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Figure 1: Our SPSG approach formulates the problem of generating a complete, colored 3D model from an incomplete scan

observation to be self-supervised, enabling training on incomplete real-world scan data. Our key idea is to leverage a 2D

view-guided synthesis for self-supervision, comparing rendered views of our predicted model to the original RGB-D frames

of the scan. Our 2D view-guided synthesis enables outperforming methods relying fully on 3D-based (self-)supervision.

Abstract

We present SPSG, a novel approach to generate high-

quality, colored 3D models of scenes from RGB-D scan

observations by learning to infer unobserved scene ge-

ometry and color in a self-supervised fashion. Our self-

supervised approach learns to jointly inpaint geometry and

color by correlating an incomplete RGB-D scan with a

more complete version of that scan. Notably, rather than

relying on 3D reconstruction losses to inform our 3D ge-

ometry and color reconstruction, we propose adversarial

and perceptual losses operating on 2D renderings in or-

der to achieve high-resolution, high-quality colored recon-

structions of scenes. This exploits the high-resolution, self-

consistent signal from individual raw RGB-D frames, in

contrast to fused 3D reconstructions of the frames which

exhibit inconsistencies from view-dependent effects, such as

color balancing or pose inconsistencies. Thus, by inform-

ing our 3D scene generation directly through 2D signal, we

produce high-quality colored reconstructions of 3D scenes,

outperforming state of the art on both synthetic and real

data.

1. Introduction

The wide availability of consumer range cameras has

propelled research in 3D reconstruction of real-world en-

vironments, with applications ranging from content cre-

ation to indoor robotic navigation and autonomous driving.

While state-of-the-art 3D reconstruction approaches have

now demonstrated robust camera tracking and large-scale

reconstruction [21, 15, 31, 6], occlusions and sensor lim-

itation lead these approaches to yield reconstructions that

are incomplete both in geometry and in color, making them

ill-suited for use in the aforementioned applications.

In recent years, geometric deep learning has made sig-

nificant progress in learning to reconstruct complete, high-

fidelity 3D models of shapes from RGB or RGB-D obser-

vations [19, 7, 25, 20, 23], leveraging synthetic 3D shape

data to provide supervision for the geometric completion

task. Recent work has also advanced generative 3D ap-

proaches towards operating on larger-scale scenes [28, 8, 5].

However, producing complete, colored 3D reconstructions

of real-world environments remains challenging – in partic-

ular, for real-world observations, we do not have complete

ground truth data available.

We introduce SPSG, a generative 3D approach to cre-
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ate high-quality 3D models of real-world scenes from par-

tial RGB-D scan observations in a self-supervised fashion.

Our self-supervised approach leverages incomplete RGB-

D scans as target by generating a more incomplete version

as input by removing frames. This allows correlation of

more-incomplete to less-incomplete scans while ignoring

unobserved regions. However, the target scan reconstruc-

tion from the given RGB-D scan suffers from inconsisten-

cies in camera alignments and view-dependent effects, re-

sulting in significant color artifacts. Moreover, the success

of adversarial approaches in 2D image generation [10, 16]

cannot be directly adopted when the target scan is incom-

plete, as this results in the ‘real’ examples for the discrim-

inator taking on incomplete characteristics. Our key ob-

servation is that while a 3D scan is incomplete, each indi-

vidual 2D frame is complete from its viewpoint. Thus, we

leverage the 2D signal provided by the raw RGB-D frames,

which provide high-resolution, self-consistent observations

as well as photo-realistic examples for adversarial and per-

ceptual losses in 2D.

Thus, our generative 3D model predicts a 3D scene

reconstruction represented as a truncated signed distance

function with per-voxel colors (TSDF), where we leverage

a differentiable renderer to compare the predicted geometry

and color to the original RGB-D frames. In addition, we

employ a 2D adversarial and 2D perceptual loss between

the rendering and the original input in order to achieve

sharp, high-quality, complete colored 3D reconstructions.

Our experiments show that our 2D-based self-supervised

approach towards inferring complete geometric and colored

3D reconstructions produces significantly improved perfor-

mance in comparison to state of state-of-the-art methods,

both quantitatively and qualitatively on both synthetic and

real data.

In summary, we present the following contributions:

• We introduce the first self-supervised approach to infer

a complete, colored reconstruction of 3D scenes from

RGB-D scan observations. This enables training solely

on incomplete real-world scan data, without requiring

domain adaptation from a synthetic regime.

• We present a view-based synthesis for differentiable

rendering of both TSDF geometry and color, and show

that this view-based synthesis outperforms supervision

relying on 3D reconstruction of the RGB-D scan data.

2. Related Work

RGB-D 3D Reconstruction 3D reconstruction of objects

and scenes using RGB-D data is a well explored field

[21, 15, 31, 6]. For a detailed overview of 3D recon-

struction methods, we refer to the state of the art report of

[36]. In addition, our work is related to surface texturing

techniques which optimize for texture in observed regions

[12, 13], as well as shading-based refinement approaches

which optimize for refined geometry/color in observed re-

gions [35, 18]. However, in contrast, our goal is to target in-

complete scans where color data is missing in the 3D scans.

Learned Single Object Reconstruction The reconstruc-

tion of single objects given RGB or RGB-D input is an ac-

tive field of research. Many works have explored a variety

of geometric shape representations, including occupancy

grids [32], volumetric truncated signed distance fields [7],

point clouds [34], and recently using deep networks to

model implicit surface representations [23, 20, 33].

While such methods have shown impressive geometric

reconstruction, generating colored objects has been far less

explored. Im2Avatar [29] predicts an occupancy grid to

represent the shape, followed by predicting a color vol-

ume. PIFu [26] proposes to estimate a pixel-aligned implicit

function representing both the shape and appearance of an

object, focusing on the reconstruction of humans. While

Texture Fields [22] does not reconstruct 3D geometry, this

approach predicts the color for a shape by estimating a func-

tion mapping a surface position to a color value. These

approaches make significant progress in estimating colored

reconstructions, but focus on the limited domain of objects,

which are both limited in volume and far more structured

than reconstruction of full scenes.

Learned Scene Completion While there is a large cor-

pus of work on single object reconstruction, there have

been fewer efforts focusing on reconstructing scenes. SS-

CNet [28] introduce a method to jointly predict the geomet-

ric occupancy and semantic segmentation of a scene from

an RGB-D image. ScanComplete [8] introduces an autore-

gressive approach to complete partial scans of large-scale

scenes. These approaches focus on geometric and semantic

predictions, relying on synthetic 3D data to provide com-

plete ground truth scenes for training, resulting in loss of

quality due to the synthetic-real domain gap when applied

to real-world scans. In contrast, SG-NN [5] proposes a

self-supervised approach for geometric completion of par-

tial scans, allowing training on real data. Our approach is

inspired by that of SG-NN; however, we find that their 3D

self-supervision formulation is insufficient for compelling

color generation, and instead propose to guide our self-

supervision through 2D renderings of our 3D predictions.

3. Method Overview

Our aim is to generate a complete 3D model, with respect

to both geometry and color, from an incomplete RGB-D

scan. We take as input a series of RGB-D frames and esti-

mated camera poses, fused into a truncated signed distance

field representation (TSDF) through volumetric fusion [4].
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The input TSDF is represented in a volumetric grid, with

each voxel storing both distance and color values. We then

learn to generate a TSDF representing the complete geom-

etry and color, from which we extract the final mesh using

Marching Cubes [17].

To effectively generate compelling color and geometry

for real scan data, we develop a self-supervised approach

to learn from incomplete target scans. From an incom-

plete target scan, we generate a more incomplete version

by removing a subset of its RGB-D frames, and learn the

generation process between the two levels of incomplete-

ness while ignoring the unobserved space in the target scan.

Notably, rather than relying on the incomplete target 3D

colored TSDF – which contains inconsistencies from view-

dependent effects, micro-misalignments in camera pose es-

timation, and is often lower resolution than that of the color

sensor (to account for the lower resolution and noise in the

depth capture) – we instead propose a 2D view-guided syn-

thesis, relying on losses formulated on 2D renderings of our

predicted TSDF. As each individual image is self-consistent

and high resolution, we mitigate such artifacts by leveraging

this image information to guide our predictions.

That is, we render our predicted TSDF to the views of

the original images, with which we can then compare our

rendered predictions and the original RGB-D frames. This

allows us to exploit the consistency of each individual frame

during training, as well as employ not only a reconstruction

loss for geometry and color, but also adversarial and per-

ceptual losses, where the ‘real’ target images are the raw

RGB-D frames. Each of these views is complete, high-

resolution, and photo-realistic, which provides guidance for

our approach to learn to generate complete, high-quality,

colored 3D models.

4. Self-supervised Photometric Generation

The key idea of our method for photometric scene gener-

ation from incomplete RGB-D scan observations is to for-

mulate a self-supervised approach based on 2D view-guided

synthesis, leveraging rendered views of our predicted 3D

model. Since training on real-world scan data is crucial for

realistic color generation, we need to be able to learn from

incomplete target scan data as complete ground truth is un-

available for real-world scans.

Thus, we learn a generative process from the correlation

of an incomplete target scan composed of RGB-D frames

{fk} with a more incomplete version of that scan con-

structed from a subset of the frames {fi} ⊂ {fk}. The in-

put scan Si during training is then created by volumetric fu-

sion of {fi} to a volumetric TSDF with per-voxel distances

and colors. This is inspired by the SG-NN approach [5];

however, crucially, rather than relying on the fused incom-

plete target TSDF, we formulate 2D-based rendering losses

to guide both geometry as well as color prediction. This

Figure 2: Differentiable rendering of our 3D predicted

TSDF geometry and color.

both avoids smaller-scale artifacts from inconsistencies in

camera pose estimation as well as view-dependent lighting

and color balancing, and importantly, allows formulation

of adversarial and perceptual losses with the raw RGB-D

frames, which are individually complete views in image

space. These losses are critical towards producing com-

pelling photometric scene generation results.

Additionally, our self-supervision exploits the different

patterns of incompleteness seen across a variety of target

scans, where each individual target scan remains incomplete

but learning across a diverse set of patterns enables generat-

ing output 3D models that have more complete, consistent

geometry and color than any single target scan seen during

training.

4.1. Differentiable Rendering

To formulate our 2D-based losses, we render our pre-

dicted TSDF Sp in a differentiable fashion, generating

color, depth, and world-space normal images, Cv , Dv , and

Nv , for a given view v. We then operate on Cv , Dv and Nv

to formulate our reconstruction, adversarial, and perceptual

losses.

Specifically, for Sp comprising per-voxel distances and

colors, and a camera view v with the intrinsics (focal length,

principal point), extrinsics (rotation, translation), and image

dimensions, we generate Cv , Dv , and Nv by raycasting, as

shown in Figure 2. For each pixel in the output image, we

construct a ray r from the view v and march along r through

Sp using trilinear interpolation to determine TSDF values.

To locate the surface at the zero-crossing of Sp, we look for

sign changes between current and previous TSDF values.

For efficient search, we first use a fixed increment to

search along the ray (half of the truncation value), and once

a zero-crossing has been detected, we use an iterative line

search to refine the estimate. The refined zero-crossing lo-

cation is then used to provide the depth, normal, and color

values for Dv , Nv , and Cv as distance from the camera,

negative gradient of the TSDF, and associated color value,

respectively.
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Our differentiable TSDF rendering is implemented in

CUDA as a PyTorch extension for efficient runtime, with

the backward pass similarly implemented through ray

marching, using atomic add operations to accumulate gradi-

ent information when multiple pixels correspond to a voxel.

4.2. 2D ViewGuided Synthesis / Rerendering loss

Our self-supervised approach is based on 2D losses op-

erating on the depth, normal, and color images Dv , Nv , and

Cv , which are rendered from the predicted TSDF Sp. This

enables comparison to the original RGB-D frame data Dt
v ,

N t
v (normals are computed in world space from the depth

images), and Ct
v , thus, avoiding explicit view inconsisten-

cies in the targets as well as providing complete target view

information. For the task of generating a complete photo-

metric reconstruction from an incomplete scan, we employ

a reconstruction loss to anchor geometry and color predic-

tions, as well as an adversarial and perceptual loss, to cap-

ture more realistic appearance in the final prediction.

Reconstruction Loss. We use an ℓ1 loss to guide depth

and color to the target depth and color:

LR
D =

1

N

∑

p

||Dv(p)−Dt
v(p)||1

LR
C =

1

3N

∑

p

||Cv(p)− Ct
v(p)||1.

Since the rendered Dv and Cv may not have valid values

for all pixels (where no surface geometry was seen), these

losses operate only on the valid pixels p, normalized by the

number of valid pixels N . The color loss operates on the

3 channels of the CIELAB color space, which we empiri-

cally found to provide better color performance than RGB

space. Note that these reconstruction losses as formulated

have a trivial solution where generating no surface geom-

etry in Sp provides no loss, so we employ an ℓ1 3D geo-

metric reconstruction loss LR
G on the predicted 3D TSDF

distances, weighted by a small value wg to discourage lack

of surface geometry prediction. For LR
G, we mask out any

voxels which were unobserved in the target scan. The final

reconstruction loss is then LR = wgL
R
G + LR

D + LR
C .

Adversarial Loss. To capture a more realistic photomet-

ric scene generation, we employ an adversarial loss on both

Nv and Cv . Note that since depth values can vary dramat-

ically for the same geometry from different views, we con-

sider the world-space normals Nv rather than Dv for the

adversarial loss. In particular, this helps avoid averaging

artifacts when only the reconstruction loss is used, which

helps markedly in addressing color imbalance in the train-

ing set (e.g., color dominated by walls/floors colors which

typically have little diversity). We use the conditional ad-

versarial loss:

LA =Ex,Nv,Cv
(logD(x, [Nv, Cv]))+

Ex,Nt

v
,Ct

v
(log(1−D(x, [N t

v, C
t
v]))

where [·, ·] denotes concatenation, and x is the condition,

with x = [N i
v, C

i
v] where N i

v, C
i
v are the rendered normal

and color images of the input scan Si from view v. Note

that although N t
v and Ct

v can be considered complete in the

image view, Nv and Cv may contain invalid pixels; for these

invalid pixels we copy the corresponding values from Dt
v

and Ct
v to avoid trivially recognizing real from synthesized

by number of invalid pixels.

Similar to Pix2Pix [14], we use a patch-based discrimi-

nator, on 94× 94 patches of 320× 256 images.

Perceptual Loss. We additionally employ a loss to pe-

nalize perceptual differences from the rendered color im-

ages of our predicted TSDF. We use a pretrained VGG net-

work [27], and use a content loss [9] where feature maps

from the eighth convolutional layer are compared with an

ℓ2 loss.

LP = ||VGG8(Cv)− VGG8(C
t
v)||2

4.3. Data Generation

To generate the input and target scans Si and St used dur-

ing training, we use a random subset of the target RGB-D

frames (in our experiments, 50% ) to construct Si. Both Si

and St are then constructed through volumetric fusion [4];

we use a voxel resolution of 2cm. In order to realize ef-

ficient training, we train on cropped chunks of the input-

target pairs of size 64 × 64 × 128 voxels. These chunks

are sampled uniformly, while discarding chunks with less

than 0.5% geometric occupancy. For each train chunk, we

associate up to five RGB-D frames based on their geomet-

ric overlap with the chunk, using frames with the most IoU

with the back-projected frame. These frames are used as

targets for the 2D losses on the rendered predictions.

4.4. Network Architecture

Our network, visualized in Figure 3, is designed to pro-

duce a 3D volumetric TSDF representation of a scene from

an input volumetric TSDF. We predict both geometry and

color in a fully-convolutional, end-to-end-trainable fashion.

We first predict geometry, followed by color, so that the

color predictions can be directly informed by the geomet-

ric structure. The geometry is predicted with an encoder-

decoder structure, then color using an encoder-decoder fol-

lowed by a series of convolutions which maintain spatial

resolution.
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Figure 3: Network architecture overview. Our approach is fully-convolutional, operating on an input TSDF volume and

predicting an output TSDF, from which we apply our 2D view-guided synthesis.

The encoder-decoder for geometry prediction spatially

subsamples to a factor 1/4 of the original resolution, and

outputs a feature map fg from which the final geometry

is predicted. The geometric predictions then inform the

color prediction, with fg input to the next encoder-decoder.

The color prediction is structured similarly to the geometry

encoder-decoder, with a series of additional convolutions

maintaining the spatial resolution. We found that avoiding

spatial subsampling before the color prediction helped to

avoid checkering artifacts in the predicted color outputs.

Our discriminator architecture is composed of a series

of 2D convolutions, each spatially subsampling its input by

a factor of 2. For a detailed architecture specification, we

refer to the appendix.

Training Details We train our approach on a single

NVIDIA GeForce RTX 2080. We weight the loss term LR
G

with wg = 0.1 and the adversarial loss for the generator

by 0.005; all other terms in the loss have a weight of 1.0.

We use the Adam optimizer with a learning rate of 0.0001
and batch size of 2, and train our model for ≈ 48 hours until

convergence. For efficient training, we train on 64×64×128
cropped chunks of scans; at test time, since our model is

fully-convolutional, we operate on entire incomplete scans

of varying sizes as input.

5. Results

To evaluate our SPSG approach, we consider the real-

world scans from the Matterport3D dataset [2], where no

complete ground truth is available for color and geome-

try, and additionally provide further analysis on synthetic

data from the chair class of ShapeNet [3], where complete

ground truth data is available. To enable quantitative evalu-

ation on Matterport3D scenes, we consider input scans gen-

erated with 50% of all available RGB-D frames for each

scene, and evaluate against the target scan composed of all

available RGB-D frames (ignoring unobserved space). For

ShapeNet, we consider single RGB-D frame input, and the

complete shape as the target.

Evaluation metrics To evaluate our color reconstruction

quality, we adopt several metrics to evaluate rendered views

of the predicted meshes in comparison to the original views

(as we do not have complete 3D color data available for

real-world scenarios). The structure similarity image met-

ric (SSIM) [1] is often used to measure more local charac-

teristics in comparing a synthesized image directly to the

target image, but can tend to favor averaging over sharp de-

tail. We also use a perceptual metric, Feature-ℓ1, following

the metric proposed in [22], which evaluates the ℓ1 distance

between the feature embeddings of the synthesized and tar-

get images under an InceptionV3 network [30]. Finally, we

consider the Fréchet Inception Distance (FID) [11], which

is commonly used to evaluate the quality of images syn-

thesized by 2D generative techniques, and captures a dis-

tance between the distributions of synthesized images and

real images.

To measure the geometric quality of our reconstructed

shapes and scenes, we use intersection-over-union (IoU)

Method SSIM (↑) Feature-ℓ1 (↓) FID (↓)

PIFu+ [26] 0.67 0.25 81.5

Texture Fields [22] (on Ours Geometry) 0.70 0.23 68.4

Ours 0.71 0.22 56.0

Table 1: Evaluation of colored reconstruction from incomplete scans of Matterport3D [2] scenes. We evaluate rendered views

of the outputs of all methods against the original color images.
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Method SSIM (↑) Feature-ℓ1 (↓) FID (↓)

Baseline-3D 0.694 0.236 80.51

Ours (ℓ1 only) 0.699 0.231 67.92

Ours (no adversarial) 0.695 0.229 62.15

Ours (no perceptual) 0.699 0.227 61.46

Ours 0.709 0.219 56.03

Table 2: Ablation study of our design choices on Matterport3D [2] scans.

Method SSIM (↑) Feature-ℓ1 (↓) FID (↓)

Im2Avatar [29] 0.85 0.25 59.7

PIFu+ [26] 0.86 0.24 70.3

Texture Fields [22] (on Ours Geometry) 0.93 0.20 30.3

Ours 0.93 0.19 29.0

Table 3: Evaluation of colored reconstruction from incomplete scans of ShapeNet [3] chairs.

and Chamfer distance. IoU is computed over the voxeliza-

tion of the output meshes of all approaches, with voxel size

of 2cm for Matterport3D data and 0.01 (relative to the unit

normalized space) for ShapeNet data. For Chamfer dis-

tance, we sample 30K points from the output meshes as well

as ground truth meshes, and compute the distance in metric

space for Matterport3D and normalized space for ShapeNet.

Note that for the case of real scans, we estimate unobserved

space in the target and ignore it for the geometric evalua-

tion; additionally, since the unobserved space is estimated,

we also evaluate recall as the amount of intersection of the

prediction with the target divided by the target.

For all comparisons to state-of-the-art approaches pre-

dicting both color and geometry, we provide as input the

incomplete TSDF and color, and if necessary, adapt the

method’s input (denoted by +). All other training schemes

for state-of-the-art comparisons follow that of the proposed

approach, trained on our generated data from Matterport3D

scenes and ShapeNet objects.

Self-supervised photometric scene generation. We

demonstrate our self-supervised approach to generate re-

constructions of scenes from incomplete scan data, us-

ing scan data from Matterport3D [2] with the offi-

cial train/test split (72/18 trainval/test scenes comprising

1788/394 rooms). Tables 1 and 4 show a comparison of

our approach to state-of-the-art methods for color and ge-

ometry reconstruction: PIFu [26], Texture Fields [22], and

SG-NN [5]. Here, our view-guided losses enable more ef-

fective generation that the 3D-only target supervision used

for PIFu, Texture Fields, and SG-NN, as it helps to miti-

gate learning from artifacts (e.g., small-scale camera mis-

alignment) embedded in the reconstructed 3D target. Note

that since Texture Fields predicts only color, we provide our

predicted geometry as input; for test scenes, since it is de-

signed for fixed volume sizes, we apply it in sliding window

fashion. We additionally show qualitative results in Fig-

ure 4, as well as qualitative geometric comparisons in the

supplemental. All methods were trained on the generated

input-target pairs of scans from Matterport3D with frames

removed from the target scan to create the corresponding

inputs, and the respective proposed loss functions used for

training.

For color reconstruction, PIFu [26] and Texture

Fields [22] capture the coarse structure of the scene col-

ors, but the complexity of local detail in the scenes is often

lost, while our 2D-guided losses incorporating perceptual

components enable capturing a more realistic color distri-

bution. For geometric reconstruction, our emphasis on 2D

guidance in contrast to the 3D guidance of PIFu [26], Occ-

Net [20], and SG-NN [5] mitigates learning from artifacts in

the fused 3D reconstruction of the scenes (e.g., from small

camera estimation errors), producing a more effective geo-

metric scene generation.

We additionally show that training only on synthetic data

is insufficient for color and geometry generation for real-

world scene data; as SG-NN [5] trained on the synthetic

scene dataset of [28] results in worse performance than

training on real-world Matterport3D data, due to the domain

gap between synthetic and real scenes.

What is the effect of the 2D view-guided synthesis? In

Table 2, we analyze the effects of our various 2D rendering

based losses, and show qualitative results in Figure 6. We

first replace our rendering-based losses with analogous 3D

losses, i.e., LR, LA, and LP use the 3D incomplete target

TSDF instead of 2D views (Baseline-3D). This approach

learns to reflect the inconsistencies present in the fused 3D

target scan (e.g., striping artifacts where one frame ends and

another begins), and moreover, suffers from the incomplete-

ness of the target scan data when used as ‘real’ examples for

the discriminator and the perceptual loss (causing black arti-
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Figure 4: Qualitative evaluation of colored reconstruction on Matterport3D [2] scans.

Figure 5: Colored reconstruction on ShapeNet [3] chairs,

in comparison with Im2Avatar [29], PIFu [26], and Texture

Fields [22] (run on geometry predicted by our method).

facts in some missing regions). Thus, our approach to lever-

age rendering-based losses with original RGB-D frames

produces more consistent, compelling reconstructions.

Additionally, we evaluate the effect of our adversarial

and perceptual losses on the output color quality, evaluating

our approach with the adversarial loss removed (Ours (no

adversarial)), perceptual loss removed (Ours (no percep-

tual)), and both adversarial and perceptual losses removed

(Ours (ℓ1 only)). Using only an ℓ1 loss results in blurry,

washed out colors. With the adversarial loss, the colors are

less washed out, and with the perceptual loss, colors be-

come sharper; using all losses combines these advantages

to achieve compelling scene generation.

Effect of varying levels of corruption. In Figure 7, we

show the effect of varying degrees of completeness of the

target data used during training on both color and geometry

reconstruction. We compare using all target data available

(denoted in blue) with 50% of the target frames (denoted

in green); our performance remains robust even under this

degradation.

Evaluation on synthetic 3D shapes. We additionally

evaluate our approach in comparison to state-of-the-art

methods on synthetic 3D data, using the chairs category of

ShapeNet (5563/619 trainval/test shapes). All methods are

provided a single RGB-D frame as input, and for training,

the complete shape as target. Tables 4 and 3 show quan-

titative evaluation for geometry and color predictions, re-

spectively. Our approach predicts more accurate geome-

try, and our adversarial and perceptual losses provide more

compelling color generation.

Limitations. Our approach shows promising results for

simultaneous color and geometry scene generation from

real-world observations; however, for a more realistic ap-

pearance model, incorporating estimation of lighting and

material properties beyond a diffuse assumption is required.

Additionally, our volumetric 3D approach can also be

limited in extending to very high resolutions (e.g., sub-

millimeter) for very fine-grained color modeling.
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Figure 6: Qualitative evaluation of our design choices on Matterport3D [2] scans.

Matterport3D

Method IoU (↑) Recall (↑) Chamfer Dist. (↓)

OccNet+ [20] 0.05 0.13 0.16

PIFu+ [26] 0.06 0.34 0.05

ConvOccNet [24] 0.24 0.48 0.03

SG-NN [5] (synth) 0.27 0.55 0.03

SG-NN [5] 0.28 0.57 0.02

Baseline-3D 0.33 0.58 0.04

Ours 0.39 0.64 0.01

ShapeNet

Method IoU (↑) Chamfer Dist. (↓)

Im2Avatar [29] 0.17 0.27

PIFu+ [26] 0.34 0.27

OccNet+ [20] 0.46 0.20

Ours 0.66 0.09

Table 4: Evaluation of geometric reconstruction from Matterport3D [2] scans (left) and ShapeNet [3] chairs (right).

Figure 7: Effect of varying incompleteness of target data

during training on geometry and color for Matterport3D [2].

6. Conclusion

We introduce SPSG, a self-supervised approach to gen-

erate complete, colored 3D models from incomplete RGB-

D scan data. Our 2D view-guided formulation enables self-

supervision as well as compelling color generation through

2D adversarial and perceptual losses. Thus we can train and

test on real-world scan data where complete ground truth is

unavailable, avoiding the large domain gap in using syn-

thetic color and geometry data. We believe this is an excit-

ing avenue for future research, and provides an interesting

alternative for synthetic data generation or domain transfer.
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