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Abstract

Object detection with transformers (DETR) reaches com-

petitive performance with Faster R-CNN via a transformer

encoder-decoder architecture. Inspired by the great success

of pre-training transformers in natural language process-

ing, we propose a pretext task named random query patch

detection to Unsupervisedly Pre-train DETR (UP-DETR)

for object detection. Specifically, we randomly crop patches

from the given image and then feed them as queries to the

decoder. The model is pre-trained to detect these query

patches from the original image. During the pre-training,

we address two critical issues: multi-task learning and

multi-query localization. (1) To trade off classification and

localization preferences in the pretext task, we freeze the

CNN backbone and propose a patch feature reconstruction

branch which is jointly optimized with patch detection.

(2) To perform multi-query localization, we introduce

UP-DETR from single-query patch and extend it to multi-

query patches with object query shuffle and attention mask.

In our experiments, UP-DETR significantly boosts the

performance of DETR with faster convergence and higher

average precision on object detection, one-shot detection

and panoptic segmentation. Code and pre-training models:

https://github.com/dddzg/up-detr.

1. Introduction

Object detection with transformers (DETR) [5] is a re-

cent framework that views object detection as a direct pre-

diction problem via a transformer encoder-decoder [39].

Without hand-designed sample selection [46] and non-

maximum suppression, DETR reaches a competitive per-

formance with Faster R-CNN [34]. However, DETR comes

*This work is done when Zhigang Dai was an intern at Tencent Wechat

AI.
†Corresponding author.
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Figure 1: The VOC learning curves (AP50) of DETR and

UP-DETR with ResNet-50 backbone. Here, they are trained

on trainval07+12 and evaluated on test2007. We

plot the short and long training schedules, and the learning

rate is reduced at 100 and 200 epochs, respectively.

with training and optimization challenges, which needs

large-scale training data and an extreme long training sched-

ule. As shown in Fig. 1 and Section 4.1, we find that DETR

performs poorly in PASCAL VOC [13], which has insuf-

ficient training data and fewer instances than COCO [28].

With well-designed pretext tasks, unsupervised pre-

training models achieve remarkable progress in both natu-

ral language processing (e.g. GPT [32, 33] and BERT [11])

and computer vision (e.g. MoCo [16, 9] and SwAV [7]). In

DETR, the CNN backbone (ResNet-50 [19] with ∼23.2M

parameters) has been pre-trained to extract a good visual

representation, but the transformer module with ∼18.0M

parameters has not been pre-trained. More importantly,
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although unsupervised visual representation learning (e.g.

contrastive learning) attracts much attention in recent stud-

ies [16, 8, 14, 4, 6, 1], existing pretext tasks can not di-

rectly apply to pre-train the transformers of DETR. The

main reason is that DETR mainly focuses on spatial local-

ization learning instead of image instance-based [16, 8, 14]

or cluster-based [4, 6, 1] contrastive learning.

Inspired by the great success of unsupervised pre-

training in natural language processing [11], we aim to un-

supervisedly pre-train the transformers of DETR on a large-

scale dataset (e.g. ImageNet), and treat object detection as

the downstream task. The motivation is intuitive, but ex-

isting pretext tasks seem to be impractical to pre-train the

transformers of DETR. To overcome this problem, we pro-

pose Unsupervised Pre-training DETR (UP-DETR) with

a novel unsupervised pretext task named random query

patch detection to pre-train the detector without any human

annotations — we randomly crop multiple query patches

from the given image, and pre-train the transformers for de-

tection to predict bounding boxes of these query patches in

the given image. During the pre-training procedure, we ad-

dress two critical issues as follows:

(1) Multi-task learning: Object detection is the coupling

of object classification and localization. To avoid

query patch detection destroying the classification fea-

tures, we introduce frozen pre-training backbone

and patch feature reconstruction to preserve the fea-

ture discrimination of transformers.

(2) Multi-query localization: Different object queries fo-

cus on different position areas and box sizes. To illus-

trate this property, we propose a simple single-query

pre-training and extend it to a multi-query version. For

multi-query patches, we design object query shuffle

and attention mask to solve the assignment problems

between query patches and object queries.

In our experiments, UP-DETR performs better than

DETR on PASCAL VOC [13] and COCO [28] object detec-

tion with faster convergence and better average precision.

Besides, UP-DETR also transfers well with state-of-the-art

performance on one-shot detection and panoptic segmen-

tation. In ablations, we find that freezing the pre-training

CNN backbone is the most important procedure to preserve

the feature discrimination during the pre-training.

2. Related Work

2.1. Object Detection

Most object detection methods mainly differ in posi-

tive and negative sample assignment. Two-stage detec-

tors [34, 3] and a part of one-stage detectors [27, 29] con-

struct positive and negative samples by hand-crafted multi-

scale anchors with the IoU threshold and model confidence.

Anchor-free one-stage detectors [38, 48, 22] assign positive

and negative samples to feature maps by a grid of object

centers. Zhang et al. [46] demonstrate that the performance

gap between them is due to the selection of positive and neg-

ative training samples. DETR [5] is a recent object detec-

tion framework that is conceptually simpler without hand-

crafted process by direct set prediction [37], which assigns

the positive and negative samples automatically.

Apart from the positive and negative sample selection

problem, the trade-off between classification and localiza-

tion is also intractable for object detection. Zhang et al. [45]

demonstrate that there is a domain misalignment between

classification and localization. Wu et al. [40] and Song et

al. [35] design two head structures for classification and lo-

calization. They point out that these two tasks may have op-

posite preferences. For our pre-training model, it maintains

shared feature for classification and localization. Therefore,

it is essential to take a well trade-off between these two

tasks.

2.2. Unsupervised Pre­training

Unsupervised pre-training models always follow two

steps: pre-training on a large-scale dataset with the pretext

task and fine-tuning the parameters on downstream tasks.

For unsupervised pre-training, the pretext task is always in-

vented, and we are interested in the learned intermediate

representation rather than the final performance of the pre-

text task.

To perform unsupervised pre-training, there are various

of well-designed pretext tasks. For natural language pro-

cessing, utilizing time sequence relationship between dis-

crete tokens, masked language model [11], permutation lan-

guage model [43] and auto regressive model [32, 33] are

proposed to pre-train transformers [39] for language repre-

sentation. For computer vision, unsupervised pre-training

models also achieve remarkable progress recently for vi-

sual representation learning, which outperform the super-

vised learning counterpart in downstream tasks. Instance-

based discrimination tasks [44, 41] and clustering-based

tasks [6] are two typical pretext tasks in recent studies.

Instance-based discrimination tasks vary mainly on main-

taining different sizes of negative samples [16, 8, 14] with

non-parametric contrastive learning [15]. Moreover, in-

stance discrimination can also be performed as parametric

instance classification [4]. Clustering-based tasks vary on

offline [6, 1] or online clustering procedures [7]. UP-DETR

is a novel pretext task, which aims to pre-train transformers

based on the DETR architecture for object detection.

3. UP-DETR

The proposed UP-DETR contains pre-training and fine-

tuning procedures: (a) the transformers are unsupervisedly

pre-trained on a large-scale dataset without any human an-
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Figure 2: The pre-training procedure of UP-DETR by random query patch detection. (a) There is only a single-query patch

which we add to all object queries. (b) For multi-query patches, we add each query patch to N/M object queries with object

query shuffle and attention mask. CNN is not drawn in the decoder of (b) for neatness.

notations; (b) the entire model is fine-tuned with labeled

data which is same as the original DETR [5] on the down-

stream tasks. In this section, we mainly describe how to

pre-train the transformer encoder and decoder with random

query patch detection.

As shown in Fig. 2, the main idea of random query patch

detection is simple but effective. Firstly, a frozen CNN

backbone is used to extract a visual representation with the

feature map f ∈ R
C×H×W of an input image, where C

is the channel dimension and H × W is the feature map

size. Then, the feature map is added with positional encod-

ings and passed to the multi-layer transformer encoder in

DETR. For the random cropped query patch, the CNN back-

bone with global average pooling (GAP) extracts the patch

feature p ∈ R
C , which is flatten and supplemented with

object queries q ∈ R
C before passing it into a transformer

decoder. Noting that the query patch refers to the cropped

patch from the original image but object query refers to po-

sition embeddings, which are fed to the decoder. The CNN

parameters are shared in the whole model.

During the pre-training procedure, the decoder predicts

the bounding boxes corresponding to the position of random

query patches in the input image. Assuming that there are

M query patches by random cropping, the model infers a

prediction fixed-set ŷ = {ŷi}Ni=1 corresponding to N object

queries (N > M ). For better understanding, we will de-

scribe the training details of single-query patch (M = 1) in

Section 3.1, and extend it to multi-query patches (M > 1)

with object query shuffle and attention mask in Section 3.2.

3.1. Single­Query Patch

DETR learns different spatial specialization for each ob-

ject query [5], which indicates that different object queries

focus on different position areas and box sizes. As we ran-

domly crop the patch from the image, there is no any priors

about the position areas and box sizes of the query patch.

To preserve the different spatial specialization, we explic-

itly specify single-query patch (M = 1) to all object queries

(N = 3) as shown in Fig. 2a.

During the pre-training procedure, the patch feature p
is added to each different object query q, and the decoder

generates N pairs of predictions ŷ = {ŷi}Ni=1 to detect the

bounding box of query patch in the input image. Following

DETR [5], we compute the same match cost between the

prediction ŷσ̂(i) and the ground-truth yi using Hungarian

algorithm [37], where σ̂(i) is the index of yi computed by

the optimal bipartite matching.

For the loss calculation, the predicted result ŷi = (ĉi ∈
R

2, b̂i ∈ R
4, p̂i ∈ R

C) consists of three elements: ĉi is the

binary classification of matching the query patch (ci = 1)

or not (ci = 0) for each object query; b̂i is the vector

that defines the box center coordinates, its width and height

{x, y, w, h}. They are re-scaled relative to the image size;

p̂i is the reconstructed feature with C = 2048 for the

ResNet-50 backbone typically. With the above definitions,

the Hungarian loss for all matched pairs is defined as:

L(y, ŷ) =
N
∑

i=1

[λ{ci}Lcls(ci, ĉσ̂(i)) + 1{ci=1}Lbox(bi, b̂σ̂(i))

+ 1{ci=1}Lrec(pi, p̂σ̂(i))]. (1)

Here, Lcls is the cross entropy loss over two classes (match

the query patch vs. not match), and the class balance weight

λ{ci=1} = 1 and λ{ci=0} = M/N . Lbox is a linear combi-

nation of ℓ1 loss and the generalized IoU loss with the same

weight hyper-parameters as DETR [5]. Lrec is the recon-

struction loss proposed in this paper to balance classifica-

tion and localization during the unsupervised pre-training,
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which will be discussed in detail below.

3.1.1 Patch Feature Reconstruction

Object detection is the coupling of object classification and

localization, where these two tasks always have different

feature preferences [45, 40, 35]. Different from DETR, we

propose a feature reconstruction term Lrec to preserve clas-

sification feature during localization pre-training. The mo-

tivation of this term is to preserve the feature discrimination

extract by CNN after passing feature to transformers. Lrec

is the mean squared error between the ℓ2-normalized patch

feature extracted by the CNN backbone, which is defined as

follows:

Lrec(pi, p̂σ̂(i)) =

∥

∥

∥

∥

∥

pi
‖pi‖2

− p̂σ̂(i)
∥

∥p̂σ̂(i)
∥

∥

2

∥

∥

∥

∥

∥

2

2

. (2)

3.1.2 Frozen Pre-training Backbone

With the patch feature reconstruction, the CNN backbone

parameters seriously affect the model training. Our moti-

vation is that the feature after transformer should have sim-

ilar discrimination as the feature after the CNN backbone.

Therefore, we freeze the pre-training backbone and recon-

struct the patch feature after the transformers by Lrec. Sta-

ble backbone parameters are beneficial to transformer pre-

training, and accelerate the feature reconstruction.

As described above, we propose and apply feature recon-

struction and frozen backbone to preserve feature discrim-

ination for classification. In Section 4.5.1, we will analyze

and verify the necessity of them with experiments.

3.2. Multi­Query Patches

For general object detection, there are multiple object

instances in each image (e.g. average 7.7 object instances

per image in the COCO dataset). Moreover, single-query

patch may result in the convergence difficulty when the

number of object queries N is large. Therefore, single-

query patch pre-training is inconsistent with multi-object

detection task, and is unreasonable for the typical object

query setting N = 100. However, extending a single-

query patch to multi-query patches is not straightforward,

because the assignment between M query patches and N
object queries is a specific negative sampling problem for

multi-query patches.

To solve this problem, we divide N object queries into

M groups, where each query patch is assigned to N/M
object queries. The query patches are assigned to the ob-

ject queries in order. For example, the first query patch

is assigned to the first N/M object queries, the second

query patch to the second N/M object queries, and so on.

Here, we hypothesize that it needs to satisfy two require-

ments during the pre-training: (1) Independence of query

patches. All the query patches are randomly cropped from

the image. Therefore, they are independent without any

relations. For example, the bounding box regression of

the first cropping is not concerned with the second crop-

ping. (2) Diversity of object queries. There is no explicit

group assignment between object queries for the down-

stream tasks. In other words, the query patch can be added

to arbitrary N/M object queries ideally.

3.2.1 Attention Mask

To satisfy the independence of query patches, we utilize an

attention mask matrix to control the interactions between

different object queries. The mask matrix X ∈ R
N×N is

added to the softmax layer of self-attention in the decoder

softmax
(

QK⊤/
√
dk +X

)

V. Similar to the token mask

in UniLM [12], the attention mask is defined as:

Xi,j =

{

0, i, j in the same group

−∞, otherwise
, (3)

where Xi,j determines whether the object query qi attends

to the interaction with the object query qj . For intuitive

understanding, the attention mask in Fig. 2b displays 1 and

0 corresponding to 0 and −∞ in (3), respectively.

3.2.2 Object Query Shuffle

Groups of object queries are assigned artificially. However,

during the downstream object detection tasks, there are no

explicit group assignment between object queries. There-

fore, To simulate implicit group assignment between object

queries, we randomly shuffle the permutation of all the ob-

ject query embeddings during pre-training 3.

Fig. 2b illustrates the pre-training of multi-query patches

with attention mask and object query shuffle. To improve

the generalization, we randomly mask 10% query patches

to zero during pre-training similarly to dropout [36]. In our

experiments, two typical values are set to N = 100 and

M = 10. Apart from such modifications, other training

settings are the same as those described in Section 3.1.

4. Experiments

We pre-train the UP-DETR using ImageNet [10] and

fine-tune the parameters on VOC [13] and COCO [28] for

object detection, one-shot detection and panoptic segmen-

tation. In all experiments, we adopt the UP-DETR model

(41.3M parameters) with ResNet-50 backbone, 6 trans-

former encoder, 6 decoder layers of width 256 with 8 at-

tention heads. Referring to the open source of DETR4, we

use the same hyper-parameters in the proposed UP-DETR

3In our further study, we find that the object query shuffle is not helpful.

More details are included in the supplementary material.
4https://github.com/facebookresearch/detr
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and our DETR re-implementation. We annotate R50 and

R101 short for ResNet-50 and ResNet-101.

Pre-training setup. UP-DETR is pre-trained on the Ima-

geNet training set without any labels. The CNN backbone

(ResNet-50) is pre-trained with SwAV [7]. As the input

image from ImageNet is relatively small, we resize it such

that the shortest side is within [320, 480] pixels while the

longest side is at most 600 pixels. Given the image, we

crop the query patches with random coordinate, height and

width, which are resized to 128 × 128 pixels and trans-

formed with the SimCLR-style [8] without horizontal flip-

ping. AdamW [30] is used to optimize the UP-DETR, with

the initial learning rate of 1× 10−4 and the weight decay

of 1× 10−4. We use a mini-batch size of 256 on 8 V100

GPUs for 60 epochs with the learning rate multiplied by 0.1

at 40 epochs.

Fine-tuning setup. The model is initialized with pre-

training UP-DETR parameters and fine-tuned for all the pa-

rameters (including CNN) on VOC and COCO. We fine-

tune the model with the initial learning rate 1× 10−4 for

transformers and 5× 10−5 for CNN backbone, and the

other settings are same as DETR [5] on 8 V100 GPUs. The

model is fine-tuned with short/long schedule for 150/300

epochs and the learning rate is multiplied by 0.1 at 100/200

epochs, respectively.

4.1. PASCAL VOC Object Detection

Setup. The model is fine-tuned on VOC

trainval07+12 (∼16.5k images) and evaluated on

test2007. We report COCO-style metrics: AP, AP50

(default VOC metric) and AP75. For a full comparison,

we report the result of Faster R-CNN with the R50-C4

backbone [7], which performs much better than R50 [25].

DETR with R50-C4 significantly increases the computa-

tional cost than R50, so we fine-tune UP-DETR with R50

backbone.

Model/Epoch AP AP50 AP75

Faster R-CNN 56.1 82.6 62.7

DETR/150 49.9 74.5 53.1

UP-DETR/150 56.1 (+6.2) 79.7 (+5.2) 60.6 (+7.5)

DETR/300 54.1 78.0 58.3

UP-DETR/300 57.2 (+3.1) 80.1 (+2.1) 62.0 (+3.7)

Table 1: Object detection results trained on PASCAL VOC

trainval07+12 and evaluated on test2007. DETR

and UP-DETR use R50 backbone and Faster R-CNN uses

R50-C4 backbone. The values in the brackets are the gaps

compared to DETR with the same training schedule.

Results. Table 1 shows the compared results of PASCAL

VOC. We find that the DETR performs poorly in PASCAL

VOC, which is much worse than Faster R-CNN by a large

gap in all metrics. UP-DETR significantly boosts the per-

formance of DETR for both short and long schedules: up to

+6.2 (+3.1) AP, +5.2 (+2.1) AP50 and +7.5 (+3.7) AP75 for

150 (300) epochs, respectively. Moreover, UP-DETR (R50)

achieves a comparable result to Faster R-CNN (R50-C4)

with better AP. We find that both UP-DETR and DETR per-

form a little worse than Faster R-CNN in AP50 and AP75.

It may come from different ratios of feature maps (C4 for

Faster R-CNN) and no NMS post-processing (NMS lowers

AP but slightly improves AP50).

Fig. 3a shows the AP (COCO style) learning curves on

VOC. UP-DETR significantly speeds up the model conver-

gence. After the learning rate reduced, UP-DETR signif-

icantly boosts the performance of DETR with a large AP

improvement. Noting that UP-DETR obtains 56.1 AP after

150 epochs, however, its counterpart DETR (scratch trans-

formers) only obtains 54.1 AP even after 300 epochs and

does not catch up even training longer. It suggests that pre-

training transformers is indispensable on insufficient train-

ing data (i.e. ∼ 16.5K images on VOC).

4.2. COCO Object Detection

Setup. The model is fine-tuned on COCO train2017

(∼118k images) and evaluated on val2017. There are

lots of small objects in COCO dataset, where DETR per-

forms poorly [5]. Therefore, we report AP, AP50, AP75,

APS , APM and APL for a comprehensive comparison.

Moreover, we also report the results of highly optimized

Faster R-CNN-FPN with short (3×) and long (9×) training

schedules, which are known to improve the performance re-

sults [17].

Results. Table 2 shows the results on COCO with other

methods. With 150 epoch schedule, UP-DETR outperforms

DETR by 0.8 AP and achieves a comparable performance

as compared with Faster R-CNN-FPN (3 × schedule). With

300 epoch schedule, UP-DETR obtains 42.8 AP on COCO,

which is 0.7 AP better than DETR (SwAV CNN) and 0.8

AP better than Faster R-CNN-FPN (9 × schedule). Over-

all, UP-DETR comprehensively outperforms DETR in de-

tection of small, medium and large objects with both short

and long training schedules. Regrettably, UP-DETR is still

slightly lagging behind Faster R-CNN in APS , because of

the lacking of FPN-like architecture [26] and the high-cost

attention operation.

Fig. 3b shows the AP learning curves on COCO. UP-

DETR outperforms DETR for both 150 and 300 epoch

schedules with faster convergence. The performance im-

provement is more noticeable before reducing the learning

rate. After reducing the learning rate, UP-DETR still holds

the lead of DETR by ∼ 0.7 AP improvement. It suggests

that pre-training transformers is still indispensable even on

sufficient training data (i.e. ∼ 118K images on COCO).
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Model Backbone Epochs AP AP50 AP75 APS APM APL

Faster R-CNN † [26] R101-FPN - 36.2 59.1 39.0 18.2 39.0 48.2

Mask R-CNN † [18] R101-FPN - 38.2 60.3 41.7 20.1 41.1 50.2

Grid R-CNN † [31] R101-FPN - 41.5 60.9 44.5 23.3 44.9 53.1

Double-head R-CNN [40] R101-FPN - 41.9 62.4 45.9 23.9 45.2 55.8

RetinaNet † [27] R101-FPN - 39.1 59.1 42.3 21.8 42.7 50.2

FCOS † [38] R101-FPN - 41.5 60.7 45.0 24.4 44.8 51.6

DETR [5] R50 500 42.0 62.4 44.2 20.5 45.8 61.1

Faster R-CNN R50-FPN 3× 40.2 61.0 43.8 24.2 43.5 52.0

DETR (Supervised CNN) R50 150 39.5 60.3 41.4 17.5 43.0 59.1

DETR (SwAV CNN) [7] R50 150 39.7 60.3 41.7 18.5 43.8 57.5

UP-DETR R50 150 40.5 (+0.8) 60.8 42.6 19.0 44.4 60.0

Faster R-CNN R50-FPN 9× 42.0 62.1 45.5 26.6 45.4 53.4

DETR (Supervised CNN) R50 300 40.8 61.2 42.9 20.1 44.5 60.3

DETR (SwAV CNN) [7] R50 300 42.1 63.1 44.5 19.7 46.3 60.9

UP-DETR R50 300 42.8 (+0.7) 63.0 45.3 20.8 47.1 61.7

Table 2: Object detection results trained on COCO train2017 and evaluated on val2017. Faster R-CNN, DETR and

UP-DETR are performed under comparable settings. † for values evaluated on COCO test-dev, which are always slightly

higher than val2017. The values in the brackets are the gaps compared to DETR.
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Figure 3: AP (COCO style) learning curves with DETR and UP-DETR on VOC and COCO. Models are trained with the

SwAV pre-training ResNet-50 for 150 and 300 epochs, and the learning rate is reduced at 100 and 200 epochs, respectively.

4.3. One­Shot Detection

Given a query image patch whose class label is not in-

cluded in the training data, one-shot detection aims to detect

all instances with the same class in a target image. One-shot

detection is a promising research direction that can detect

unseen instances. With feeding query patches to the de-

coder, UP-DETR is naturally compatible to one-shot detec-

tion task. Therefore, one-shot detection can also be treated

as a downstream fine-tuning task of UP-DETR.

Following the same one-shot detection setting as [20],

we crop the query image patch as the query patch to the

DETR decoder. we train DETR and UP-DETR on VOC

2007train val and 2012train val sets with 300

epochs then evaluate on VOC 2007test set. Table 3

shows the comparison to the state-of-the-art one-shot de-

tection methods. Compared with DETR, UP-DETR signifi-

cantly boosts the performance of DETR on both seen (+22.8

AP50 gain) and unseen (+15.8 AP50 gain) classes. More-

over, we show that UP-DETR outperforms all methods in

both seen (+7.9 AP50 gain) and unseen (+4.0 AP50 gain)
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Model
seen class unseen class

plant sofa tv car bottle boat chair person bus train horse bike dog bird mbike table AP50 cow sheep cat aero AP50

SiamFC [2] 3.2 22.8 5.0 16.7 0.5 8.1 1.2 4.2 22.2 22.6 35.4 14.2 25.8 11.7 19.7 27.8 15.1 6.8 2.28 31.6 12.4 13.3

SiamRPN [23] 1.9 15.7 4.5 12.8 1.0 1.1 6.1 8.7 7.9 6.9 17.4 17.8 20.5 7.2 18.5 5.1 9.6 15.9 15.7 21.7 3.5 14.2

CompNet [47] 28.4 41.5 65.0 66.4 37.1 49.8 16.2 31.7 69.7 73.1 75.6 71.6 61.4 52.3 63.4 39.8 52.7 75.3 60.0 47.9 25.3 52.1

CoAE [20] 30.0 54.9 64.1 66.7 40.1 54.1 14.7 60.9 77.5 78.3 77.9 73.2 80.5 70.8 72.4 46.2 60.1 83.9 67.1 75.6 46.2 68.2

Li et al. [24] 33.7 58.2 67.5 72.7 40.8 48.2 20.1 55.4 78.2 79.0 76.2 74.6 81.3 71.6 72.0 48.8 61.1 74.3 68.5 81.0 52.4 69.1

DETR 11.4 42.2 44.1 63.4 14.9 40.6 20.6 63.7 62.7 71.5 59.6 52.7 60.6 53.6 54.9 22.1 46.2 62.7 55.2 65.4 45.9 57.3

UP-DETR 46.7 61.2 75.7 81.5 54.8 57.0 44.5 80.7 74.5 86.8 79.1 80.3 80.6 72.0 70.9 57.8 69.0 80.9 71.0 80.4 59.9 73.1

Table 3: One-shot detection results on VOC 2007test set.

Model PQ SQ RQ PQth SQth RQth PQst SQst RQst APseg

PanopticFPN++ [21] 42.4 79.3 51.6 49.2 82.4 58.8 32.3 74.8 40.6 37.7

UPSNet [42] 42.5 78.0 52.5 48.6 79.4 59.6 33.4 75.9 41.7 34.3

UPSNet-M [42] 43.0 79.1 52.8 48.9 79.7 59.7 34.1 78.2 42.3 34.3

DETR [5] 44.3 80.0 54.5 49.2 80.6 60.3 37.0 79.1 45.9 32.9

UP-DETR 44.5 80.3 54.7 49.6 80.7 60.7 36.9 78.9 45.8 34.0

Table 4: Panoptic segmentation results on the COCO val dataset with the same ResNet-50 backbone. The PanopticFPN++,

UPSNet and DETR results are re-implemented by Carion et al. [5].

Case Frozen CNN Feature Reconstruction AP50

DETR scratch transformers 74.5

(a) 74.0

(b) X 78.7

(c) X 62.0

(d) X X 78.7

Table 5: Ablation study on frozen CNN and feature recon-

struction for pre-training models with AP50. The experi-

ments are fine-tuned on PASCAL VOC with 150 epochs.

classes of one-hot detection. It further verifies the effective-

ness of our pre-training pretext task.

4.4. Panoptic Segmentation

Panoptic segmentation [21] is a natural extension to

DETR by adding a mask head on the top of the decoder

outputs. Following the same panoptic segmentation train-

ing schema as DETR [5], we fine-tune UP-DETR for box

only annotations with 300 epochs. Then, we freeze all the

weights of DETR and train the mask head for 25 epochs.

Table 4 shows the comparison to state-of-the-art methods

on panoptic segmentation with the ResNet-50 backbone. As

seen, UP-DETR outperforms DETR5 with +0.2 PQ, +0.4

PQth and +1.1 APseg .

4.5. Ablations

For ablation experiments, we pre-train UP-DETR for 15

epochs with the learning rate multiplied by 0.1 at the 10-

th epoch on ImageNet. We fine-tune models on VOC ob-

5With a bug fixed in github.com/facebookresearch/detr/

issues/247, the DETR baseline is better than paper report.
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Figure 4: Learning curves of VOC (AP50) with four differ-

ent pre-training UP-DETR models and DETR. The models

trained with 150 epochs corresponds to the models in Ta-

ble 5 one-to-one.

ject detection following the setup in Section 4.1 with 150

epochs6.

4.5.1 Frozen CNN and Feature Reconstruction

To illustrate the importance of patch feature reconstruction

and frozen CNN backbone of UP-DETR, we pre-train four

different UP-DETR models with different combinations of

whether freezing CNN and whether adding feature recon-

struction.

6More ablations are included in the supplementary material.
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query

patches

Figure 5: The unsupervised localization of patch queries with UP-DETR. The first line is the original image with predicted

bounding boxes. The second line is query patches cropped from the original image with data augmentation. The value in the

upper left corner of the bounding box is the model confidence.

Table 5 shows AP and AP50 of four different pre-training

models and DETR on VOC with 150 epochs. As shown in

Table 5, not all pre-trained models are better than DETR,

and pre-training models (b) and (d) perform better than the

others. More importantly, without frozen CNN, pre-training

models (a) and (c) even perform worse than DETR. It con-

firms that freezing pre-trained CNN is essential to pre-train

transformers. In addition, it further confirms the pretext

(random query patch detection) may weaken the feature dis-

crimination without the freezing pre-training CNN weights.

Fig. 4 plots the AP50 learning curves of four different

pre-training models and DETR, where the models in Fig. 4

correspond to the models in Table 5 one-to-one. As shown

in Fig. 4, model (d) UP-DETR achieves faster convergence

at the early training stage with feature reconstruction. The

experiments suggest that random query patch detection is

complementary to the contrastive learning for a better vi-

sual representation. The former is designed for the spatial

localization with position embeddings, and the latter is de-

signed for instance or cluster classification.

It is worth noting that UP-DETR with frozen CNN and

feature reconstruction heavily relies on a pre-trained CNN

model, e.g. SwAV. Therefore, we believe that it is a promis-

ing direction for further investigating UP-DETR with ran-

dom query patch detection and contrastive learning together

to pre-train the whole DETR model from scratch.

4.6. Visualization

To further illustrate the ability of the pre-training model,

we visualize the unsupervised localization results of given

patch queries. Specifically, for the given image, we manu-

ally crop several object patches and apply the data augmen-

tation to them. Then, we feed these patches as queries to the

model. Finally, we visualize the model output with bound-

ing boxes, whose classification confidence is greater than

0.9. This procedure can be treated as unsupervised one-shot

detection or deep learning based template matching.

As shown in Fig. 5, pre-trained with random query

patch detection, UP-DETR successfully learns to locate the

bounding box of given query patches and suppress the du-

plicated bounding boxes 7. It suggests that UP-DETR with

random query patch detection is effective to learns the abil-

ity of object localization.

5. Conclusion

We present a novel pretext task called random query

patch detection to pre-train the transformers in DETR. With

unsupervised pre-training, UP-DETR significantly outper-

forms DETR on object detection, one-shot detection and

panoptic segmentation. We find that, even on the COCO

with sufficient training data, UP-DETR still performs better

than DETR.

From the perspective of unsupervised pre-training mod-

els, pre-training CNN backbone and pre-training transform-

ers are separated now. Recent studies of unsupervised pre-

training mainly focus on feature discrimination with con-

trastive learning instead of specialized modules for spatial

localization. However, for UP-DETR pre-training, the pre-

text task is mainly designed for patch localization by po-

sitional encodings and learn-able object queries. We hope

that an advanced method can integrate CNN and transform-

ers pre-training into a unified end-to-end framework and ap-

ply our pre-training tasks to more detection related frame-

works.

Acknowledgement

This work was supported by the Guangdong Natural Sci-

ence Foundation under Grant 2019A1515012152.

7Base picture credit: https://www.piqsels.com/en/public-domain-

photo-jrkkq, https://www.piqsels.com/en/public-domain-photo-smdfn.

1608



References

[1] YM Asano, C Rupprecht, and A Vedaldi. Self-labelling via

simultaneous clustering and representation learning. In In-

ternational Conference on Learning Representations, 2019.

2

[2] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In European conference on

computer vision, pages 850–865. Springer, 2016. 7

[3] Zhaowei Cai and Nuno Vasconcelos. Cascade R-CNN: Delv-

ing into high quality object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 6154–6162, 2018. 2

[4] Yue Cao, Zhenda Xie, Bin Liu, Yutong Lin, Zheng Zhang,

and Han Hu. Parametric instance classification for unsuper-

vised visual feature learning. Advances in Neural Informa-

tion Processing Systems, 33, 2020. 2

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-

to-end object detection with transformers. arXiv preprint

arXiv:2005.12872, 2020. 1, 2, 3, 5, 6, 7

[6] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 132–149, 2018. 2

[7] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-

otr Bojanowski, and Armand Joulin. Unsupervised learning

of visual features by contrasting cluster assignments. Ad-

vances in Neural Information Processing Systems, 33, 2020.

1, 2, 5, 6

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-

offrey Hinton. A simple framework for contrastive learning

of visual representations. arXiv preprint arXiv:2002.05709,

2020. 2, 5

[9] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.

Improved baselines with momentum contrastive learning.

arXiv preprint arXiv:2003.04297, 2020. 1

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 248–255. Ieee,

2009. 4

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018. 1, 2

[12] Li Dong, Nan Yang, Wenhui Wang, Furu Wei, Xiaodong Liu,

Yu Wang, Jianfeng Gao, Ming Zhou, and Hsiao-Wuen Hon.

Unified language model pre-training for natural language un-

derstanding and generation. In Advances in Neural Informa-

tion Processing Systems, pages 13063–13075, 2019. 4

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. International journal of computer

vision, 88(2):303–338, 2010. 1, 2, 4

[14] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
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