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Abstract

We show that learning affinity in upsampling provides

an effective and efficient approach to exploit pairwise inter-

actions in deep networks. Second-order features are com-

monly used in dense prediction to build adjacent relations

with a learnable module after upsampling such as non-local

blocks. Since upsampling is essential, learning affinity in

upsampling can avoid additional propagation layers, offer-

ing the potential for building compact models. By looking at

existing upsampling operators from a unified mathematical

perspective, we generalize them into a second-order form

and introduce Affinity-Aware Upsampling (A2U) where up-

sampling kernels are generated using a light-weight low-

rank bilinear model and are conditioned on second-order

features. Our upsampling operator can also be extended

to downsampling. We discuss alternative implementations

of A2U and verify their effectiveness on two detail-sensitive

tasks: image reconstruction on a toy dataset; and a large-

scale image matting task where affinity-based ideas con-

stitute mainstream matting approaches. In particular, re-

sults on the Composition-1k matting dataset show that A2U

achieves a 14% relative improvement in the SAD metric

against a strong baseline with negligible increase of param-

eters (< 0.5%). Compared with the state-of-the-art matting

network, we achieve 8% higher performance with only 40%
model complexity.

1. Introduction

The similarity among positions, a.k.a. affinity, is com-

monly investigated in dense prediction tasks [22, 4, 8, 36,

20]. Compared with directly fitting ground truths using

first-order features, modeling similarity among different po-

sitions can provide second-order information. There cur-

rently exist two solutions to learn affinity in deep networks:

i) learning an affinity map before a non-deep backend and ii)

defining a learnable affinity-based module to propagate in-

formation. We are interested in end-to-end affinity learning,
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Figure 1 – Visualization of upsampled feature maps with various

upsampling operators. From left to right, the input RGB image,

feature maps after the last upsampling using nearest neighbor in-

terpolation, bilinear upsampling, and our proposed affinity-aware

upsampling, respectively. Our method produces better details with

clear connectivity.

because classic methods often build upon some assump-

tions, rendering weak generalization in general cases. Ex-

isting approaches typically propagate or model affinity after

upsampling layers or before the last prediction layer. While

affinity properties are modeled, they sometimes may not be

effective for the downstream tasks. For instance,the work in

[20] requires a feature encoding block besides the encoder-

decoder architecture to learn affinity. The work in [4] needs

more iterations to refine the feature maps according to their

affinity at the last stage. As shown in Fig. 1, one plausible

reason is that pairwise similarity is damaged during upsam-

pling. In addition, it is inefficient to construct interactions

between high-dimensional feature maps. We therefore pose

the question: Can we model affinity earlier in upsampling

in an effective and efficient manner?

Many widely used upsampling operators interpolate val-

ues following a fixed rule at different positions. For in-

stance, despite reference positions may change in bilinear

upsampling, it always interpolates values based on rela-

tive spatial distances. Recently, the idea of learning to up-

sample emerges [24, 25, 35]. A learnable module is of-

ten built to generate upsampling kernels conditioned on

feature maps to enable dynamic, feature-dependent upsam-

pling behaviors. Two such representative operators include

CARAFE [35] and IndexNet [25]. In our experiments, we

find that CARAFE may not work well in low-level vision

tasks where details need to be restored. IndexNet instead

can recover details much better. We believe that one im-

portant reason is that IndexNet encodes, stores, and delivers

spatial information prior to downsampling. But computa-

tion can be costly when the network goes deep. This mo-
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tivates us to pursue not only flexible but also light-weight

designs of the upsampling operator.

In this paper, we propose to model affinity into upsam-

pling and introduce a novel learnable upsampling operator,

i.e., affinity-aware upsampling (A2U). As we show later in

Section 4, A2U is a generalization of first-order upsam-

pling operators: in some conditions, the first-order formu-

lation in [35] and [24] can be viewed as special cases of

our second-order one. In addition, by implementing A2U

in a low-rank bilinear formulation, we can achieve efficient

upsampling with few extra parameters.

We demonstrate the effectiveness of A2U on two detail-

sensitive tasks: an image reconstruction task on a toy

dataset with controllable background and a large-scale im-

age matting task with subtle foregrounds. Image matting

is a desirable task to justify the usefulness of affinity, be-

cause affinity-based matting approaches constitute one of

prominent matting paradigms in literatures. Top matting

performance thus can suggest appropriate affinity model-

ing. In particular, we further discuss alternative design

choices of A2U and compare their similarities and differ-

ences. Compared with a strong image matting baseline on

the Composition-1k matting dataset, A2U exhibits a signif-

icant improvement (∼ 14%) with negligible increase of pa-

rameters (< 0.5%), proffering a light-weight image matting

architecture with state-of-the-art performance.

2. Related work

Upsampling Operators in Deep Networks. Upsampling

is often necessary in dense prediction to recover spatial res-

olution. The mostly used upsampling operators are bilin-

ear interpolation and nearest neighbor interpolation. Since

they are executed only based on spatial distances, they

may be sub-optimal in detail-oriented tasks such as im-

age matting where distance-based similarity can be vio-

lated. Compared with distance-based upsampling, max-

unpooling is feature-dependent and has been shown to ben-

efit detail-oriented tasks [24, 25], but it must match with

max-pooling. In recent literatures, learning-based upsam-

pling operators [32, 23, 35, 25] emerge. The Pixel Shuf-

fle (P.S.) [32] upsamples feature maps by reshaping. The

deconvolution (Deconv) [23], an inverse version of convo-

lution, learns the upsampling kernel via back-propagation.

Both P.S. and Deconv are data-independent during infer-

ence, because the kernel is fixed once learned. By contrast,

CARAFE [35] and IndexNet [24] learn the upsampling ker-

nel dynamically conditioned on the data. They both intro-

duce additional modules to learn upsampling kernels. Since

the upsampling kernel is directly related to the feature maps,

these upsampling operators are considered first-order.

Following the learning-based upsampling paradigm, we

also intend to learn dynamic upsampling operators but

to condition on second-order features to enable affinity-

informed upsampling. We show that, compared with first-

order upsampling, affinity-informed upsampling not only

achieves better performance but also introduces a light-

weight learning paradigm.

Deep Image Matting. Affinity dominates the majority of

classic image matting approaches [19, 3, 6, 9]. The main

assumption in propagation-based matting is that, similar al-

pha values can be propagated from known positions to un-

known positions, conditioned on affinity. This assumption,

however, highly depends on the color distribution. Such

methods can perform well on cases with clear color contrast

but more often fail in cases where the color distribution as-

sumption is violated. Recently, deep learning is found effec-

tive to address ill-posed image matting. Many deep matting

methods arise [5, 36, 39, 33, 12, 24, 20, 2]. This field has

experienced from a semi-deep stage [5, 36] to a fully-deep

stage [39, 12, 24, 20, 2]. Here ‘semi-deep’ means that the

matting part still relies on classic methods [19, 3] to func-

tion, while ‘fully-deep’ means that the entire network does

not resort to any classic algorithms. Among fully-deep mat-

ting, DeepMatting [39] first applied the encoder-decoder

architecture and reported improved results. Targeting this

strong baseline, several deep matting methods were pro-

posed. AlphaGAN matting [26] and IndexNet matting [24]

explored adversarial learning and index generating module

to improve matting performance, respectively. In particu-

lar, works in [12, 20, 2, 33] imitated classic sampling-based

and propagation-based ideas into deep networks to ease the

difficulty of learning. Therein, GCA matting [20] first de-

signed an affinity-based module and demonstrated the ef-

fectiveness of affinity in fully-deep matting. It treats alpha

propagation as an independent module and adds it to differ-

ent layers to refine the feature map, layer by layer.

Different from the idea of ‘generating then refining’, we

propose to directly incorporate the propagation-based idea

into upsampling for deep image matting. It not only bene-

fits alpha propagation but also shows the potential for light-

weight module design.

3. A Mathematical View of Upsampling

The work in [25] unifies upsampling from an indexing

perspective. Here we provide an alternative mathematical

view. To simplify exposition, we discuss the upsampling

of the one-channel feature map. Without loss of general-

ity, the one-channel case can be easily extended to multi-

channel upsampling, because most upsampling operators

execute per-channel upsampling. Given a one-channel lo-

cal feature map Z ∈ R
k×k used to generate an upsampled

feature point, it can be vectorized to z ∈ R
k2

×1. Similarly,

the vectorization of an upsampling kernel W ∈ R
k×k can

be denoted by w ∈ R
k2

×1. If g(w, z) defines the output of
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Figure 2 – Kernel generation of A2U. Given a feature map of size C ×H ×W , an s × s upsampling kernel is generated at each spatial

position conditioned on the feature map. The rank d is 1 here.

upsampling, most existing upsampling operations follow

g(w, z) = wT z . (1)

Note that g(w, z) indicates an upsampled point. In practice,

multiple such points can be generated to form an upsampled

feature map. w may be either shared or unshared among

channels depending on the upsampling operator. Further,

even the same w can be applied to different z’s. According

to how the upsampling kernel w is generated, we categorize

the kernel into two types: the universal kernel and the cus-

tomized kernel. The universal kernel is input-independent.

One example is deconvolution [23]. The customized kernel,

however, is input-dependent. Based on what input is used to

generate the kernel, the customized kernel can be further di-

vided into distance-based and feature-based. We elaborate

as follows.

Distance-based Upsampling. Distance-based upsampling

is implemented according to spatial distances, such as near-

est neighbor and bilinear interpolation. The difference be-

tween them is the number of positions taken into account.

Under the definition of Eq. (1), the upsampling kernel is a

function of the relative distance between points.

Feature-based Upsampling. Feature-based upsampling

is feature-dependent. They are developed in deep net-

works, including max-unpooling [1], CARAFE [35], and

IndexNet [25]:

i) Max-unpooling interpolates values following the indices

returned from max-pooling. In a 2× 2 region of the fea-

ture layer after upsampling, only one position recorded

in the indices has value, and other three are filled with

0. We can define w by a 1 × 1 vector w = [w], where

w ∈ R
1×1, and z is also the 1 × 1 point at the low-

resolution layer.

ii) CARAFE learns an upsampling kernel w ∈ R
k2

×1 (k =
5 in [35]) via a kernel generation module given a de-

coder feature map ready to upsample. It also conforms

to Eq. (1), where z ∈ R
k2

×1 is obtained from the low-

resolution decoder feature map. The kernel size of w de-

pends on the size of z. In multi-channel cases, the same

w is shared among channels.

iii) IndexNet also learns an upsampling kernel dynamically

from features. The difference is that IndexNet learns

from high-resolution encoder feature maps. Under the

formulation of Eq. (1), the upsampling kernel follows a

similar spirit like max-unpooling. But here w ∈ [0, 1]
instead of {0, 1}.

Hence, different operators correspond to different w’s

and z’s, where w can be heuristically defined or dy-

namically generated. In particular, existing operators de-

fine/generate w according to distances or first-order fea-

tures, while second-order information remains unexplored

in upsampling.

4. Learning Affinity-Aware Upsampling

Here we explain how we exploit second-order informa-

tion to formulate the affinity idea in upsampling using a bi-

linear model and how we apply a low-rank approximation

to reduce computational complexity.

General Formulation of Upsampling. Given a feature

map M ∈ R
C×H×W to be upsampled, the goal is to gener-

ate an upsampled feature map M′ ∈ R
C×rH×rW , where r

is the upsampling ratio. For a position (i′, j′) in M′, the cor-

responding source position (i, j) in M is derived by solving

i = ⌊i′/r⌋, j = ⌊j′/r⌋. We aim to learn an upsampling

kernel w ∈ R
k2

×1 for each position in M′. By applying the

kernel to a channel of the local feature map X ∈ R
C×k×k

centered at position l on M, denoted by X ∈ R
1×k×k,

the corresponding upsampled feature point m′

l′ ∈ M′ of

the same channel at target position l′ can be obtained by

m′

l′ = wTx according to Eq. (1), where x ∈ R
k2

×1 is the

vectorization of X.

General Meaning of Affinity. Affinity is often used to in-

dicate pairwise similarity and is considered second-order

features. An affinity map can be constructed in different

ways such as using a Gaussian kernel. In self-attention,

the affinity between the position l and the enumeration

of all possible positions p at a feature map M is denoted

by softmax
∀p

(sim (ml,mp)), where ml and mp repre-

sent two vectors at position l and p, respectively, and
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sim (ml,mp) measures the similarity between ml and mp

with the inner product ml
Tmp.

Affinity-Aware Upsampling via Bilinear Modeling.

Given a local feature map X ∈ R
C×h1×w1 , X has an equiv-

alent matrix form X ∈ R
C×N , where N = h1 × w1. We

aim to learn an upsampling kernel conditioned on X. Previ-

ous learning-based upsampling operators [35, 24, 25] gen-

erate the value of the upsampling kernel following a lin-

ear model by w =
∑C

i=1

∑N
j=1

aijxij , where aij and xij

are the weight and the feature at the channel i and posi-

tion j of X, respectively. Note that w ∈ R
1×1. To en-

code second-order information, a natural generalization of

the linear model above is bilinear modeling where another

feature matrix Y ∈ R
C×M transformed from the feature

map Y ∈ R
C×h2×w2 (M = h2 × w2), is introduced to

pair with X to model affinity. Given each xi ∈ R
C×1 in

X, yj ∈ R
C×1 in Y, the bilinear weight aij of the vector

pair, and the embedding weights qk and tk for each chan-

nel of xi and yj , we propose to generate each value of the

upsampling kernel from embedded pairwise similarity, i.e.,

w =

N
∑

i=1

M
∑

j=1

aijϕ(xi)
T
φ(yj) =

C
∑

k=1

N
∑

i=1

M
∑

j=1

aijqkxiktkyjk

=

C
∑

k=1

N
∑

i=1

M
∑

j=1

a′ijkxikyjk =

C
∑

k=1

xk
TAkyk ,

(2)

where xk ∈ R
N×1 and yk ∈ R

M×1 are the k-th channel of

X and Y, respectively, Ak ∈ R
N×M is the affinity matrix

for k-th channel, a′ijk = aijqktk, and ϕ and φ represent the

embedding function.

Factorized Affinity-Aware Upsampling. Learning Ak can

be expensive when M and N are large. Inspired by [14, 41],

a low-rank bilinear method can be derived to reduce com-

putational complexity of Eq. (2). Specifically, Ak can

be rewritten by Ak = UkV
T
k , where Uk ∈ R

N×d and

Vk ∈ R
M×d. d represents the rank of Ak under the con-

straint of d ≤ min(N,M). Eq. (2) therefore can be rewrit-

ten by

w =

C
∑

k=1

xk
TUkVk

Tyk =

C
∑

k=1

1
T (Uk

Txk ◦Vk
Tyk)

= 1
T

C
∑

k=1

(Uk
Txk ◦Vk

Tyk)

,

(3)

where 1 ∈ R
d is a column vector of ones, and ◦ denotes

the Hadamard product. Since we need to generate a s × s
upsampling kernel, 1 in Eq. (3) can be replaced with P ∈

R
d×s2 . Note that, Eq. (3) is applied to each position of a

feature map, so the inner product here can be implemented

by convolution. The full upsampling kernel therefore can

be generated by

w = PT
C
∑

k=1

(Uk
Txk ◦Vk

Tyk)

= PT d
cat
r=1

(

C
∑

k=1

(ukr
Txk ◦ vkr

Tyk)
)

= conv

(

P,
d

cat
r=1

(

gpconv(Ur,X)⊙ gpconv(Vr,Y)
)

)

,

(4)

where ukr ∈ R
N×1, vkr ∈ R

M×1. The convolu-

tion kernels P ∈ R
d×s2×1×1, U ∈ R

d×C×h1×w1 , and

V ∈ R
d×C×h2×w2 are reshaped tensor versions of P, U

and V, respectively. conv(K,M) represents a convolu-

tion operation on the feature map M with the kernel K;

gpconv(K,M) defines a group convolution operation (C
groups) with the same input. cat is the concatenate opera-

tor. This process is visualized in Fig. 2.

Alternative Implementations. Eq. (4) is a generic formu-

lation. In practice, many design choices can be discussed in

implementation:

i) The selection of X and Y can be either same or different.

In this paper, we only discuss self-similarity, i.e., X = Y;

ii) The rank d can be chosen in the range [1,min(N,M)].
For example, if X and Y are extracted in 5×5 regions, the

range will be [1, 25]. In our experiments, we set d = 1 to

explore the most simplified and light-weight case.

iii) U and V can be considered two encoding functions. They

can be shared, partly-shared, or unshared among chan-

nels. We discuss two extreme cases in the experiments:

‘channel-shared’ (‘cs’) and ‘channel-wise’ (‘cw’).

iv) Eq. (4) adjusts the kernel size of w only using P. Since

the low-rank approximation has less parameters, fixed P,

U, and V may not be sufficient to model all local varia-

tions. Inspired by CondConv [40], we attempt to gener-

ate P and U, V dynamically conditioned on the input.

We investigate three implementations: 1) static: none

of them is input-dependent; 2) hybrid: only P is con-

ditioned on input; and 3) dynamic: P, U, and V are all

conditioned on input. The dynamic generation of P, U,

or V is implemented using a global average pooling and

a 1× 1 convolution layer.

v) We implement stride-2 U and V in our experiments. They

output features of size C × H
2
× W

2
. To generate an up-

sampling kernel of size s2×H×W , one can either use 4
sets of different weights for U and V or 4 sets of weights

for P (4×s2×H
2
×W

2
), followed by a shuffling operation

(s2×H×W ). We denote the former case as ‘pointwise’

(‘pw’). Further, as pointed out in [14], nonlinearity, e.g.,

tanh or relu, can be added after the encoding of U and

V. We verify a similar idea by adding normalization and

nonlinearity in the experiments.

6844



Method MNIST Fashion-MNIST

PSNR (↑) SSIM (↑) MSE (↓) MAE (↓) PSNR (↑) SSIM (↑) MSE (↓) MAE (↓)

Conv/2-Nearest 28.54 0.9874 0.0374 0.0148 25.58 0.9797 0.0527 0.0269

Conv/2-Bilinear 26.12 0.9783 0.0495 0.0205 23.68 0.9675 0.0656 0.0343

Conv/2-Deconv [23] 31.85 0.9942 0.0256 0.0089 27.42 0.9870 0.0426 0.0207

P.S. [32] 31.63 0.9939 0.0262 0.0099 27.33 0.9868 0.0431 0.0212

MaxPool-MaxUnpool 29.91 0.9916 0.0320 0.0133 28.31 0.9901 0.0385 0.0218

MaxPool-CARAFE [35] 28.72 0.9885 0.0367 0.0131 25.17 0.9773 0.0552 0.0266

MaxPool-IndexNet † [24] 45.51 0.9997 0.0053 0.0024 45.83 0.9998 0.0051 0.0033

MaxPool-A2U (Ours) 47.63 0.9998 0.0042 0.0020 46.41 0.9999 0.0048 0.0031

MaxPool-IndexNet ‡ [24] 47.13 0.9997 0.0044 0.0020 44.35 0.9998 0.0061 0.0036

Table 1 – Reconstruction results on the MNIST dataset and the Fashion-MNIST dataset. † denotes holistic index network, ‡ represents

depthwise index network. Both index networks here apply the setting of ‘context+linear’ for a fair comparison.

Extension to Downsampling. Following [25], our method

can also be extended to downsampling. Downsampling is

in pair with upsampling, so their kernels are generated from

the same encoder feature. We use ‘d’ to indicate the use of

paired downsampling in experiments. We share the same

U and V in Eq. (4) in both downsampling and upsampling,

but use different P’s considering that they may have dif-

ferent kernel sizes. We denote the overall upsampling ker-

nel by Wu ∈ R
su

2
×H×W and the downsampling kernel

by Wd ∈ R
sd

2
×H/r×W/r, where r is the ratio of upsam-

pling/downsampling. We set sd = rsu in our experiments.

Relation to Other Works. A2U learns to upsample guided

by feature layers. This property shares similarity with some

recent works.

i) Joint Bilateral Upsampling (JBU) [16]. JBU was pro-

posed to facilitate efficient high-resolution image pro-

cessing, which in detail is processing a low-resolution

image first and then obtain the high-resolution result un-

der the guidance of the corresponding high-resolution

image. The upsampling weight is generated from a spa-

tial distance and color distance on the guidance image.

Our method applies the idea of guided upsampling in

a more general way: inputs of the upsampling opera-

tion are feature layers, and the upsampling weights are

learned from the inputs dynamically.

ii) Guided Filter (GF) [10]. GF upsampling was also in-

vestigated to generate high-resolution output Oh given

the corresponding low-resolution one Ol and the high-

resolution guidance image IH . It models the genera-

tion of Ol as a linear model and calculates the model

weights. The weights are then upsampled to be high-

resolution before producing Oh by a linear transforma-

tion. Another learning-based GF (LGF) [37] further

learns weights of the linear model from inputs, making

the method adept to various tasks. Their nature of trans-

forming low-resolution image processing operations to

be high-resolution is different from ours, where the up-

sampling operations applied on feature layers are directly

guided by the high-resolution maps.

iii) Attention Networks [34, 13]. Attention networks include

a wide family of networks applying the attention mech-

anism. As discussed in [24, 35], attention networks ex-

ploit the relationships among different positions by fea-

ture scaling or selection. Our method instead is specially

designed for the upsampling/downsampling stage rather

than refining feature maps.

5. Image Reconstruction and Analysis

Here we conduct a pilot image reconstruction experi-

ment on a toy dataset to show the effectiveness of A2U.

Inspired by [25], we build sets of reconstruction exper-

iments on the MNIST dataset [18] and Fashion-MNIST

dataset [38]. The motivation behind is to verify whether ex-

ploiting second-order information into upsampling benefits

recovering spatial information.

The same network architecture, training strategies and

evaluation metrics are used following [25]. Details are

shown in the appendix. Since training patches are relatively

small (32× 32), upsampling kernel sizes for CARAFE and

A2U are both set to 1, and the encoding convolution ker-

nels in IndexNet and A2U are both set to 4. Other settings

keep the default ones. We apply ‘static-pw-cw’ A2U here

because it is the same as Holistic IndexNet if letting convo-

lution results of U to be all ones. We hence add a sigmoid

function after U to generalize IndexNet. To avoid extra

layers, we apply max-pooling to downsampling stages to

obtain high-resolution layers when validating IndexNet and

A2U. Reconstruction results are presented in Table 1.

As shown in Table 1, upsampling operators informed by

features (max-unpooling, CARAFE, IndexNet, and A2U)

outperform the operators guided by spatial distances (near-

est, bilinear, and bicubic). Moreover, learning from high-

resolution features matter for upsampling, among which,

learning-based operators (IndexNet, A2U) achieve the best

results. Further, it is worth noting that, A2U performs bet-

ter than IndexNet with even fewer parameters. From these

observations, we believe in upsampling: 1) high-resolution

features are beneficial to extract spatial information, and 2)

second-order features can help to recover more spatial de-

tails than first-order ones.
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Figure 3 – Overview of our matting framework. The focus of this work is on the upsampling stages.

6. Experiments and Discussions

Here we evaluate A2U on deep image matting. This task

is suitable for assessing the quality of modeling pairwise

relations.

Network Architecture. Similar to [20], our baseline net-

work adopts the first 11 layers of the ResNet34 [11] as the

encoder. The decoder consists of residual blocks and up-

sampling stages. The In-Place Activated BatchNorm [31]

is applied to each layer except the last one to reduce GPU

memory consumption during the training stage. As shown

in Fig. 3, the overall network follows the UNet architec-

ture [30] with ‘skip’ connection. To apply A2U to upsam-

pling, we replace the upsampling operations in the decoder

with A2U modules. Specifically, we learn upsampling ker-

nels from the skipped features. If A2U is used in both up-

sampling and downsampling stages, we change all 2-stride

convolution layers in the encoder to be 1-stride and imple-

ment paired downsampling and upsampling operations, re-

spectively, by learning upsampling/downsampling kernels

from the modified 1-stride feature layer.

Datasets. We mainly conduct our experiments on the

Adobe Image Matting dataset [39]. Its training set has

431 unique foreground objects and ground-truth alpha mat-

tes. Instead of compositing each foreground with fixed 100
background images chosen from MS COCO [21], we ran-

domly choose the background images in each iteration and

generate the composition images on-the-fly. The test set,

termed the Composition-1k, contains 50 unique foreground

objects; each foreground is composited with 20 background

images from the Pascal VOC dataset [7].

We also evaluate our method on the alphamatting.com
benchmark [29]. This online benchmark has 8 unique test-

ing images and 3 different trimaps for each image, provid-

ing 24 test cases.

Further, we report results on the recently proposed

Distinctions-646 dataset [28]. It has 596 foreground objects

in the training set and 50 foreground objects in the test set.

We generate the training data and the test set following the

same protocol as on the Adode Image Matting dataset.

Implementation Details. Our implementation is based on

PyTorch [27]. Here we describe training details on the

Upsample SAD MSE Grad Conn # Params

Nearest 37.51 0.0096 19.07 35.72 8.05M

Bilinear 37.31 0.0103 21.38 35.39 8.05M

CARAFE 41.01 0.0118 21.39 39.01 +0.26M

IndexNet 34.28 0.0081 15.94 31.91 +12.26M

A2U (static-pw-cw) 36.36 0.0099 21.03 34.40 +0.10M

A2U (static-cw) 35.92 0.0098 20.06 33.68 +26K

A2U (hybrid-cw) 34.76 0.0088 16.39 32.29 +44K

A2U (hybrid-cs) 36.43 0.0098 21.24 34.11 +19K

A2U (dynamic-cw) 36.66 0.0094 18.60 34.62 +0.20M

A2U (dynamic-cs) 35.86 0.0095 17.13 33.71 +20K

A2U (dynamic-cs-d) 33.13 0.0078 17.90 30.22 +38K

A2U (dynamic-cs-d)† 32.15 0.0082 16.39 29.25 +38K

Table 2 – Results of different upsampling operators on the

Composition-1k test set with the same baseline model. † denotes

additional normalization and nonlinearity after the encoding layers

of U and V. The best performance is in boldface.

Adobe Image Matting dataset. The 4-channel input con-

catenates the RGB image and its trimap. We mainly fol-

low the data augmentation of [20]. Two foreground objects

are first chosen with a probability of 0.5 and are compos-

ited to generate a new foreground image and a new alpha

matte. Next, they are resized to 640 × 640 with a proba-

bility of 0.25. Random affine transformations are then ap-

plied. Trimaps are randomly dilated from the ground truth

alpha mattes with distances in the range between 1 and 29,

followed by 512 × 512 random cropping. The background

image is randomly chosen from the MS COCO dataset [21].

After imposing random jitters to the foreground object, the

RGB image is finally generated by composition.

The backbone is pretrained on ImageNet [17]. Adam

optimizer [15] is used. We use the same loss function

as [39, 24], including alpha prediction loss and composi-

tion loss computed from the unknown regions indicated by

trimaps. We update parameters for 30 epochs. Each epoch

has a fixed number of 6000 iterations. A batch size of 16 is

used and BN layers in the backbone are fixed. The learning

rate is initialized to 0.01 and reduced by ×10 at the 20-th

epoch and the 26-th epoch, respectively. The training strate-

gies on the Distinction646 dataset are the same except that

we update the parameters for only 25 epochs. We evalu-

ate our results using Sum of Absolute Differences (SAD),

Mean Squared Error (MSE), Gradient (Grad), and Connec-

tivity (Conn) [29].
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Method kup SAD MSE Grad Conn

A2U (hybrid-cw) 1 37.74 0.0104 22.07 35.91

A2U (hybrid-cw) 3 34.76 0.0088 16.39 32.29

A2U (hybrid-cw) 5 35.99 0.0093 17.96 33.90

A2U (dynamic-cs) 1 36.06 0.0098 17.25 33.95

A2U (dynamic-cs) 3 35.86 0.0095 17.13 33.71

A2U (dynamic-cs) 5 37.40 0.0096 18.28 35.50

Table 3 – Ablation study of upsampling kernel size on the

Composition-1k test set.

6.1. The Adobe Image Matting Dataset

Ablation Study on Alternative Implementations. Here

we verify different implementations of A2U on the

Composition-1k test set and compare them with existing

upsampling operators. Quantitative results are shown in Ta-

ble 2. All the models are implemented by the same architec-

ture but with different upsampling operators. The ‘nearest’

and ‘bilinear’ are our direct baselines. They achieve close

performance with the same model capacity. For CARAFE,

we use the default setting as in [35], i.e., kup = 5 and

kencoder = 3. We observe CARAFE has a negative ef-

fect on the performance. The idea behind CARAFE is to

reassemble contextual information, which is not the focus

of matting where subtle details matter. However, it is in-

teresting that CARAFE can still be useful for matting when

it follows a light-weight MobileNetV2 backbone [25]. One

possible explanation is that a better backbone (ResNet34)

suppresses the advantages of context reassembling. We re-

port results of IndexNet with the best-performance setting

(‘depthwise+context+nonlinear’) in [24, 25]. The upsam-

pling indices are learned from the skipped feature layers.

IndexNet achieves a notable improvement, especially on the

Grad metric. However, IndexNet significantly increases the

number of parameters.

We further investigate 6 different implementations of

A2U and another version with paired downsampling and

upsampling. According to the results, the ‘static’ setting

can only improve the SAD and Conn metrics. The position-

wise and position-shared settings report comparable results,

so we fix the position-shared setting in the following ‘hy-

brid’ and ‘dynamic’ experiments. We verify both channel-

wise and channel-shared settings for ‘hybrid’ and ‘dynamic’

models. The ‘hybrid’ achieves higher performance with

channel-wise design, while the ‘dynamic’ performs better

with channel-shared design. All ‘hybrid’ and ‘dynamic’

models show improvements against baselines on all metrics,

except the MSE and Grad metrics for the channel-shared

‘hybrid’ model. The last implementation, where channel-

shared ‘dynamic’ downsampling is paired with upsampling,

achieves the best performance (at least 14% relative im-

provements against the baseline) with negligible increase of

parameters (< 0.5%).

Hence, while the dedicated design of upsampling oper-

ators matters, paired downsampling and upsampling seems

Method Norm SAD MSE Grad Conn

A2U (hybrid-cw) softmax 35.93 0.0092 17.13 33.87

A2U (hybrid-cw) sigmoid+softmax 34.76 0.0088 16.39 32.29

A2U (dynamic-cs) softmax 36.40 0.0100 17.67 34.33

A2U (dynamic-cs) sigmoid+softmax 35.86 0.0095 17.13 33.71

Table 4 – Ablation study of normalization on the Composition-1k

test set.

Method SAD MSE Grad Conn # Params

Closed-Form [19] 168.1 0.091 126.9 167.9 -

KNN Matting [3] 175.4 0.103 124.1 176.4 -

Deep Matting [39] 50.4 0.014 31.0 50.8 > 130.55M

IndexNet Matting [24] 45.8 0.013 25.9 43.7 8.15M

AdaMatting [2] 41.7 0.010 16.8 - -

Context-Aware [12] 35.8 0.0082 17.3 33.2 107.5M

GCA Matting [20] 35.28 0.0091 16.9 32.5 25.27M

A2U (hybrid-cw) 34.76 0.0088 16.39 32.29 8.09M

A2U (dynamic-cs) 35.86 0.0095 17.13 33.71 8.07M

A2U (dynamic-cs-d) 32.15 0.0082 16.39 29.25 8.09M

Table 5 – Benchmark results on the Composition-1k test set. The

best performance is in boldface.

more important, at least for image matting.

Ablation Study on Upsampling Kernel Size. Here we in-

vestigate the performance of our models with different up-

sampling kernel sizes. The encoding kernel size (the kernel

size of U or V) is set to ken = 5 in all matting experi-

ments unless stated. Under this setting, results in Table 3

show that kup = 3 performs the best. It is interesting to

observe that larger upsampling kernel does not imply better

performance. We believe that this is related to the encoding

kernel size and the way how we generate U, V and P. We

use kup = 3 as our default setting.

Ablation Study on Normalization. In both [35] and [25],

different normalization strategies are verified, and experi-

ments show that normalization significantly affects the re-

sults. We thus justify the normalization choices in our

A2U module here. We conduct the experiments on the

channel-wise ‘hybrid’ model and the channel-shared ‘dy-

namic’ model. Two normalization choices are considered:

‘softmax’ and ‘sigmoid+softmax’. It is clear that the latter

normalization works better (Table 4). It may boil down to

the nonlinearity introduced by the sigmoid function.

Comparison with State of the Art. Here we compare

our models against other state-of-the-art methods on the

Composition-1k test set. Results are shown in Table 5.

We observe that our models outperform other methods on

all the evaluation metrics with the minimum model capac-

ity. Compared with the state-of-the-art method [20], our

best model achieves 8% higher performance with only 40%
model complexity. Our model is also memory-efficient, be-

ing able to infer high-resolution images on a single 1080Ti

GPU without downsampling on the Composition-1k test

set. Some qualitative results are shown in Fig. 4. Our results

show improved detail delineation such as the net structure

and the filament.
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RGB Trimap Ground Truth Closed Form KNN

DIM IndexNet GCA Baseline Ours

RGB Trimap Ground Truth DIM IndexNet GCA Baseline Ours

Figure 4 – Qualitative results on the Composition-1k test set. The methods in comparison include Closed-Form Matting [19], KNN

Matting [3], Deep Image Matting (DIM) [39], IndexNet Matting [24], GCA Matting [20], our baseline, and our method.

Gradient Error
Average Rank Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net

Overall S L U S L U S L U S L U S L U S L U S L U S L U S L U

Ours 6.3 5.6 3.3 10.1 0.2 0.2 0.2 0.1 0.1 0.2 0.1 0.2 0.2 0.2 0.2 0.4 1.1 1.3 1.9 0.6 0.7 1.7 0.6 0.6 0.6 0.3 0.3 0.4

AdaMatting [2] 7.8 4.5 5.6 13.3 0.2 0.2 0.2 0.1 0.1 0.4 0.2 0.2 0.2 0.1 0.1 0.3 1.1 1.4 2.3 0.4 0.6 0.9 0.9 1 0.9 0.3 0.4 0.4

GCA Matting [20] 8 8.4 6.6 9.1 0.1 0.1 0.2 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.2 0.3 1.3 1.6 1.9 0.7 0.8 1.4 0.6 0.7 0.6 0.4 0.4 0.4

Context-aware Matting [12] 9.1 10.8 9.8 6.8 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 1.4 1.5 1.8 0.8 1.3 1 1.1 1.1 0.9 0.4 0.4 0.4

Table 6 – Gradient errors on the alphamatting.com test set. The top-4 methods are shown. The lowest errors are in boldface.

6.2. The alphamatting.com Benchmark

Here we report results on the alphamatting.com
benchmark [29]. We train our model with all the data in

the Adobe Matting dataset and test it on the benchmark. As

shown in Table 6, our method ranks the first w.r.t. the gra-

dient error among all published methods. We also achieve

comparable overall ranking compared with AdaMatting [2]

under the SAD and MSE metrics, suggesting our method is

one of the top performing methods on this benchmark.

6.3. The Distinction­646 Dataset

We also evaluate our method on the recent Distinction-

646 test set. In Table 7, we report results of the three models

performing the best on the Composition-1k dataset and also

compare with other benchmarking results provided by [28].

We have two observations: 1) our models show improved

performance against the baseline, which further confirms

the effectiveness of our A2U; 2) Our models outperform

other reported benchmarking results by large margins, set-

ting a new state of the art on this dataset.

7. Conclusion

Considering that affinity is widely exploited in dense

prediction, we explore the feasibility to model such second-

Method SAD MSE Grad Conn

Closed-Form* [19] 105.73 0.023 91.76 114.55

KNN Matting* [3] 116.68 0.025 103.15 121.45

Deep Matting* [39] 47.56 0.009 43.29 55.90

Baseline-Nearest 25.03 0.0106 13.85 24.41

A2U (hybrid-cw) 24.08 0.0104 13.53 23.59

A2U (dynamic-cs) 24.55 0.0107 14.51 23.89

A2U (dynamic-cs-d) 23.20 0.0102 12.39 22.20

Table 7 – Benchmark results on the Distinctions-646 test set. The

best performance is in boldface. ∗ denotes results cited from [28].

order information into upsampling for building compact

models. We implement this idea with a low-rank bilinear

formulation, based on a generalized mathematical view of

upsampling. We show that, with negligible parameters in-

crease, our method A2U can achieve better performance on

both image reconstruction and image matting tasks. We

also investigate different design choices of A2U. Results on

three image matting benchmarks all show that A2U invites

a significant relative improvement and also state-of-the-art

results. In particular, compared with the best performing

image matting network, our model achieves 8% higher per-

formance on the Composition-1k test set, with only 40%
model capacity. For future work, we plan to extend A2U to

other dense prediction tasks.
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