. State-of-the-art ImageNet accuracy per FLOP for the

searched FBNetV3 models. For example, our FB-

NetV3 matches EfficientNet accuracy with as low as

49.3% fewer FLOPs, as shown in Fig. 1.

5. Generalizable training recipe: NARS’s recipe-only

search achieves significant accuracy gains across var-

ious neural networks, as illustrated in Fig. 2. Our

ResNeXt101-32x8d achieves 82.6% top-1 accuracy;

this even outperforms its weakly-supervised counterpart

trained on 1B extra images [33].

2. Related work

Work on compact neural networks began with manual

design, which can be divided into architectural and non-

architectural modifications.

Manual architecture design: Most early work com-

presses existing architectures. One method is pruning [12, 7,

60, 4], where either layers or channels are removed according

to certain heuristics. However, pruning either considers only

one architecture [13] or can only sequentially search smaller

and smaller architectures [58]. This limits the search space.

Other work designs new architectures from the ground up,

using new operations that are cost-friendly. This includes

convolutional variants like the depthwise convolutions in

MobileNet; inverted residual blocks in MobileNetV2; acti-

vations such as hswish in MobileNetV3 [18, 42, 17]; and

operations like shift [52] and shuffle [32]. Although many

of these are still used in state-of-the-art neural networks,

manually-designed architectures have been superseded by

automatically-searched counterparts.

Non-architectural modifications: A number of network

compression techniques include low-bit quantization [12]
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to as few as two [65] or even one bit [21]. Other work

downsamples input non-uniformly [53, 57, 34] to reduce

computational cost. These methods can be combined with

architecture improvements for roughly additive reduction in

latency. Other non-architecture modifications involve hyper-

parameter tuning, including tuning libraries from the pre-

deep-learning era [2]. Several deep-learning-specific tuning

libraries are also widely used [26]. A newer category of ap-

proaches automatically searches for the optimal combination

of data augmentation strategies. These methods use policy

search [6], population-based training [16], Bayesian-based

augmentation [47], or Bayesian optimization [22].

Automatic architecture search: NAS automates neural

network design for state-of-the-art performance. Several

of the most common techniques for NAS include reinforce-

ment learning [66, 45], evolutionary algorithms [41, 40, 59],

and DNAS [30, 51, 48, 11, 56]. DNAS trains quickly with

few computational resources but is limited by search space

size due to memory constraints. Several works seek to ad-

dress this issue, by training only subsets at a time [5] or by

introducing approximations [48]. However, its flexibility

is still less than that of rival reinforcement learning meth-

ods and evolutionary algorithms. In turn, these prior works

search for only the model architecture [29, 50, 49, 43, 4]

or perform neural architecture-recipe search searches on

small-scale datasets (e.g., CIFAR) [1, 62]. By contrast,

our NARS jointly searches both architectures and training

recipes on ImageNet. To compensate for the larger search

space, we (a) introduce a predictor pretraining technique to

improve the predictor’s rate of convergence and (b) employ

predictor-based evolutionary search to design architecture-

recipe pairs in just CPU minutes, for any resource constraint

setting–outperforming the predictor’s highest-ranked candi-

date before evolutionary search significantly. We also note

prior work that generates a family of models with negligible

or no cost after one search [11, 59, 31].

3. Method

Our goal is to find the most accurate architecture and train-

ing recipe combination, to avoid overlooking architecture-

recipe pairs as prior methods have. However, the search

space is typically combinatorially large, making exhaustive

evaluation an impossibility. To address this, we train an ac-

curacy predictor that accepts architecture and training recipe

representations (Sec 3.1). To do so, we employ a three-stage

pipeline (Algorithm 1): (1) Pretrain the predictor using ar-

chitecture statistics, significantly improving its accuracy and

sample efficiency (Sec 3.2). (2) Train the predictor using

constrained iterative optimization (Sec 3.3). (3) For each

set of resource constraints, run predictor-based evolution-

ary search in just CPU minutes to produce high-accuracy

architecture-recipe pairs (Sec 3.4).

Algorithm 1: Three-stage Constraint-aware Neural

Architecture-Recipe Search

Input:

Ω: the designed search space;

n: size of candidate pool Λ in constrained iterative optimization;

m: the number of DNN candidates (X ) to train in each iteration;

T : the number of batches for constrained iterative optimization;

Stage 1: Pretrain Predictor

Generate a pool Λ with n samples with QMC sampling from the

search space Ω;

Pretrain accuracy predictor u with architecture statistics;

Stage 2: Train Predictor (Constrained Iterative

Optimization):

Initialize D0 as ∅;

for t = 1, 2, ..., T do
Find a batch of the most promising DNN candidates X ⊂ Λ

based on predicted scores, u(x);
Evaluate all x ∈ X by training in parallel;

if t = 1: Determine early stopping criteria;

Update the dataset:

Dt = Dt−1 ∪ {(x1, acc(x1)), (x2, acc(x2)), ...};

Retrain the accuracy predictor u on Dt;

end

Stage 3: Use Predictor (Predictor-Based Evolutionary

Search)

Initialize D? with p best-performing samples in DT and q

randomly generated samples paired with scores predicted by u;

Initialize s? with the best score in D?; set s?
0
= 0; set ✏ = 10−6;

while (s? − s?
0
) > ✏ do

for x ∈ D? do
Generate a set of children C ⊂ Ω subject to resource

constraints, by the adaptive genetic algorithm [8];

end

Augment D? with C paired with scores predicted by u;

Select top K candidates from the augmented set to update

D?;

Update the previous best ranking score by s?
0
= s?;

Update the current best ranking score s? by the best predicted

score in D?.
end

Result: D?, i.e., all the top K best samples with their predicted

scores.

3.1. Predictor

Our predictor aims to predict accuracy given representa-

tions of an architecture and a training recipe. The architec-

ture and training recipe are encoded using one-hot categori-

cal variables (e.g., for block types) and min-max normalized

continuous values (e.g., for channel counts). See the full

search space in Table 2.

The predictor architecture is a multi-layer perceptron

(Fig. 3) consisting of several fully-connected layers and two

heads: (1) An auxiliary “proxy” head, used for pretraining

the encoder, predicts architecture statistics (e.g., FLOPs and

#Parameters) from architecture representations; and (2) the

accuracy head, fine-tuned in constrained iterative optimiza-

tion (Sec 3.3), predicts accuracy from joint representations

of the architecture and training recipe.
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Figure 3: Pretrain to predict architecture statistics (top). Train to

predict accuracy from architecture-recipe pairs (bottom)

3.2. Stage 1: Predictor pretraining

Training an accuracy predictor can be computationally

expensive, as each training label is ostensibly a fully-trained

architecture under a specific training recipe. To alleviate

this, our insight is to first pretrain on a proxy task. The

pretraining step can help the predictor to form a good internal

representation of the inputs, therefore reducing the number

of accuracy-architecture-recipe samples needed. This can

significantly mitigate the search cost required.

To construct a proxy task for pretraining, we can use

“free” source of labels for architectures: namely, architec-

ture statistics like FLOPs and numbers of parameters. After

this pretraining step, we transfer the pretrained embedding

layer to initialize the accuracy predictor (Fig. 3). This leads

to significant improvements in the final predictor’s sample

efficiency and prediction reliability. For example, to reach

the same prediction mean square error (MSE), the pretrained

predictor only requires 5× less samples than its counterpart

without pretraining, as shown in Fig. 4(e). As a result, predic-

tor pretraining reduces the overall search cost substantially.

3.3. Stage 2: Training predictor

In this step, we train the predictor and generate a set of

high-promise candidates. As mentioned prior, our goal is

to find the most accurate architecture and training recipe

combination under given resource constraints. We thus for-

mulate the architecture search as a constrained optimization

problem:

max
(A,h)∈Ω

acc(A, h), s. t. gi(A) 6 Ci, i = 1, ..., γ (1)

where A, h, and Ω refer to the neural network architecture,

training recipe, and designed search space, respectively. acc

maps the architecture and training recipe to accuracy. gi(A)
and γ refer to the formula and count of resource constraints,

such as computational cost, storage cost, and run-time la-

tency.

Constrained iterative optimization: We first use Quasi

Monte-Carlo (QMC) [37] sampling to generate a sample

pool of architecture-recipe pairs from the search space. Then,

we train the predictor iteratively: We (a) shrink the candi-

date space by selecting a subset of favorable candidates

based on predicted accuracy, (b) train and evaluate the can-

didates using an early-stopping heuristic, and (c) fine-tune

the predictor with the Huber loss. This iterative shrinking

of the candidate space avoids unnecessary evaluations and

improves exploration efficiency.

• Training candidates with early-stopping. We intro-

duce an early stopping mechanism to cut down on the

computational cost of evaluating candidates. Specifi-

cally, we (a) rank samples by both early-stopping and

final accuracy after the first iteration of constrained it-

erative optimization, (b) compute the rank correlation,

and (c) find the epoch e where correlation exceeds a

particular threshold (e.g., 0.92), as shown in Fig. 5.

For all remaining candidates, we train (A, h) only for e

epochs to approximate acc(A, h). This allows us to use

much fewer training iterations to evaluate each queried

sample.

• Training the predictor with Huber loss. After obtain-

ing the pretrained architecture embedding, we first train

the predictor for 50 epochs with the embedding layer

frozen. Then, we train the entire model with reduced

learning rate for another 50 epochs. We adopt the Huber

loss to train the accuracy predictor, i.e., L = 0.5(y− ŷ)2

if |y − ŷ| < 1 else |y − ŷ|− 0.5, where y and ŷ are the

prediction and ground truth label, respectively. This

prevents the model from being dominated by outliers,

which shows can confound the predictor [50].

3.4. Stage 3: Using predictor

The third stage of the proposed method is an iterative

process based on adaptive genetic algorithms [44]. The best-

performing architecture-recipe pairs from the second stage

are inherited as part of the first generation candidates. In

each iteration, we introduce mutations to the candidates and

generate a set of children C ⊂ Ω subject to given constraints.

We evaluate the score for each child with the pretrained

accuracy predictor u, and select top K highest-scoring can-

didates for the next generation. We compute the gain of

the highest score after each iteration, and terminate the loop

when the improvement saturates. Finally, the predictor-based

evolutionary search produces high-accuracy neural network

architectures and training recipes.

Note that with the accuracy predictor, searching for net-

works to fit different use scenarios only incurs negligible

cost. This is because the accuracy predictor can be sub-

stantially reused under different resource constraints, while

predictor-based evolutionary search takes just CPU minutes.
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Figure 4: (a) and (b): Predictor’s performance on the proxy metrics, (c) and (d): Predictor’s performance on accuracy with and without

pretraining, (e): Predictor’s MSE vs. number of samples with and without pretraining.
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Figure 5: Rank correlation vs. epochs. Correlation threshold

(cyan) is 0.92.

3.5. Predictor search space

Our search space consists of both training recipes and

architecture configurations. The search space for training

recipes features optimizer type, initial learning rate, weight

decay, mixup ratio [63], drop out ratio, stochastic depth

drop ratio [20], and whether or not to use model exponential

moving average (EMA) [23]. Our architecture configuration

search space is based on the inverted residual block [42] and

includes input resolution, kernel size, expansion, number of

channels per layer, and depth, as detailed in Table 2.

In recipe-only experiments, we only tune training recipes

on a fixed architecture. However, for joint search, we search

both training recipes and architectures, within the search

space in Table 2. Overall, the space contains 1017 architec-

ture candidates with 107 possible training recipes. Exploring

such a vast search space for an optimal network architecture

and its corresponding training recipe is non-trivial.

4. Experiments

In this section, we first validate our search method in a

narrowed search space to discover the training recipe for a

given network. Then, we evaluate our search method for

joint search over architecture and training recipes. We use

PyTorch [38], and conduct our search on the ImageNet 2012

classification dataset [9]. In the search process, we randomly

sample 200 classes from the entire dataset to reduce the

training time. Then, we randomly withhold 10K images

from the 200-class training set as the validation set.

4.1. Recipe-only search

To establish that even modern NAS-produced architec-

ture’s performance can be further improved with better train-

ing recipe, we optimize over training recipes for a fixed

architecture. We adopt FBNetV2-L3 [48] (Appendix A.2) as

our base architecture, which is a DNAS searched architecture

that achieves 79.1% top-1 accuracy with the original training

method used in [48]. We set the sample pool size n = 20K,

batch size m = 48 and iteration T = 4 in constrained it-

erative optimization. We train the sampled candidates for

150 epochs with a learning rate decay factor of 0.963 per

epoch during the search, and train the final model with 3×

slower learning rate decay (i.e., 0.9875 per epoch). We show

the distribution of samples at each round as well as the fi-

nal searched result in our experiments in Fig. 6, where the

first-round samples are randomly generated. The searched

training recipe (Appendix A.3) improves the accuracy of our

base architecture by 0.8%.
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Figure 6: Illustration of the sampling and search process.

We extend the NARS-searched training recipe to other

commonly-used neural networks to further validate its gen-

erality. Although the NARS-searched training recipe was

tailored to FBNetV2-L3, it generalizes surprisingly well, as

shown in Table 3. The NARS-searched training recipe leads

to substantial accuracy gains of up to 5.7% on ImageNet.

In fact, ResNet50 outperforms the baseline ResNet152 by

0.9%. ResNeXt101-32x8d even surpasses the weakly su-

pervised learning model, which is trained with 1 billion

weakly-labeled images and achieves 82.2% top-1 accuracy.

Notably, it is possible to achieve even better performance by

searching for specific training recipe for each neural network,

which would increase the search cost.

516280



block k e c n s se act.

Conv 3 - (16, 24, 2) 1 2 - hswish

MBConv [3, 5] 1 (16, 24, 2) (1, 4) 1 N hswish

MBConv [3, 5] (4, 7) / (2, 5) (20, 32, 4) (4, 7) 2 N hswish

MBConv [3, 5] (4, 7) / (2, 5) (24, 48, 4) (4, 7) 2 Y hswish

MBConv [3, 5] (4, 7)1 / (2, 5)2 (56, 84, 4) (4, 8) 2 N hswish

MBConv [3, 5] (4, 7)1 / (2, 5)2 (96, 144, 4) (6, 10) 1 Y hswish

MBConv [3, 5] (4, 7) (180, 224, 4) (5, 9) 2 Y hswish

MBConv [3, 5] 6 (180, 224, 4) 1 1 Y hswish

MBPool [3, 5] 6 1984 1 - - hswish

FC - - 1000 1 - - -

res lr(10−3) optim ema p(10−2) d(10−1) m(10−1) wd(10−6)

(224, 272, 8) (20, 30) [RMSProp, SGD] [true, false] (1, 31) (10, 31) (0, 41) (7, 21)

Table 2: The network architecture configuration and search space in our experiments. MBConv, MBPool, k, e, c, n, s, se, and act. refer to

the inverted residual block [42], efficient last stage [17], kernel size, expansion, #Channel, #Layers, stride, squeeze-and-excitation, and

activation function, respectively. res, lr, optim, ema, p, d, m, and wd refer to resolution, initial learning rate, optimizer type, EMA, dropout

ratio, stochastic depth drop probability, mixup ratio, and weight decay, respectively. Expansion on the left of the slash is used in the first

block in the stage, while that on the right for the rest. Tuples of three values in parentheses represent the lowest value, highest, and steps;

two-value tuples imply a step of 1, and tuples in brackets represent all available choices during search. Note that lr is multiplied by 4 if the

optim chooses SGD. Architecture parameters with the same superscript share the same values during the search.

Model Top-1 Accuracy (%)

Original Recipe-only ∆

FBNetV2-L3 [48] 79.1 79.9 +0.8

AlexNet [25] 56.6 62.3 +5.7

ResNet34 [15] 73.3 76.3 +3.0

ResNet50 [15] 76.1 79.2 +3.1

ResNet101 [15] 77.4 81.2 +3.8

ResNet152 [15] 78.3 81.9 +3.6

DenseNet201 [19] 77.2 80.2 +3.0

ResNeXt101 [55] 79.3 82.6 +3.3

Table 3: Accuracy improvements with the searched training recipes

on existing neural networks. Above, ResNeXt101 refers to the

32x8d variant.

4.2. Neural Architecture-Recipe Search (NARS)

Search settings Next, we perform a joint search of ar-

chitecture and training recipes to discover compact neural

networks. Note that based on our observations in Sec. 4.1,

we shrink the search space to always use EMA. Most of

the settings are the same as in the recipe-only search, while

we increase the optimization iteration T = 5 and set the

FLOPs constraint for the sample pool from 400M to 800M.

We pretrain the architecture embedding layer using 80% of

the sample pool which contains 20K samples, and plot the

validation on the rest 20% in Fig. 4. In the predictor-based

evolutionary search, we set four different FLOPs constraints:

450M, 550M, 650M, and 750M and discover four models

(namely FBNetV3-B/C/D/E) with the same accuracy pre-

dictor. We further scale down and up the minimum and

maximum models and generate FBNetV3-A and FBNetV3-

F/G to fit more use scenarios, respectively, with compound

scaling proposed in [46].

Training setup For model training, we use a two-step

distillation based training process: (1) We first train the

largest model (i.e., FBNetV3-G) with the searched recipe

with ground truth labels. (2) Then, we train all the models

(including FBNetV3-G itself) with distillation, which is a

typical training technique adopted in [4][61]. Different from

the in-place distillation method in [4][61], the teacher model

here is the ImageNet pretrained FBNetV3-G derived from

step (1). The training loss is a sum of two components: Distil-

lation loss scaled by 0.8 and cross entropy loss scaled by 0.2.

During training, we use synchronized batch normalization in

distributed training with 8 nodes and 8 GPUs per node. We

train the models for 400 epochs with a learning rate decay

factor of 0.9875 per epoch after a 5-epoch warmup. We train

the scaled models FBNetV3-A and FBNetV3-F/G with the

searched training recipes for FBNetV3-B and FBNetV3-E,

respectively, only increasing the stochastic depth drop ratio

for FBNetV3-F/G to 0.2. More training details can be found

in Appendix A.5.

Searched models We compare our searched model

against other relevant NAS baselines and hand-crafted com-

pact neural networks in Fig. 1, and list the detailed perfor-

mance metrics comparison in Table 4, where we group the

models by their top-1 accuracy. Among all the existing effi-

cient models such as EfficientNet [46], MobileNetV3 [17],

ResNeSt [64], and FBNetV2 [48], our searched model de-

livers substantial improvements on the accuracy-efficiency

trade-off. For example, on low computation cost regime,
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Model Search method Search space Search cost FLOPs Accuracy Accuracy

(GPU/TPU hours) (%, Top-5) (%, Top-1)

FBNet [51] gradient arch 0.2K 375M - 74.9

ProxylessNAS [5] RL/gradient arch 0.2K 465M - 75.1

ChamNet [8] predictor arch 28K 553M - 75.4

RegNetY [39] pop. param.∗ arch 11K 600M - 75.5

MobileNetV3-1.25x [17] RL/NetAdapt arch >91K 356M - 76.6

EfficientNetB0 [46] RL/scaling arch >91K 390M 93.3 77.3

AtomNAS [35] gradient arch 0.8K 363M - 77.6

FBNetV2-L2 [48] gradient arch 0.6K 423M - 78.1

FBNetV3-A NARS arch/recipe 10.7K 357M 94.5 79.1

ResNet152 [15] manual - - 11G 93.8 78.3

EfficientNetB2 [46] RL/scaling arch >91K 1.0G 94.9 80.3

ResNeXt101-32x8d [55] manual - - 7.8G 94.5 79.3

Once-For-All [4] gradient - - 595M - 80.0

FBNetV3-C NARS arch/recipe 10.7K 557M 95.1 80.5

BigNASModel-XL [61] gradient arch 2.3K 1.0G - 80.9

ResNeSt-50 [64] manual - - 5.4G - 81.1

FBNetV3-E NARS arch/recipe 10.7K 762M 95.5 81.3

EfficientNetB3 [46] RL/scaling arch >91K 1.8G 95.7 81.7

ResNeSt-101 [64] manual - - 10.2G - 82.3

EfficientNetB4 [46] RL/scaling arch >91K 4.2G 96.4 82.9

FBNetV3-G NARS arch/recipe 10.7K 2.1G 96.3 82.8

Table 4: Comparisons of different compact neural networks. For baselines, we cite statistics on ImageNet from the original papers. Our

results are bolded. *: population parameterization. See A.6 for discussions about the training tricks and additional EfficientNet comparisons.

FBNetV3-A achieves 79.1% top-1 accuracy with only 357M

FLOPs (2.5% higher accuracy than MobileNetV3-1.25x [17]

with similar FLOPs). On high accuracy regime, FBNetV3-E

achieves 0.2 higher accuracy with over 7× fewer FLOPs

compared to ResNeSt-50 [64], while FBNetV3-G achieves

the same level of accuracy as EfficientNetB4 [46] with 2×

fewer FLOPs. Note that we have further improved the accu-

racy of FBNetV3 by using larger teacher models for distilla-

tion, as shown in Appendix A.7.

4.3. Transferability of the searched models

Classification on CIFAR-10 We further extend the

searched FBNetV3 on CIFAR-10 dataset that has 60K im-

ages from 10 classes [24] to validate its transferability. Note

that different from [46] that scales up the base input res-

olution to 224×224, we keep the original base input res-

olution as 32×32, and scale up the input resolutions for

larger models based on the scaling ratio. We also replace

the second stride-two block with a stride-one block to fit the

low-resolution inputs. We don’t include distillation for sim-

plicity. We compared the performance of different models in

Fig. 7. Again, our searched models significantly outperform

the EfficientNet baselines.

Detection on COCO To further validate the transferabil-

ity of the searched models on different tasks, we use FB-
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Figure 7: Accuracy vs. FLOPs comparison on the CIFAR-10

dataset.

Backbone #Params (M) FLOPs (G) mAP

EfficientNetB0 8.0 3.6 30.2

FBNetV3-A 5.3 2.9 30.5

EfficeintNetB1 13.3 5.6 32.2

FBNetV3-E 10.6 5.3 33.0

Table 5: Object detection results of Faster RCNN with different

backbones on COCO.
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NetV3 as a replacement for the backbone feature extractor

for Faster R-CNN with the conv4 (C4) backbone and com-

pare with other models on the COCO detection dataset. We

adopt most of the training settings in [54] with 3× train-

ing iterations, while use synchronized batch normalization,

initialize the learning rate at 0.16, switch on EMA, reduce

the non-maximum suppression (NMS) to 75, and change to

learning rate schedule to Cosine after warming up. Note that

we only transfer the searched architectures and use the same

training protocol for all the models.

We show the detailed COCO detection results in Ta-

ble 5. With similar or higher mAP, our FBNetV3 reduces

the FLOPs and number of parameters by up to 18.3% and

34.1%, respectively, compared to EfficientNet backbones.

5. Ablation study and discussions

In this section, we revisit the performance improvements

obtained from joint search, significance of the predictor-

based evolutionary search, and the impact and generality of

several training techniques.

Architecture and training recipe pairing. Our method

yields different training recipes for different models. For

example, we observe that smaller models tend to prefer

less regularization (e.g., smaller stochastic depth drop ra-

tio and mixup ratio). To illustrate the significance of neu-

ral architecture-recipe search, we swap the training recipes

searched for FBNetV3-B and FBNetV3-E, observing a sig-

nificant accuracy drop for both models, as shown in Table 6.

This highlights the importance of correct architecture-recipe

pairings, emphasizing the downfall of conventional NAS: Ig-

noring the training recipe and only searching for the network

architecture fails to obtain optimal performance.

FBNetV3-B FBNetV3-E

Train recipe Train recipe

FBNetV3-B Arch 79.8% 78.5%

FBNetV3-E Arch 80.8% 81.3%

Table 6: Accuracy comparison for the searched models with

swapped training recipes.

Predictor-based evolutionary search improvements.

Predictor-based evolutionary search yields substantial im-

provement on top of constrained iterative optimization. To

demonstrate this, we compare the best-performing candi-

dates derived from the second search stage with the final

searched FBNetV3 under the same FLOPs constraints (Ta-

ble 7). We observe an accuracy drop of up to 0.8% if the

third stage is discarded. Thus, the third search stage, though

requiring only negligible cost (i.e., several CPU minutes), is

equally crucial to the final models’ performance.

Model Evolutionary Search FLOPs Accuracy

FBNetV3-B Y 461M 79.8%

FBNetV3-B∗ N 448M 79.0%

FBNetV3-E Y 762M 81.3%

FBNetV3-E∗ N 746M 80.7%

Table 7: Performance improvement by the predictor-based evolu-

tionary searchsearch. *: Models derived from constrained iterative

optimization.

Impact of distillation and model averaging We show

the model performance on FBNetV3-G in Table 8 with dif-

ferent training configurations, where the baseline refers to

the vanilla training without EMA or distillation. EMA brings

substantially higher accuracy, especially during the middle

stage of training. We hypothesize EMA intrinsically func-

tions as a strong “ensemble” mechanism and thus improves

single-model accuracy. We additionally observe distillation

brings notable performance improvement. This is consistent

with the observations in [4, 61]. Note since the teacher is a

pretrained FBNetV3-G, FBNetV3-G is self-distilled. The

combination of EMA and distillation improves the model’s

top-1 accuracy from 80.9% to 82.8%.

Model

Training
Baseline EMA Dist∗ Dist∗+EMA

FBNetV3-G 80.9% 82.3% 82.2% 82.8%

Table 8: Performance improvement with EMA and distillation. *:

Distillation-based training

6. Conclusion

True to their name, previous neural architecture search

methods search only over architectures, using a fixed set of

training hyperparameters (i.e., “training recipe”). As a result,

previous methods overlook higher-accuracy architecture-

recipe combinations. However, our NARS does not, be-

ing the first algorithm to jointly search over both archi-

tectures and training recipes simultaneously for a large

dataset like ImageNet. Critically, NARS’s predictor pre-

trains on “free” architecture statistics–namely, FLOPs and

#Parameters–to improve the predictor’s sample efficiency

significantly. After training and using the predictor, the

resulting FBNetV3 architecture-recipe pairs attain state-of-

the-art per-FLOP accuracies on ImageNet classification. 1
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