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Abstract

State-of-the-art scene text detection methods usually

model the text instance with local pixels or components

from the bottom-up perspective and, therefore, are sensi-

tive to noises and dependent on the complicated heuristic

post-processing especially for arbitrary-shape texts. To re-

lieve these two issues, instead, we propose to progressive-

ly evolve the initial text proposal to arbitrarily shaped text

contours in a top-down manner. The initial horizontal text

proposals are generated by estimating the center and size

of texts. To reduce the range of regression, the first stage

of the evolution predicts the corner points of oriented tex-

t proposals from the initial horizontal ones. In the second

stage, the contours of the oriented text proposals are itera-

tively regressed to arbitrarily shaped ones. In the last iter-

ation of this stage, we rescore the confidence of the final

localized text by utilizing the cues from multiple contour

points, rather than the single cue from the initial horizon-

tal proposal center that may be out of arbitrary-shape text

regions. Moreover, to facilitate the progressive contour evo-

lution, we design a contour information aggregation mech-

anism to enrich the feature representation on text contours

by considering both the circular topology and semantic con-

text. Experiments conducted on CTW1500, Total-Text, ArT,

and TD500 have demonstrated that the proposed method e-

specially excels in line-level arbitrary-shape texts. Code is

available at https://github.com/dpengwen/PCR.

1. Introduction

Scene text detection has attracted increasing attention in

the computer vision community for its ubiquitous appli-

cations [46, 11, 10], such as scene understanding, visual

search, automatic driving, etc. However, it is a challeng-

ing task, due to the effect of scene factors (e.g., complex
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Figure 1: Illustration of the contour evolution. It evolves

the contour of the horizontal text proposal (a) to the corner

points (cyan) of the oriented text proposal (b), and then the

contour of the oriented text proposal is further evolved to

close to the ground-truth contour (green) for multiple times

(c). The red point and dash lines are the center and size of

the axis-aligned box of the arbitrary-shape text. Yellow ar-

rows on the contours indicate the information passing.

background, perspective distortion, and various illumina-

tion) and the specific characteristics of scene texts (e.g.,

arbitrary-shape layout, no well-defined closed boundaries,

and various aspect ratios).

To exploit an arbitrary-shape scene text detector that

requires localizing explicit contours of text instances, the

bottom-up methods [6, 27, 42, 43, 51, 38, 44, 7, 53, 17, 59]

have become the dominant mainstream. These methods per-

form the pixel-wise semantic segmentation on the entire or

shrunk text regions, and simultaneously predict the auxil-

iary information of each pixel for clustering text pixels into

different instances [6, 42, 53, 51, 38, 43, 44, 17, 63] or lo-

cal components [27, 1, 7, 59]. However, due to the huge

number of pixels in the image, it would involve complicat-

ed post-processings to achieve the accurate bounding box

for arbitrary-shape texts. Furthermore, the pixels are easy

to generate ambiguous predictions when two scene texts are

too close or the space between characters in each text is too

large. Though the local components are more robust to the

pixel-wise noises, they still need to be linked to different

text instances by the heuristic rules [27, 7] or the relational
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reasoning network [59]. Most importantly, existing bottom-

up methods focus on the local text cues instead of the inte-

grated geometric layout of texts, which leads to the lack of

global perception.

To obtain the global geometric layout, the top-down

methods [5, 50, 4, 22, 13] are proposed to localize arbitrary-

shape scene texts. These methods first carry out the bina-

ry segmentation within the text proposals and then utilize

the contour extraction algorithm [35] to obtain the contour

of the segmentation mask. However, they require elabo-

rate anchors, and are sensitive to the inaccurate localization

of text regions. Differently, some other top-down methods

[64, 24, 45, 2, 41] regress the key points on text contours

within the text proposals. However, these methods are also

dependent on the artificially-designed anchors, and ignore

the constraint of global geometric layout among key points.

To address these issues, the single-shot top-down methods

[20, 39] reconstruct the text contour via the control points of

Bezier curves, or encode the text contour based on the ge-

ometric information under polar space. Nevertheless, these

single-shot methods only perceive scene texts with complex

geometry layout once, which would generate inaccurate lo-

calization. It is inconsistent with the human visual system

in which look more than once is usually required [58].

In this paper, we develop a novel scene text detection

method via Progressive Contour Regression, called PCR,

to effectively localize the arbitrary-shape scene text. Specif-

ically, we first generate horizontal text proposals by estimat-

ing their center points and sizes. Then we regress the global

contours of the horizontal text proposals to the corner points

of oriented text proposals. After that, we evolve the con-

tours of the oriented text proposals into arbitrary-shape text

contours and iteratively refine them, as described in Fig. 1.

This progressive strategy is helpful to perceive texts with

complex layouts, thus can generate accurate localization for

arbitrary-shape scene texts. To facilitate the regression of

text contour points, we exploit a contour information aggre-

gation technique. It not only makes full use of the cyclicity

of text contours in geometric topology, but also assembles

the contour information into sink nodes in semantic to avoid

the influence of redundant or noisy points on text contours.

This technique can effectively gather rich information and

distribute them to each contour point to enhance the feature

representation. Additionally, the center points of some hori-

zontal bounding boxes of texts with complex geometric lay-

outs (e.g., extremely-curved texts, texts with large character

spaces, etc.) are not on texts, as shown in Fig. 1 (a). Mean-

while, the single center point is also insufficient to repre-

sent arbitrary-shape texts based on local cues. Thus, based

on the predicted centers, the generated horizontal text pro-

posals would contain some false detections. To increase the

confidence of the final localized contours, we propose a re-

liable contour localization mechanism, which is performed

by the scoring mechanism based on multiple sampled points

on text contours. Our proposed method is an anchor-free

model, and can be trained in an end-to-end manner. The

model can directly output the polygonal detection with only

one simple NMS post-processing.

The main contributions of this work are as follows:

i) We propose a novel progressive contour regression

framework to detect arbitrary-shape scene texts, which has

achieved state-of-the-art performances on multiple public

benchmarks, e.g., CTW1500, Total-Text, ArT, and TD500.

ii) A contour information aggregation is exploited to en-

rich the contour feature representation, which can restrain

the effect of redundant and noisy contour points and gener-

ate more accurate localization for arbitrary-shape texts.

iii) A reliable contour localization mechanism is devel-

oped to rescore the localized contours, which can effectively

relieve the false detections.

2. Related Work

Scene text detection has been extensively studied for

many years. Comprehensive reviews of scene text detection

methods are illustrated in [56, 26]. In the era of deep learn-

ing, these scene text detectors can be classified into two cat-

egories: bottom-up methods and top-down methods.

Bottom-up Scene Text Detectors: In the early stage of

deep learning, some scholars [60] regard the scene text de-

tection as a semantic segmentation problem, and then ex-

ploit a complex heuristic grouping algorithm to separate dif-

ferent text instances. Recently, some auxiliary information

[6, 42, 53, 38, 43, 51, 44, 17, 63] of each pixel in the en-

tire or shrunk text region is also predicted in an end-to-end

framework to better separate pixels belonging to different

text regions. For example, in PSENet [43], a progressive s-

cale expansion algorithm is applied to fuse different-scale

segmentation maps. In SAE [38] and PAN [44], the em-

bedding vectors of pixels are learned by pulling the pixel

embedding of the same text instance and pushing the pixel

embedding of different text instances.

Similarly, some researchers [37, 34, 36, 27, 1, 7, 59] de-

compose a text instance into a series of simple local com-

ponents, and explore the relationships among these com-

ponents before grouping them into an entire text instance.

The local components are constructed by two strategies.

One is regressed from the simple anchors, e.g., CTPN [37],

SegLink [34], and ICG [36]. The other is grouped from pix-

els based on their local geometric attributes, e.g., TextSnake

[27], CRAFT [1], TextDragon [7], and DRRGN [59]. Then,

the relationships of these components could be fully ex-

plored in an end-to-end framework. For example, SegLink

[34] regards the link between components as a classification

task, while DRRGN [59] employs a deep relational reason-

ing graph network to deduce the linkages.
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Figure 2: Overview of our proposed architecture. Given an input image, the feature extraction and enhancement module is

first utilized to extract multi-scale features, and fuse these features to obtain the representative feature Fe. Then, Fe is fed into

the horizontal text proposal generation module to estimate the center and size heatmap of the text proposal. Next, we employ

the Contour Localization Mechanism (CLM) to regress the locations of contour points based on the initialized horizontal

proposal contour points, before generating the corner points of the oriented text proposal. After that, the contour points of

the oriented proposal are initialized and are iteratively forced to close to the contour of the arbitrary-shape text by multiple

CLMs. Finally, the Reliable Contour Localization Mechanism (RCLM) is exploited to generate final text contours with high

confidence learned by the contour scoring mechanism. Note that in CLM, we exploit the Contour Information Aggregation

(CIA) technique to enrich the raw contour feature Fc for obtaining the representative contour feature Fcia, before learning

contour point offsets.

Top-down Scene Text Detectors: These methods usual-

ly treat texts as a special type of object. Some well-known

text detectors [16, 21, 15, 30, 18, 40] have been exploit-

ed to detect the horizontal or multi-oriented scene texts. In

RRPN [30], the authors design the rotated anchors to fa-

cilitate the regression of the arbitrary-oriented scene texts.

RRD [18] rotates the convolutional filters to learn rotation-

sensitive features while ITN [40] learns the affine matrix to

obtain the geometry-aware representations.

As the layouts of some texts can be curved or wavy

in the wild, the horizontal, rotated or quadrilateral bound-

ing boxes are not fit for them well. Thus some method-

s [5, 50, 28, 13, 4, 49, 22] perform the pixel-wise binary

segmentation on the candidate boxes to localize arbitrary-

shape texts. For example, Mask-TextSpotter [13] incorpo-

rates the character recognition branch in the Mask-RCNN

[8] framework to formulate an end-to-end trainable model

for better filter text-like regions, and the character recogni-

tion is achieved by the multi-class semantic segmentation.

In Mask-TTD [22], a tightness prior is utilized to adjust text

proposals for better covering the entire text region, and the

text frontier information is skillfully exploited to enhance

the text mask prediction.

Differently, some contour-based methods [64, 24, 45, 2,

41] are proposed to localize the key points on the contours

of arbitrary-shape texts within the proposals. For example,

CTD-TLOC [24] regresses the offsets between the top-left

point of the circumscribed box and the key points on text

contours, and utilizes the Recurrent Neural Network (RNN)

to smooth the horizontal and vertical offsets. Considering

that regressing a fixed number of key points is not suitable

for some various-shape texts, ATRR [45] introduces RN-

N to adaptively regress multiple point pairs until meeting a

stop token. Additionally, to directly localize the text con-

tours at one pass, TextRay [39] regresses contour points un-

der the polar space.

In this paper, we propose a novel contour-based method

to detect arbitrary-shape scene texts in a progressive re-

gression manner from the top-down perspective. Differen-

t from adopting the progressive contour regression for the

semi-automatic annotation [19] and the instance segmenta-

tion [32], our method enriches the feature representations of

text contours by considering both the cyclicity in geometric

topology and the contexts in semantic. Moreover, our mod-

el estimates the reliable score for the localized text contour,

which can effectively suppress false positives.

3. Methodology

In this section, we first introduce the architecture of our

proposed method. After that, we present our novel contour

information aggregation technique and illustrate the reliable

contour localization mechanism. Finally, the details of the

training and inference of our model are described.

3.1. Progressive Contour Regression Architecture

As illustrated in Fig. 2, the input image I ∈ R
H×W×3

(H and W are the height and width of the image) is first fed

into the the feature extraction and enhancement module [61]

to extract multi-scale visual features. Then we fuse them
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to obtain a more representative feature Fe ∈ R
H
σ
×

W
σ
×De ,

where σ is the output stride and De is the feature dimen-

sion. Next, the horizontal text proposal generation module

predicts the center and size of axis-aligned bounding box-

es of texts. After that, the oriented text proposal generation

module is exploited to regress the corner points of orient-

ed bounding boxes, based on the contours of horizontal text

proposals. Finally, the arbitrary-shape text contour genera-

tion network is utilized to evolve the contours of oriented

bounding boxes to localize arbitrary-shape scene texts.

(1) Horizontal Text Proposal Generation: This mod-

ule generates the center heatmap P̂ = Ψc(Fe) ∈ R
H
σ
×

W
σ

and the size heatmap Q̂ = Ψs(Fe) ∈ R
H
σ
×

W
σ
×2 of scene

texts, where Ψc and Ψs consist of several convolution layers

like [61]. In this network, we regard the text center localiza-

tion as a pixel-wise logistic regression with focal loss [61],

which is defined as,

Lcenter =
−1

Nt

∑

i

{
(1− P̂i)

αlog(P̂i), if Pi = 1,

(1−Pi)
β(P̂i)

αlog(1− P̂i), o.w.,

(1)

where Nt is the number of texts; i denotes the position in-

dex on the heatmap; P is the ground-truth center heatmap,

which is generated following [61]; α and β are the penalty

hyper-parameters, which are set to 2 and 4 in experiments.

Besides, the box size regression only considers the center

points of the axis-aligned bounding boxes, whose training

objective is formulated as,

Lsize =
1

Nt

Nt∑

i=1

SL1
(Q̂i −Qi), (2)

where SL1
is the smooth L1 loss [33]; Q̂i denotes the pre-

dicted sizes at the i-th center point; Qi is the corresponding

ground truth.

(2) Oriented Text Proposal Generation: In this mod-

ule, we first evenly sample No points along the contour

for each horizontal text proposal. Note that the horizon-

tal text proposal denotes the ground-truth box for training

while is the predicted box for testing. Then, we estimate

the new locations of these sampled points via the Con-

tour Localization Mechanism (CLM). Specifically, in CLM,

the contour feature extractor projects the contour points

X = {xi}No

i=1 on the feature Fe to generate the seman-

tic feature Fsem ∈ R
No×De . At the same time, the lo-

cation information Floc ∈ R
No×2 of contour points, for-

mulated as Floc
i = xi − xmin in which i means the in-

dex of contour points and xmin means the most top-left

coordinate of contour points, is also considered. The se-

mantic feature Fsem and the contour location information

Floc would be concatenated to generate raw contour feature

Fc ∈ R
No×(De+2). Next, the contour information aggre-

gation (CIA) module takes Fc as input to generate a more

representative contour feature Fcia ∈ R
No×D (more de-

tails are illustrated in Section 3.2). The contour feature

Fcia is then fed into an Offset Prediction Head (OPH) to

generate contour point offsets O ∈ R
No×2. Note that

OPH is composed of three 1×1 convolution layers (for-

mer two layers are equipped with ReLU), whose number

of filters are 256, 64 and 2, respectively. After that, new

locations of contour points X′ ∈ R
No×2 are obtained by

X + O. Finally, the corner point generation module cal-

culates the corner points of each text as X′[i ∗ ⌊No/Nc⌋],
where i ∈ {0, 1, ..., Nc − 1}. Nc is the number of corner

points of the oriented text proposal. ⌊·⌋ denotes the floor

operation. Thus, the predicted corner points of all texts in

each image can be termed as X̂corner ∈ R
Nt×Nc×2, whose

loss function is formulated as,

Lcorner =
1

NtNc

Nt∑

i=1

Nc∑

j=1

SL1
(X̂corner

ij −Xcorner
ij ), (3)

where Xcorner denotes the ground-truth corner points of the

oriented bounding box.

(3) Arbitrary-Shape Text Contour Generation: In this

module, we first initialize the contour of the oriented tex-

t proposal with Na points, and then we employ K CLMs

to progressively regress the oriented text proposal contour

to the arbitrary-shape text contour. It is worth noting that

the oriented text proposal is the ground-truth for training

while denotes the box constructed from the predicted cor-

ner points for testing. Considering that the contours may

be evolved from some false detections, we exploit a Reli-

able Contour Localization Mechanism (RCLM) to increase

the confidence of detected contours (more details are illus-

trated in Section 3.3). RCLM outputs new contour point

locations X̂final ∈ R
Nt×Na×2 and the contour confidence

s ∈ R
Nt×2. Therefore, the loss function of the contour lo-

cation evolution is expressed as,

Levolution =
1

NtNa

Nt∑

i=1

Na∑

j=1

SL1
(X̂final

ij −X
final
ij ), (4)

where X
final
ij is the j-th contour point of the i-th ground-

truth text; it is evenly sampled from the contour of the

arbitrary-shape scene text. Moreover, the training objec-

tive of the contour scoring mechanism is regarded as the

text/non-text classification task, which is formulated as,

Lcsm = − 1

Nt

Nt∑

i=1

log(sli), (5)

where l is the classification label of the contour; sli is the

score of the region enclosed by the i-th contour belonging

to the background (l = 0) or text (l = 1).

3.2. Contour Information Aggregation

Scene text contours should form closed shapes. Howev-

er, some points along the contour of texts are redundant and

contain noisy cues. To enrich the feature representation of
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Figure 3: Illustration of the contour information aggrega-

tion. r means the dilation rate of convolution kernels in the

CIA unit.

contours, we propose a Contour Information Aggregation

(CIA) technique. As shown in Fig. 3, the raw contour fea-

ture Fc is first fed into a 9 × 9 circular convolution layer

[32] with 128 filters, followed by the ReLU and the batch

normalization layer. Then, seven CIA units with three dif-

ferent kinds of dilation rates are employed to enhance the

contour information using a multi-scale strategy, as differ-

ent dilation rates have different receptive field sizes. After

that, the outputs of the first batch normalization layer and

all CIA units are concatenated and fused by a 1× 1 1D con-

volution layer with 256 filters, followed by a max pooling

operation. Finally, the global pooling feature is distributed

to each contour point by concatenating their features.

In each CIA unit, the input feature Fu is first fed into the

dilated circular convolution (dilation rate is r) to encode the

cyclicity of points along the closed contour, as illustrated

in Fig. 3. It would generate the features Fa
u ∈ R

N×Du ,

Fb
u ∈ R

N×Du , and Fc
u ∈ R

N×Du , where N is the number

of contour points and Du denotes the feature dimension.

For the contour feature Fb
u, we only employ Ng local sink

nodes to gather the information along the contour, due to

the redundancy and noise of the contour points. Actually,

the global context of the contour also can be regarded as a

global semantic sink node. It is concatenated with the fea-

tures of local sink nodes to formulate the feature represen-

tation Fbg
u ∈ R

(Ng+1)×Du , which can be expressed as,

Fbg
u = [Pmax(F

b
u);φ(F

b
u, Ng)], (6)

where Pmax means the max pooling operation; φ denotes

the feature gathering operation, which is achieved by a

parameter-free strategy, e.g., the adaptive average pool-

ing. In the same way, we could obtain the aggregated fea-

ture Fcg
u ∈ R

(Ng+1)×Du from Fc
u. The relevance R̃u ∈

R
N×(Ng+1) between the contour points and the sink nodes

is calculated as,

Ru =
1√
Du

Fa
u · (Fbg

u )⊤, R̃ij
u =

Rij
u∑N

i=1 R
ij
u

, (7)

where R̃ij
u denotes the relationship between the i-th con-

tour point and the j-th sink node. Thus, the sink node fea-

tures are distributed to the contour points for generating the

aggregated feature F
′

u ∈ R
N×Du , which is expressed as,

F
′

u = Fu ⊕ R̃u · Fcg
u , (8)

where ⊕ means the element-wise addition.

3.3. Reliable Contour Localization Mechanism

To increase the confidences of the detected contours

of arbitrary-shape scene texts, we exploit a contour scor-

ing mechanism in parallel with the contour localization to

formulate a Reliable Contour Localization Mechanism (R-

CLM). Specifically, RCLM first feeds the evolved contour

points into the contour feature extractor following the con-

tour information aggregation module to generate the con-

tour feature representation Fcia, which is then fed into the

contour localization branch to generate the final contour lo-

cation X̂final. Meanwhile, the contour feature Fcia is also

fed into the contour scoring mechanism to generate the con-

tour score s, which is denoted as,

s = ϕ(Fcia; Θcsm), (9)

where ϕ means the contour scoring network, and Θcsm

is the corresponding network parameters. Specifically,

in ϕ, the input Fcia is first fed into a 1×1 convolution

layer with 256 filters, obtaining the feature representa-

tion Fcsm. Then the average pooling operation Pavg and

the max pooling operation Pmax are utilized to generate

global feature representation F′
csm, denoted as F′

csm =
[Pavg(Fcsm);Pmax(Fcsm)]. After that, three fully con-

nected layers (the hidden sizes are 512, 256 and 2) and a

softmax layer are stacked to generate final contour scores

for text/non-text. Note that the former two fully connected

layers are equipped with the LeakyReLU-BN-Dropout op-

eration, where the slope of the Leaky ReLU is 0.2 and the

dropout probability is 0.5.

To learn a robust contour scoring network, it requires

positive samples and negative samples to train this network

for distinguishing the contours of scene texts from those

of backgrounds. Specifically, we treat the minimum bound-

ing boxes of arbitrary-shape scene texts as positive sam-

ples. Furthermore, we exploit a shape-preserving negative

sample mining technique to generate negative training sam-

ples. This negative sample mining technique first places the

contour of each arbitrary-shape scene text on the image in

a copy-move manner. Then, we calculate the overlaps be-

tween the generated contours and all positive contours. Af-
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ter that, the generated contours are assigned to different bins

based on overlaps, and we randomly choose a contour from

the bin with the lowest interval of overlaps. Finally, the min-

imum bounding box of the selected contour is regarded as

the negative sample.

3.4. Training and Inference

The proposed network is trained in an end-to-end man-

ner, using the following total loss function,

L = Lcenter+λ1Lsize+λ2Lcorner+λ3Levolution+λ4Lcsm,
(10)

where λ1, λ2, λ3 and λ4 indicate the balance factors among

the loss functions, which are set to 0.1, 1.0, 1.0 and 1.0 in

our experiments. The ADAM optimizer [12] is utilized to

train the proposed model.

In the inference stage, we first use a threshold τc to fil-

ter the center points with low scores on P̂, like that in [61].

After we obtain the final localized contours, a threshold τa
is employed to suppress the detected contours with low s-

cores, before using the polygonal NMS [5] to reduce the

overlapped contours.

4. Experiments

4.1. Datasets

CTW1500 [24] is an arbitrary-shape scene text dataset

that consists of 1,000 images for training and 500 images

for testing. In this dataset, the annotations of text instances

are line-level and labeled by a polygon with 14 key points.

Total-Text [2] is another arbitrary-shape scene tex-

t benchmark that contains 1,255 training images and 300

testing images. All the text instances are annotated by the

word-level polygon with adaptive number of key points.

ArT [3] is a large-scale multi-lingual arbitrary-shape

scene text detection dataset. It includes 5,603 training im-

ages and 4,563 testing images. The text regions are anno-

tated by the polygons with adaptive number of key points.

TD500 [55] is a scene text dataset for detecting arbitrary-

oriented long texts. It consists of 300 training images and

200 testing images. The texts in these images are either En-

glish or Chinese scripts, annotated by rotated rectangles.

The annotations of these texts are line-level.

4.2. Implementation Details

We employ DLA-34 [57] and ResNet-50 [9] pre-trained

on ImageNet as the backbone. The parameters of our in-

troduced layers are then initialized randomly. Alternatively,

all the layers are initialized by the weights pre-trained on

the training set and validation set of MLT-2017 [31] (9,000

images in total) for 20 epochs. σ, No, Na, Nc, De, and Du

are set to 4, 64, 128, 4, 64, and 128, respectively. The ini-

tialized learning rate is fixed to 0.0001. For CTW1500, we

train 250 epochs. For Total-Text, ArT and TD500, the mod-

el is trained for 300 epochs. The learning rate is decayed by

0.1 at 80, 120, 160, 180, and 260 epochs, respectively. In

the training stage, we randomly crop original images into

subimages with a size of 640 × 640. The cropped images

are randomly rotated in { 0◦, 90◦, 180◦, 270◦}. Then, they

are randomly flipped, blurred, and changed in color. The

batch size is fixed to 6 and 3 for the model with the back-

bone DLA-34 and ResNet-50, respectively. 400 images in

HUST400 [54] are added into the training set for TD500.

In the testing stage, the batch size is fixed to 1. The shorter

side of the test image is set to 416, 512, 640, and 640 for

CTW1500, Total-Text, ArT, and TD500, respectively. The

longer side is resized to keep the original aspect ratio. The

threshold τc is set to 0.35 for CTW1500, ArT, and TD500,

and 0.3 for Total-Text. Besides, τa is fixed to 0.9 for all

the datasets. The proposed model is implemented based on

Pytorch. All experiments are carried out on a workstation

with a 4.00GHz Intel(R) Xeon(R) W-2125 CPU, a single

NVIDIA GTX 2080Ti GPU, and 15G RAM.

4.3. Ablation Study

In this section, we conduct the ablation study on

CTW1500. The model employs DLA-34 pre-trained on Im-

ageNet as the backbone, and is directly trained on the train-

ing set of CTW1500. To verify the advantage of our mod-

el, we introduce a baseline that first employs the horizon-

tal text proposal generation module to generate horizontal

bounding boxes, and then evolves these boxes by the con-

tour localization mechanism once.

As shown in Table 1, when the baseline model integrates

the Oriented Text Proposal Generation (OTPG) network,

it can improve 2.6% in terms of F-measure. The improve-

ment could be ascribed that oriented text proposals have s-

maller offset variations for arbitrary-shape contours, which

can facilitate the learning of contour regression. Then, the

F-measure of the model has also increased by 2.6% and

0.7% after employing Contour Information Aggregation

(CIA) and Reliable Contour Localization Mechanism (R-

CLM). If both CIA and RCLM are utilized, our mod-

el can achieve Recall of 81.3%, Precision of 86.1% and

F-measure of 83.7%, which promotes 6.5% in F-measure

compared with the baseline. These gains can be ascribed

that CIA enriches the feature representations of text con-

tours and RCLM filters some false positives by the predict-

ed contour scores.

In the arbitrary-shape text generation, we employ the

Contour Localization Mechanism (CLM) to deform the ori-

ented text proposal contours to arbitrary-shape contours.

CLM is similar to RCLM except that the former lacks the

contour score mechanism. As the number K of CLM mod-

ules increases, the performance of our model boosts from

83.0% to 84.0% in F-measure. Table 2 demonstrates the ef-
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Table 1: Ablation study on dataset CTW1500.

Module
R (%) P (%) F (%)

OTPG CIA RCLM

× × × 73.9 80.9 77.2√
× × 78.2 81.5 79.8√ √

× 80.1 84.7 82.4√
×

√
77.8 83.4 80.5√ √ √
81.3 86.1 83.7

Table 2: Influence of the number of CLM.

#CLM R (%) P (%) F (%) FPS

K = 0 80.3 86.0 83.0 16.3

K = 1 81.3 86.1 83.7 12.8

K = 2 81.1 87.1 84.0 11.8

K = 3 81.3 86.5 83.8 10.7

Table 3: Explorations of CIA. ⊲ denotes ‘replaced by’.

Strategy R (%) P (%) F (%)

CIAU (Ng=0) 81.1 85.3 83.2

CIAU (Ng=4) 81.5 85.3 83.3

CIAU (Ng=8) 81.1 86.4 83.7

CIAU (Ng=16) 81.1 87.1 84.0

CIAU (Ng=32) 81.3 85.9 83.6

CIAU ⊲ CirConv 80.0 85.4 82.6

CirConv ⊲ StdConv (Ng=16) 81.3 86.0 83.6

fectiveness of the contour regression in a progressive man-

ner. Meanwhile, the number of CLM modules also burdens

the speed of the model. When adding three CLM modules,

the runtime of the whole model drops from 16.3 FPS to 10.7

FPS. To make a trade-off between the performance and the

speed, we set K = 2 in the following experiments.

In CIA, the change of the sink node number Ng in

each CIA Unit (CIAU) would affect the performance of our

model, as listed in Table 3. Specifically, when Ng increas-

es to 16, the model achieves the optical F-measure. The

improvement could be ascribed that more sink nodes can

gather more representative features to some extent. When

each CIAU is replaced by one circular convolution (termed

as ‘CirConv’) layer, the performance of the model would

decrease by 1.1%, 1.7%, and 1.4% in terms of Recall,

Precision, and F-measure, respectively. It reveals that the

effectiveness of the semantic sink nodes in capturing valid

contexts of contours. If we utilize the standard convolution

(termed as ‘StdConv’) layer to replace all ‘CirConv’ layers

in CIA, the performance of our model drops from 87.1% to

86.0% in F-measure. The reason is that the standard convo-

lution can not encode the circular topology of text contours.

4.4. Comparisons with Stateoftheart Methods

Evaluation on CTW1500: As shown in Table 4, our

model achieves the best performance, compared with all

previous state-of-the-art methods. Specifically, our method

outperforms the regression-based methods (e.g., SLPR [64],

ATRR [45], CTD-CLOC [24] and TextRay [39], ICG [36])

by large margins. When comparing with PSENet [43] that

Table 4: Comparisons with related works on CTW1500.

‘Ext’ means using the external dataset to pretrain the mod-

el.‘Hybrid’ denotes integrating the regression and segmen-

tation in a framework.

Type method Venue Backbone Ext R (%) P (%) F (%)

S
eg

m
en

ta
ti

o
n

-b
as

ed

PAN [44] ICCV’19 Res18 × 77.7 84.6 81.0

TextSnake [27] ECCV’18 VGG16
√

85.3 67.9 75.6

MSR [53] IJCAI’19 Res50
√

78.3 85.0 81.5

PSENet [43] CVPR’19 Res50
√

79.7 84.8 82.2

CRAFT [1] CVPR’19 VGG16
√

81.1 86.0 83.5

LOMO [58] CVPR’19 Res50
√

69.6 89.2 78.4

SAE [38] CVPR’19 Res50
√

77.8 82.7 80.1

PAN [44] ICCV’19 Res18
√

81.2 86.4 83.7

SAST [42] MM’19 Res50
√

77.1 85.3 81.0

TextField [51] TIP’19 VGG16
√

79.8 83.0 81.4

DB [17] AAAI’20 Res50-DCN
√

80.2 86.9 83.4

DRRGN [59] CVPR’20 VGG16
√

83.0 85.9 84.5

CRNet [63] MM’20 Res50
√

80.9 87.0 83.8

H
y

b
ri

d

CSE [25] CVPR’19 Res34 × 76.0 81.1 78.4

ContourNet [48] CVPR’20 Res50 × 84.1 83.7 83.9

Mask-TTD [23] TIP’20 Res50 × 79.0 79.7 79.4

SD [49] ECCV’20 Res50
√

82.3 85.8 84.0

R
eg

re
ss

io
n

-b
as

ed

SLPR [64] ICPR’18 Res50 × 70.1 80.1 74.8

CTD-CLOC [24] PR’19 Res50 × 69.8 77.4 73.4

ATRR [45] CVPR’19 SE-VGG16 × 80.2 80.1 80.1

TextRay [39] MM’20 Res50 × 80.4 82.8 81.6

ICG [36] PR’19 VGG16
√

79.8 82.8 81.3

Our PCR — Res50 × 79.8 85.3 82.4

Our PCR — DLA34 × 81.1 87.1 84.0

Our PCR — DLA34
√

82.3 87.2 84.7

segments text regions using a progressive scale expansion,

our progressive contour regression mechanism has promot-

ed Recall of 2.6%, Precision of 2.4% and F-measure of

2.5%. Besides, our performance also increases by 12.7%

and 6.3% in Recall and F-measure, compared with LOMO

[58] that also localizes texts progressively. The qualitative

detection results are displayed in Fig. 4 (a).

Evaluation on Total-Text: As shown in Table 5, our

method is obviously superior to the regression-based meth-

ods, e.g., ATRR [45], Boundary [41], TextRay [39], and

Poly-FRCNN [2]. When comparing with Boundary [41]

that integrates the recognition branch to guid the detection

learning, our method still has an improvement of 3.3% in

Precision, without the labor of designing anchors. The ex-

perimental results also reveal that the performance of our

model outperforms the hybrid-based methods, e.g., FTSN

[5], Mask-TextSpotter-v2 [13], SPCNet [50], MS-CAFA

[4], Mask-TTD [23], etc. For example, our method signif-

icantly boosts the Recall of 6.6%, Precision of 6.7% and

F-measure of 6.7%, compared with the well-known model

Mask-TextSpotter-v2. The qualitative detection results of

our model can be seen in Fig. 4 (b).

Evaluation on ArT: As shown in Table 6, our model can

boost the F-measure from 66.2% to 73.1%, compared with

the recent contour point regression based method TextRay

[39]. After employing the external dataset to pretrain the

model, it brings a 7.8% improvement in F-measure. Fig. 4

(c) shows the qualitative detection results of our model.

Evaluation on TD500: As shown in Table 7, our method

can achieve the F-measure of 87.0%, outperforming al-
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Table 5: Comparisons with related works on Total-Text.

‘Ext’ means using the external dataset to pretrain the model.

† denotes the end-to-end scene text spotting.

Type method Venue Backbone Ext R (%) P (%) F (%)

S
eg

m
en

ta
ti

o
n

-b
as

ed

PAN [44] ICCV’19 Res18 × 79.4 88.0 83.5

TextSnake [27] ECCV’18 VGG16
√

74.5 82.7 78.4

LOMO [58] CVPR’19 Res50
√

75.7 88.6 81.6

PSENet [43] CVPR’19 Res50
√

78.0 84.0 80.9

CRAFT [1] CVPR’19 VGG16
√

79.9 87.6 83.6

MSR [53] IJCAI’19 Res50
√

74.8 83.8 79.0

PAN [44] ICCV’19 Res18
√

81.0 89.3 85.0

TextDragon [7]† ICCV’19 VGG16
√

75.7 85.6 80.3

SAST [42] MM’19 Res50
√

76.9 83.8 80.2

TextField [51] TIP’19 VGG16
√

79.9 81.2 80.6

DB [17] AAAI’20 Res50-DCN
√

82.5 87.1 84.7

CRNet [63] MM’20 Res50
√

82.5 85.8 84.1

H
y

b
ri

d

CSE [25] CVPR’19 Res34 × 79.1 81.4 80.2

Mask-TTD [23] TIP’20 Res50 × 74.5 79.1 76.7

FTSN [5] ICPR’18 Res101
√

78.0 84.7 81.3

Mask-TextSpotter [28] † ECCV’18 Res50
√

55.0 69.0 61.3

SPCNet [50] AAAI’19 Res50
√

82.8 83.0 82.9

Mask-TextSpotter-v2 [13] † TPAMI’19 Res50
√

75.4 81.8 78.5

MS-CAFA [4] TMM’20 Res50
√

78.6 84.6 81.5

R
eg

re
ss

io
n

-b
as

ed

ATRR [45] CVPR’19 SE-VGG16 × 76.2 80.9 78.5

CTC-CLOC [24] PR’19 Res50 × 71.0 74.0 73.0

TextRay [39] MM’20 Res50 × 77.9 83.5 80.6

ICG [36] PR’19 VGG16
√

80.9 82.1 81.5

Boundary [41]† AAAI’20 Res50
√

83.5 85.2 84.3

Poly-FRCNN [2] IJDAR’20 Inc-Res-v2
√

68.0 78.0 73.0

MS-CAFA [4] TMM’20 Res50
√

78.6 84.6 81.5

Our PCR — Res50 × 80.2 86.1 83.1

Our PCR — DLA34 × 81.5 86.4 83.9

Our PCR — DLA34
√

82.0 88.5 85.2

Table 6: Comparisons with related works on ArT.

Method Venue Ext R (%) P (%) F (%)

TextRay [44] MM’20
√

58.6 76.0 66.2

Ours (DLA-34) — × 65.0 83.6 73.1

Ours (DLA-34) —
√

66.1 84.0 74.0

l existing well-known ones. Especially compared with the

anchor-free pioneer work EAST [62] for detecting multi-

oriented scene texts, our method achieves the improvemen-

t of 16.1%, 3.5%, and 10.9% in Recall, Precision, and

F-measure, respectively. Besides, when comparing with the

naive corner-based method [29] that involves heuristic rules

to group the predicted corners, our model also promotes the

F-measure from 81.5% to 87.0%. Fig. 4 (d) shows some

multi-oriented scene text detection results.

5. Conclusion

In this paper, we present an end-to-end trainable contour-

based regression framework to detect arbitrary-shape texts

in the natural image. Our model first regresses the contour

of horizontal text proposals generated by an anchor-free net-

work to the corner points of oriented text proposals, and

then evolves the contour of oriented text proposals to the

contour of arbitrary-shape texts. In the progressive regres-

sion process, the contour information aggregation technique

is utilized to enrich the feature representation of contours

by considering the circular geometric topology and seman-

tic sink nodes of the text contour. Meanwhile, a reliable

contour localization mechanism is integrated to relieve the

false positives by the predicted contour confidence. The ef-

fectiveness and superiority of our model have been vali-

Table 7: Comparisons with related works on TD500.

Type method Venue Backbone Ext R (%) P (%) F (%)

S
eg

m
en

ta
ti

o
n

-b
as

ed

EAST [62] CVPR’17 PVANet × 67.4 87.3 76.1

PixelLink [6] AAAI’18 VGG16 × 73.2 83.0 77.8

Border [52] ECCV’18 DesNet121 × 77.4 83.0 80.1

TextSnake [27] ECCV’18 VGG16
√

73.9 83.2 78.3

MSR [53] IJCAI’19 Res50
√

76.7 87.4 81.7

CRAFT [1] CVPR’19 VGG16
√

78.2 88.2 82.9

SAE [38] CVPR’19 Res50
√

81.7 84.2 82.9

PAN [44] ICCV’19 Res18
√

83.8 84.4 84.1

TextField [51] TIP’19 VGG16
√

75.9 87.4 81.3

DB [17] AAAI’20 Res50-DCN
√

79.2 91.5 84.9

CRNet [63] MM’20 Res50
√

82.0 86.0 84.0

DRRGN [59] CVPR’20 VGG16
√

82.3 88.1 85.1

H
y

b
ri

d

DSRN [47] IJCAI’19 Res50 × 71.2 87.6 78.5

FTSN [5] ICPR’18 Res101
√

77.1 87.6 82.0

Corner [29] CVPR’18 VGG16
√

76.2 87.6 81.5

Mask-TextSpotter-v2 [13] † TPAMI’19 Res50
√

68.6 80.8 74.2

Mask-TextSpotter-v3 [14] † ECCV’20 Res50
√

77.5 90.7 83.5

R
eg

re
ss

io
n

-b
as

ed

RRPN [30] TMM’18 VGG16 × 69.0 82.0 75.0

ATRR [45] CVPR’19 SE-VGG16 × 82.1 85.2 83.6

SegLink [34] CVPR’17 VGG16
√

70.0 86.0 77.0

RRD [18] CVPR’18 VGG16
√

73.0 87.0 79.0

Our PCR — Res50 × 77.8 87.6 82.4

Our PCR — DLA34 × 79.2 90.0 84.3

Our PCR — DLA34
√

83.5 90.8 87.0

(a) CTW1500 (b) Total-Text

(c) ArT (d) TD500

Figure 4: Qualitative detection results of our proposed

method. Red denotes the detection result. Green means the

ground-truth. Note that we do not access the ground-truth

of ArT. More results are shown in supplementary materials.

dated on four public benchmarks including curved, wavy,

long, oriented and multilingual scene texts. In the future,

we would like to integrate a recognition network to develop

an end-to-end scene text spotting system.
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