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Abstract

Analysis of human sketches in deep learning has ad-

vanced immensely through the use of waypoint-sequences

rather than raster-graphic representations. We further

aim to model sketches as a sequence of low-dimensional

parametric curves. To this end, we propose an inverse

graphics framework capable of approximating a raster or

waypoint based stroke encoded as a point-cloud with a

variable-degree Bézier curve. Building on this module,

we present Cloud2Curve, a generative model for scalable

high-resolution vector sketches that can be trained end-to-

end using point-cloud data alone. As a consequence, our

model is also capable of deterministic vectorization which

can map novel raster or waypoint based sketches to their

corresponding high-resolution scalable Bézier equivalent.

We evaluate the generation and vectorization capabilities

of our model on Quick, Draw! and K-MNIST datasets.

1. Introduction

The analysis of free-hand sketches using deep learning

[40] has flourished over the past few years, with sketches

now being well analysed from classification [43, 42] and

retrieval [27, 12, 4] perspectives. Sketches for digital anal-

ysis have always been acquired in two primary modalities

- raster (pixel grids) and vector (line segments). Raster

sketches have mostly been the modality of choice for sketch

recognition and retrieval [43, 27]. However, generative

sketch models began to advance rapidly [16] after focus-

ing on vector representations and generating sketches as

sequences [7, 37] of waypoints/line segments, similarly to

how humans sketch. As a happy byproduct, this paradigm

leads to clean and blur-free image generation as opposed

to direct raster-graphic generations [30]. Recent works

have studied creativity in sketch generation [16], learning to

sketch raster photo input images [36], learning efficient hu-
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Figure 1. Cloud2Curve capability teaser. Top: Our trained model

can vectorize a pen-on-paper sketch using scalable parametric

curves. Bottom: Cloud2Curve can be trained on raster datasets

such as KMNIST, where existing generative models cannot.

man sketching strategies [3], exploiting sketch generation

for photo representation learning [39], and the interaction

between sketch generation and language [18].

We present Cloud2Curve, a framework that advances the

generative sketch modeling paradigm on two major axes: (i)

by generating parametric sketches, i.e., a compositions of

its constituent strokes as scalable parametric curves; and (ii)

providing the ability to sample such sketches given point-

cloud data, which is trivial to obtain either from raster-

graphic or waypoint sequences. Altogether, our framework

uniquely provides the ability to generate or deterministi-

cally vectorize scalable parametric sketches based on point

clouds, as illustrated in Figure 1 and explained below.

First, we note that although existing frameworks like

SketchRNN [16] and derivatives generate vector sketches,

they do so via generation of a dense sequence of short

straight line segments. Consequently, (i) the output sketches

are not spatially scalable as required, e.g., for digital art ap-

plications, (ii) they struggle to generate long sketches due to

the use of recurrent generators [28], and (iii) the generative

process suffers from low interpretability compared to hu-

man sketching, where the human mental model relies more

on composing sketches with smooth strokes. While there
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have been some initial attempts at scalable vector sketch

generative models [10], they were limited by the need for a

two step training process, and to generate parametric Bézier

curves of a fixed complexity, which poorly represent the di-

verse kinds of strokes in human sketches. In contrast, we

introduce a machinery to dynamically determine the opti-

mal complexity of each generated curve by introducing a

continuous degree parameter; and our model can further be

trained end-to-end.

Second, existing generative sketch frameworks require

purely sequential data in order to train their sequence-to-

sequence encoder-decoder modules. This necessitates the

usage of specially collected sequential datasets like Quick,

Draw! and not general purpose raster sketch datasets. In

contrast, we introduce a framework that encodes point-

cloud training data and decodes a sequence of paramet-

ric curves. We achieve this through an inverse-graphics

[22, 33] approach of reconstructing training images/clouds

by rendering its constituent strokes individually through a

white-box Bézier decoder over several time-steps. To train

this framework we compare reconstructed curves with the

original segmented point cloud strokes with an Optimal

Transport (OT) based objective. We show that such objec-

tives, when coupled with appropriate regularizers, can lead

to controllable abstraction of sketches.

To summarize our contributions: 1) We introduce a novel

formulation of Bézier curves with a continuous degree pa-

rameter that is automatically inferred for each individual

stroke of a sketch. 2) We develop Cloud2Curve, a genera-

tive model capable of training and inference on point cloud

data to produce spatially scalable parametric sketches. (3)

We demonstrate scalable parametric curve generation from

point-clouds, using Quick, Draw! and a subset of K-MNIST

[9] datasets.

2. Related Works

Generative Models Generative models have been widely

studied in machine learning literature [5] as a way of cap-

turing complex data distributions. Probabilistic Graphical

Models [20] were hard to scale with variational methods

[6]. With the advent of deep learning, neural approaches

based on Variational Autoencoder (VAE) [19] and Genera-

tive Adversarial Networks (GAN) [14] were more scalable

and able to generate high-quality images. The general for-

mulation of VAE has been adapted to numerous problem

settings. [37] proposed the first model to encode sequential

video data to a smooth latent space. Later, [7] showed an ef-

fective way to train sequential VAEs for generating natural

language. SketchRNN [16] followed a sequence model very

similar to [15] and learned a smooth latent space for gener-

ating novel sketches. [13] proposed a generative agent that

learns to draw by exploring in the space of programs. Its

sample inefficiency was ameliorated by [44] through creat-

ing an environment model. More recently, the Transformer

[38] has been used to model sketches [32] due to the per-

mutation invariant nature of strokes.

Parametric representation Although used heavily in

computer graphics [34], parametric curves like Bézier, B-

Splines, Hermite Splines have not been used much in main-

stream Deep Learning. An early application of splines to

model handwritten digits [31] used a density model around

b-splines and learns the parameters from a point-cloud us-

ing log-likelihood. B-Splines have been used as stroke-

segments while representing handwritten characters with

probabilistic programs [23]. SPIRAL [13] is a genera-

tive agent that produces program primitives including cubic

Bézier curve. The font generation model in [25] and more

recently DeepSVG Icon generator [8] treats fonts/icons as

a sequence of SVG primitives. However, this requires the

ground-truth SVG primitives. In contrast, we take an in-

verse graphics approach that learns to render point-clouds

using parametric curves – without any parametric curve

ground-truth in the training pipeline. Stroke-wise embed-

dings are studied in [1], but this produces non-interpretable

representations of each stroke, and still requires sequence

data to train, unlike our inverse graphics approach. In sum-

mary, none of these methods can apply to raster data such

as K-MNIST which we demonstrate here.

Learning parametric curves The field of computer

graphics [34] has seen tremendous use of parametric curves

[11] in synthesizing graphics objects. However, parametric

curves are still not popular in mainstream deep learning due

to their usage of an extra latent parameter which is difficult

to incorporate into a standard optimization setting. The ma-

jority of algorithms for fitting Bézier [35, 26] or B-Splines

[24, 29, 45] are based on alternatively switching between

optimizing control points and latent t values which is com-

putationally expensive, requires careful initialization and

not suitable for pluging into larger computational graphs

trained by backpropagation. Recently, BézierEncoder [10]

was proposed as a fitting method for Bézier curves by means

of inference on any arbitrary deep recurrent model. We go

beyond this to also infer curve degree, and fundamentally

generalize it for training on point-cloud/raster data.

3. Methodology

The mainstream sketch representation popularized by

Quick, Draw!, encodes a sketch as an ordered list of L
waypoints [(xi,qi)]

L
i=1 where xi ∈ R

2 is the ith waypoint

and qi = (qstrokei , qsketchi ) is a tuple containing two binary

variables denoting stroke and sketch termination. State-of-

the-art sketch generation models such as SketchRNN [16]

directly use this data structure for modelling the probability

of a given sketch as the product of probabilities of individ-
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Figure 2. Overall diagram of the Cloud2Curve generative model.

ual waypoints given the previous waypoints

psketchrnn(·) =
L∏

i=1

p(xi,qi|x<i,q<i; θ) (1)

where the subscript < i denotes the set of all indices before

i. Our method treats sketches as a sequence of parametric

curves, so we re-organize the data structure in terms of its

strokes. We define a sketch S , [Sk]
K
k=1 as a sequence

of its K (may vary for each sketch) constituent strokes.

Some recent methods substitute the original Sk with sep-

arately learned non-interpretable transformer-based embed-

ding [1] or directly interpretable learned Bézier curves [10]

with fixed degree. However, our method stands out due

to the specific choice of variable degree Bézier curves as

stroke embedding which is end-to-end trainable along with

the generative model.

Furthermore, we simplify Sk by restructuring it into

(sk,vk) where sk denotes a position-independent stroke

and vk is its position relative to an arbitrary but fixed point.

This restructuring not only emphasizes the compositional

relationship [1] within the strokes but also helps the gener-

ative model learn position invariant parametric curves.

3.1. Generative Model

Before defining our new variable-degree parametric

stroke model in Section 3.2 and the training objective in

Section 3.3, we introduce the overall generative model.

Decoder/Generator Unlike SketchRNN [16], but simi-

lar to BézierSketch [10] and CoSE [1], we model a sketch

S autoregressively as a sequence of parametric strokes Pk,

p(S) =
K∏

k=1

p(Pk,vk,qk|P<k,v<k,q<k; θ) (2)

We use the binary random variable qk to denote end-of-

sketch as the usual way of terminating inference. Our model

differs primarily in the fact that we model the density of the

parametric stroke representation Pk at each step k. Since

we do not use any pre-learned embedding as supervisory

signal (unlike [10, 1]), we do not have ground-truth for Pk

and hence can not train it by directly maximizing the likeli-

hood in Eq. 2. We instead minimize an approximate version

of the negative log-likelihood:

L(S) ≈−
K∑

k=1

[
LB(P̂k, sk) + log p(vk|P̂<k,v<k)

+ log p(qk|P̂<k,v<k)
]
,

with P̂k ∼ p(Pk|P̂<k,v<k)

(3)

Instead of directly computing the log-likelihood of Pk,

we sample (re-parameterized) from the density and compute

a downstream loss function LB to act as a proxy. We de-

scribe the exact form of Pk and LB(·) in Sections 3.2 & 3.3.

Encoder We condition the generation with a global latent

vector [16]. This is produced by a VAE-style [19] latent dis-

tribution whose parameters are computed using an encoder

Eθ. A latent vector z is sampled as

z|S ∼ N (µ,Σ) with [µ,Σ] = Eθ(S) (4)

by means of the reparameterization trick [19]. z is then

used to generate the mean and co-variance parameters at

each step that define the distributions p(Pk|·), p(vk|·) and

p(qk|·) in Eq. 3. A high level diagram of the full architec-

ture is shown in Fig. 2.

Training Given our encoder and decoder, training is con-

ducted by optimising the following objective

∑

S∼D

L(S|z) + wKL ·KL [pθ(z|S)||N (0,Σ)] (5)

Depending on the nature of Eθ, we can have very dif-

ferent kind of generative models. One can use the usual

SketchRNN-style [16] encoder. But we use a Transformer

based set encoder Eθ(S) that can parse a given sketch as

a cloud of ink-points and produce a concise latent vec-

tor representation. In order to support learning paramet-

ric curve generation on point-cloud data, the remaining re-

quired components are a parametric curve model for P

(Section 3.2) and the loss LB(Pk, sk) describing how well

a parametric stroke Pk fits the relevant point subset sk, de-

scribed in Section 3.3

3.2. Representing variable degree Bézier curves

The decoder generates the parameters of a Bézier curve

representing a stroke at each step k. In this section we de-

scribe our new interpretable parametric curve representation

Pk. We formulate a flexible representation of Pk by defin-

ing it as a 2-tuple (Pk, rk) comprised of: 1. The parameters

of a Bézier curve Pk ∈ R
(N+1)×2 where N is the maximum

allowable degree, 2. A continuous variable rk ∈ [0, 1] that

will be used to determine the effective degree of the Bézier
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curve. We may drop the k subscript when denoting an arbi-

trary time-step.

Bézier curves [34] are smooth and finite parametric

curves used extensively in computer graphics. A degree n
Bézier curve is parameterized by n + 1 control points, and

is usually modelled parametrically via an interpolation pa-

rameter t ∈ [0, 1]. A Bézier curve with control points P can

be instantiated using a pre-specified set of G interpolation

points [ti]
G

i=1 as

CG×2 =




· · ·
1, ti, t

2
i , · · · , t

n
i

· · ·




︸ ︷︷ ︸
TG×(n+1)

·M(n+1)×(n+1) · P(n+1)×2

(6)

where G represents the granularity of rendering, which we

treat as a hyperparameter. T is the interpolation parameter

matrix and M is a matrix of Bernstein coefficients whose

size and elements are dependent (only) on the degree n. For

convenience, we will denote them as M (n). We next ad-

dress how to use a continuous variable to induce an effective

degree on P .

Soft Binning [41] has been introduced as a differentiable

way of binning a given real number into a predefined set

of buckets. A real number r needs to be tested against n
cut points in order to assign a one-hot (n + 1)-way cate-

gorical (or a continually relaxed) vector whose entries cor-

respond to each of n + 1 buckets/bins. Please refer to [41]

for the detailed formulation of Soft Binning. We interpret

each bucket as an effective degree of a Bézier curve with

its control points in P . For our problem, we fix the cut

points according to the maximum allowable degree N as

U =
[
i/N

]N
i=0

. This allows us to transform the contin-

uous variable r into a soft-categorical vector with N + 2
components. For practical benefit, we constraint the quan-

tity r to fall within the unit range of [0, 1] by parameter-

izing it with an unconstrained variable r′ ∈ [−∞,+∞]
as r = Sigmoid(r′). With this added constraint, r can

only fall into N buckets (avoiding the first and last open

buckets), each of which may denote a Bézier curve with

2, 3, · · · , N + 1 control points. Such design choice allows

us to avoid representing a Bézier curve with 1 control point

(which is invalid by definition) for any value of r′.
We define two quantities: 1) A degree selector R(r)

whose element Ri is 1 iff r falls into the bin designated

for degree i; 2) A control points selector R(r) defined as

the reversed cumulative summation of R(r). Please refer to

Fig. 3 for an illustration of a variable degree Bézier curve.

Variable degree We can now augment P with r to create

variable degree Bézier representation. We mask interpola-

tion parameters T and control points P using the control

Figure 3. Visualization of the variable degree Bézier curve param-

eterized by its continuous degree parameter r.

point selector as

T̂ (r) =




· · ·
1, ti, t

2
i , · · · , t

N
i

· · ·




︸ ︷︷ ︸
TG×(N+1)

⊙



R

T
(r)
:

R
T
(r)



G×(N+1)

P̂(r) = P ⊙
[
R(r),R(r)

]

For M , we need to select the correct one from the set

{M (n)}Nn=0 according to the value of r. We accomplish this

by first defining a 3D tensor M ∈ R
(N+1)×(N+1)×(N+1)

where

M[i, · · · ] =

[
M (i) 0

0 0

]

(N+1)×(N+1)

The 0s denote appropriately sized zero matrices used as

fillers. We can then compute M̂ using the degree selector

as

M̂(r) = RT (r) · M

With all three components augmented with masks, we

can write the variable degree version of Eq. 6 as a function

of the degree parameter r as

Ĉ(r)G×2 = T̂ (r) · M̂(r) · P̂(r) (7)

3.3. Learning and Inference

Given the generative model described in Section 3.1 and

our new curve representation in Section 3.2, we now de-

scribe how to train on point-cloud data, and how to use our

trained model to vectorize new point cloud inputs.

Bézier Loss: Cloud The final component required by

our generative model (Eq. 3) is a loss LB(P, s) to measure

the similarity between a point cloud based stroke s and the

curve P . We discard the sequential information in the set

Ĉ and can compute any Optimal Transport (OT) based loss

like EMD (Earth mover’s distance) or Wasserstein Distance
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[2]. The specific distance we used in our experiments is the

Sliced Wasserstein Distance (SWD) [21]:

LB(P, s) = SWD(P, s) (8)

Since OT-based losses are theoretically designed to mea-

sure the difference between two distributions, it is necessary

to ensure the cardinality of the sets (either P or s) are suf-

ficiently high. We use a large enough G for instantiating

the Bézier curve and also densely resample s to the same

granularity.

Bézier Loss: Sequence If optional sequence information

for s is available, we can compute a point-to-point MSE

loss:

LB(P, s) =

G∑

g=1

||Ĉg(r)− sg||2.

between each point sg on the curve and each interpolation

point Ĉg on the rendered curve P (Eq. 7).

Regularization The purpose of introducing a variable

degree Bézier curve formulation is to provide the model

with flexibility to encode strokes with perfect fit. To avoid

overfitting strokes by using a complex curve to fit a simple

stroke, the learning phase should be provided with incentive

to reduce the degree whenever possible. A simple regular-

izer on our degree variable r could achieve this:

L̂B(P, s) = LB(P, s) + λd · r (9)

Apart from this, we also added another regularizer to re-

duce the level of overfitting given a degree. Overfitting in

learning Bézier curve can occur when control points can

move anywhere during the optimization. Following [10],

we add another term to the loss function to penalize the con-

secutive control points moving away from each other

L̂B(P, s) = LB(P, s) + λd · r

+ λc ·

(
N∑

i=0

||Pi+1 − Pi||2

)
⊙R(r)

(10)

where we have masked out control points in P that are not

meaningful given the degree value r.

Implementation Details Our training objective (Eq 5)

encodes whole images but fits one parametric curve at a

time to the set of points corresponding to a stroke (Eq 10).

In principle all the strokes could be emitted by the gener-

ator, and then compute the loss between the full paramet-

ric sketch and the full point cloud. However for stability

of optimisation, and limiting the cost of OT computation

between curves and cloud, we proceed stroke-wise. To do

this for genuine raster data, we pre-process the input point-

cloud with 2D clustering to segment into strokes, and then

iterate over the strokes in random order to train the model.

Note that this priveleged information is only required dur-

ing training, after training we can vectorize an unsegmented

raster image into parametric curves, as shown in Figure 1.

Inference: Generation & Vectorization Given our

trained model, we can use it for conditional generation.

Given a sketch S as pointcloud, we simply sample a latent

vector ẑ ∼ N (Eθ∗(S)) following Eq. 4 and use it to con-

struct the parameters of the distributions p(Pk|·), p(vk|·)
and p(qk|·). We further sample

P̂k, v̂k, q̂k ∼ p(Pk|·) · p(vk|·) · p(qk|·)

iteratively at each time-step and stop only when q̂k is in

end-of-sequence state. To visualize, we simply render all

the (P̂k, v̂k) pair on a canvas.

We can vectorize a given sketch S deterministically by

following a similar procedure as generation but with dis-

carding the source of stochasticity while sampling. We can

simply assign all the co-variance parameters of p(Pk|·),
p(vk|·) and p(qk|·) to zero.

4. Experiments

Datasets Quick, Draw! [16] is the largest free-hand

sketch dataset available till date. Quick, Draw! is created by

collecting drawings from a fixed set of categories drawn un-

der a game played by millions all over the world. Although

Quick, Draw! is collected on a vast array of digital devices

like smartphone, tablets etc., the data acquisition technique

is kept uniform. The sketches are collected as a series of

2D waypoints along the trajectory of ink flow. To demon-

strate our model, we use Quick, Draw! but discard it’s way-

point sequence information, using the waypoints as point-

cloud data. We use Quick, Draw! stroke-level segmentation

(given by pen-up and pen-down indicators) as priveleged

information during training. To demonstrate our model’s

ability to train on pure raster data, for which neither point-

sequence nor stroke-sequence information is available, we

also validate our model on a few classes (0, 1, 8, 9) of K-

MNIST [9]. We extract a point-cloud representation from

K-MNIST by simple binarization and thinning. For train-

ing we segment into strokes by Spectral Clustering.

4.1. Variabledegree Bézier curve

We first validate the ability of our new curve representa-

tion to fit variable-degree Bézier curves to isolated strokes

represented as point clouds.

Setup We collected few strokes from the sketches of

Quick, Draw! [16] dataset. Since each stroke may have dif-

7092



Figure 4. Visualization of fitting a variable degree Bézier curve (red) to individual strokes represented as point-clouds (blue). (a & b) Two

examples with corresponding training loss components on the right. The training iteration increases from left to right. (c) Different choices

of loss (section 3.3). (d) Different choices of degree regularizer λd. (e) Different choices of control point regularizer λc.

ferent number of 2D waypoints, we densely resample them

uniformly with a fixed granularity of G0. Hence, given a

waypoint-based stroke s ∈ R
G0×2, we directly optimize

the Bézier curve parameters by means of Eq. 10

P∗, r′∗ = argmin
P,r′

L̂B(P, r, s), with

r = Sigmoid(r′), and (P, r) , P

(11)

The gradients of the loss w.r.t parameters, i.e.(
∂LB

∂P
,
∂LB

∂r′

)
are computed simply by backpropagation

and updated using any SGD-based algorithm.

Additionally, we experimented with point-to-point MSE

loss as described in Section 3.3 in cases where sequential

information is available. Usage of privileged information

helps learning the Bézier parameters quickly. However, the

usage of only MSE loss degrades the fitting quality. We no-

ticed that the dense uniform resampling of strokes s do not

have a proper point-to-point alignment with an instantiated

Bézier curve with uniform set of t-values of same granu-

larity G. An instantiated Bézier curve tends to have dense

distribution of points in places of bending and sparse oth-

erwise, while the point cloud data derived from a waypoint

sequence does not. Using the Sliced Wasserstein Distance

(SWD) [21] with MSE loss proved most effective with the

sequential information in the MSE loss helping speed of

convergence, and the SWD loss helping quality of fit.

Results We show qualitative results of learning variable

degree Bézier curves from point-cloud based strokes s. Fig-

ure 4(a, b) shows two examples of learning the Bézier con-

trol points P and degree parameter r′. To interpret the

learned value of r, we run binning on it using the pre-

defined cut-points U in Section 3.2 and retrieve the degree

n. In Fig. 4(a), we see the degree reduces from n = 5

to n = 4 and then n = 3, since the curve is simple. Simi-

larly, Fig. 4(b) shows an increase in degree due to the higher

complexity stroke. The last figure in each example shows

each loss component over iterations. We used λd = 10−3,

λc = 5 · 10−2, G0 = 128 and maximum degree N = 6 for

this experiment. Fig. 4(c) shows the qualitative difference

between learning with SWD, MSE alone and both com-

bined. We see that SWD tends to ignore small details but

preserves the overall structure. Fig. 4(d, e) also shows the

effect of both regularizer strengths (λc and λd). It is evident

from the figure that λd is responsible for pressuring the re-

duction of degree in fitting, whereas λc reduces overfitting

by keeping the control points close to each other.

4.2. Generation and & Vectorization Model

Setup We pre-process the sketches in Quick, Draw! and

K-MNIST into a sequence of position-independent strokes

and their starting points S =
[
(sk,vk)

]K
k=1

. To stabilize

the training dynamics, we also center the whole sketch and

scale it down numerically to fit inside a unit circle. As part

of data augmentation, we performed the following: (i) We

made sure the strokes do not have too sharp bends. We split

a stroke into multiple strokes from a point with high curva-

ture or when it is too long. Such transformation alleviates

the problem of learning overly smooth representations up

to a great extent. (ii) We added standard Gaussian noise to

each 2D point in the stroke.

Implementation Details Although our decoder model in

Eq. 2 is very generic, we chose to use a standard RNN. Al-

ternatives such as Transformer [32] could also be used.

The consequence of using position independent strokes

is that the predicted parametric curve must also be position

independent. A trick to guarantee that P0 = [0, 0]T is to
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Figure 5. Qualitative results for conditional generation on Quick,

Draw! and a limited subset of KMNIST. Three vector sketches are

generated by means of sampling from Cloud2Curve. For a quali-

tative comparison, we also provide one sample from BézierSketch

[10] for the same input sketch. Due to unavailability of purely se-

quential information, BézierSketch cannot be trained on KMNIST.

Figure 6. Deterministically vectorized sketches from the model

trained with λd = 10−3.

only predict N control points for i = 1 → N and explicitly

fix P0 := [0, 0]T .

We set the family of distributions p(Pk|·; θ) and p(vk|·)
at each time-step as isotropic Gaussian with their mean and

std vector predicted by our encoder E . The reason we chose

to not use GMM here is because of its difficulty to repa-

rameterize (as required in Eq. 3). However, the loss of ex-

pressiveness is compensated by increasing model capacity.

Initiation of inference requires a special input state. Since

(P, r,v) = (0, 0,0) is a semantically invalid state, it can be

used as a special token to kickstart the generation and also

use in teacher-forcing while training.

As mentioned earlier, we use a set transformer as the

encoder Eθ. Specifically, we use the strategy of [32] to

compute a compact latent distribution by simply applying a

learnable self-attention layer on the encoder features. Note

that, unlike the decoding side, we never use stroke level seg-

mentation for the encoder. Thus we can perform inference

without stroke-segmented sketches.

For the decoder, we used a 2-layer LSTM with hidden

vectors of size 1024D. We fixed the value of maximum al-

lowable degree to N = 9, therefore the Bézier curves can

have at max 10 control points which is more than enough

to represent fairly complex geometry. For computing the

Bézier loss LB , we used a granularity of G = 128. For the

transformer-based encoder model, we used a 512D trans-

former with 8 heads and 4 layers. For stable training, we

follow the usual KL annealing trick [7, 16] by varying wKL

from 0 to 1 over epochs.

Qualitative Results of Sketch Generation and Vector-

ization We trained one model for each class from both

Quick, Draw! and K-MNIST datasets. Since K-MNIST

dataset is fairly small, we do not train a model from

scratch. Instead, we finetune on a model pre-trained on

Quick, Draw!. Fig. 5 shows qualitative results in terms of

conditional generation from our generative sketch model.

We also show qualitative results for deterministic raster-to-

curve vectorizations in Fig. 6. Both results are computed

following the procedures described in 3.3. Trained with

two categories, the model can also interpolate between two

given sketches [16] by interpolating on the latent space (re-

fer to Fig. 7 for an example).

Cloud2Curve Generates Compact Sketches One im-

portant technical benefit of generating sketches using Bézier

curves is that the generated sketches are shorter in terms

of number of points to be stored. Moreover, short rep-

resentation of sketches lead to less complex downstream

models like classification and retrieval. The length his-

tograms both at stroke-level (points per stroke) and sketch-

Latent Space Interpolation

Figure 7. Interpolating between two sketches by walking on the

latent space as: z = zbutterfly · (1− t) + zmosquito · t
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Figure 8. Comparison between Cloud2Curve and other genera-

tive models in terms of (Top left, a) stroke-histogram, (Top right,

b) sketch-histogram, (Bottom left, c) Classification accuracy-vs-

length and (Bottom right, d) FID-vs-length for the generated sam-

ples. Cloud2Curve generates more compact sketches and scales

better to higher lengths in terms of FID and recognition accuracy.

Figure 9. Input sketches and conditionally generated samples from

a model trained with λd = 10−2.

level (points-per-sketch) of generated sketches are shown in

Figure. 8(a,b) demonstrate this point for Cloud2Curve vs

SketchRNN and BézierSketch. We notice that the number

of points per stroke is heavily concentrated around 5 (and

bounded by 2 → 10) for all our models but SketchRNN has

a much larger spread. As a direct consequence, the average

number of points in an entire sketch is also smaller (by a

margin of 20). We also show that increasing λd reduces

the lengths even further, thereby achieving more abstract

sketches (Refer to Fig. 9 for qualitative examples). Using

MSE loss has an effect of increasing the length because it

tries to fit the data more precisely considering small artifact.

Quantitative Analysis on Sketch Generation Quality

To confirm that our generative model samples are semanti-

cally plausible, we rendered them and classified them using

a CNN classifier [42] trained on real sketches from Quick,

Draw!. The results in Figure 8(c) show that our parametric

QuickDraw KMNIST

Classif.

acc.

Test

Loss

Classif.

acc.

Test

Loss

SWD, λd = 10−3 0.80 0.00123 0.82 8.4 · 10−3

SWD, λd = 10−2 0.69 0.02850 0.73 7.6 · 10−2

SWD + MSE 0.84 0.00034 0.85 2.1 · 10−4

BézierSketch (Seq.) [10] 0.86 0.00012 NA NA

BézierSketch (Cloud) [10] 0.41 0.2572 NA NA

Real data 0.92 NA 0.89 NA

Table 1. Quantitative validation of the vectorization model.

curve sketches are indeed accurately recognizable by state-

of-the-art image classifiers even when longer in length.

To further assess generation quality, the FID score [17]

is also computed. We compute a modified FID score us-

ing rasterized samples after projecting them down to the

activations of penultimate layer of a pre-trained Sketch-a-

Net [42] classifier. Figure. 8(d) shows that our model can

generate long sketches better than sequential models like

SketchRNN in terms of FID (lower is better).

Quantitative Analysis on Sketch Vectorization Quality

We finally validate our model as a raster-to-curve vectorizer.

We vectorize testing sketches and calculate the test loss be-

tween vectorized sketch and the available stroke-segmented

ground-truth to evaluate the quality of sketch curve fitting.

Furthermore, to evaluate the vectorization quality from a se-

mantic perspective, we calculate classification accuracy of

the generated vector sketches by first rasterizing and then

classifying them with a pre-trained Sketch-a-Net [42]. The

results are shown in Table 1. We notice that although the us-

age of sequential information (MSE loss) helps reducing the

SWD error a lot, the perceptual quality (classification score)

remains fairly similar. We also evaluated BézierSketch

[10] on Quick, Draw!, with and without using stroke se-

quence information, which correspond to an upper bound

and a baseline respectively to our contribution of cloud-

based sketch-rendering. The results show that Cloud2Curve

almost matches BézierSketch with full sequence supervi-

sion, and is significantly better than BézierSketch using raw

cloud data (and random sequence assignment).

5. Conclusion

In this paper, we introduced a model capable of gen-

erating scaleable vector-graphic sketches using parametric

curves – and crucially it is able to do so by training on point

cloud data, thus being widely applicable to general raster

image datasets such as K-MNIST. Our framework provides

accurate and flexible fitting due to the ability to chose curve

complexity independently for each stroke. Once trained,

our architecture can also be used to vectorize raster sketches

into flexible parametric curve representations. In future

work we will generalize our parametric stroke model from

overly smooth Bézier curves to more general parametric

curves such as B-splines or Hermite splines.
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