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Abstract

We propose a new formulation for the bundle adjustment

problem which relies on nullspace marginalization of land-

mark variables by QR decomposition. Our approach, which

we call square root bundle adjustment, is algebraically

equivalent to the commonly used Schur complement trick,

improves the numeric stability of computations, and allows

for solving large-scale bundle adjustment problems with

single-precision floating-point numbers. We show in real-

world experiments with the BAL datasets that even in single

precision the proposed solver achieves on average equally

accurate solutions compared to Schur complement solvers

using double precision. It runs significantly faster, but can

require larger amounts of memory on dense problems. The

proposed formulation relies on simple linear algebra op-

erations and opens the way for efficient implementations

of bundle adjustment on hardware platforms optimized for

single-precision linear algebra processing.

1. Introduction

Bundle adjustment (BA) is a core component of many

3D reconstruction algorithms and structure-from-motion

(SfM) pipelines. It is one of the classical computer vi-

sion problems and has been investigated by researchers for

more than six decades [7]. While different formulations ex-

ist, the underlying question is always the same: given a

set of approximate point (landmark) positions that are ob-

served from a number of cameras in different poses, what

are the actual landmark positions and camera poses? One

can already compute accurate 3D positions with only a few

images; however, with more available images we will get

a more complete reconstruction. With the emergence of

large-scale internet photo collections has come the need to

solve bundle adjustment on a large scale, i.e., for thousands

of images and hundreds of thousands of landmarks. This
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Figure 1: Optimized 3D reconstruction of the largest venice

BAL dataset with 1778 cameras, around one million land-

marks, and five million observations. For this problem, the

proposed square root bundle adjustment (
√
BA) solver is

42% faster than the best competing method at reaching a

cost tolerance of 1%.

requires scalable solutions that are still efficient for large

problems and do not run into memory or runtime issues.

Modern BA solvers usually rely on the Schur comple-

ment (SC) trick that computes the normal equations of the

original BA problem and then breaks them down into two

smaller subproblems, namely (1) the solution for camera

poses and (2) finding optimal landmark positions. This

results in the drastically smaller reduced camera system

(RCS), which is also better-conditioned [2] than the origi-

nal normal equations. The use of the Schur complement has

become the de facto standard for solving large-scale bundle

adjustment and is hardly ever questioned.

In this work, we challenge the widely accepted assump-
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tion of SC being the best choice for solving bundle adjust-

ment, and provide a detailed derivation and analysis of an

alternative problem reduction technique based on QR de-

composition. Inspired by similar approaches in the Kalman

filter literature [34], we factorize the landmark Jacobian

Jl such that we can project the original problem onto the

nullspace of Jl. Thus, we circumvent the computation

of the normal equations and their system matrix H , and

are able to directly compute a matrix square root of the

RCS while still solving an algebraically equivalent prob-

lem. This improves numerical stability of the reduction

step, which is of particular importance on hardware opti-

mized for single-precision floats. Following terminology

for nullspace marginalization on Kalman filters, we call our

method square root bundle adjustment, short
√
BA. In par-

ticular, our contributions are as follows:

• We propose nullspace marginalization as an alternative

to the traditional Schur complement trick and prove

that it is algebraically equivalent.

• We closely link the very general theory of nullspace

marginalization to an efficient implementation strategy

that maximally exploits the specific structure of bundle

adjustment problems.

• We show that the algorithm is well parallelizable and

that the favorable numerical properties admit compu-

tation in single precision, resulting in an additional

twofold speedup.

• We perform extensive evaluation of the proposed ap-

proach on the Bundle Adjustment in the Large (BAL)

datasets and compare to the state-of-the-art optimiza-

tion framework Ceres.

• We release our implementation and complete evalua-

tion pipeline as open source to make our experiments

reproducible and facilitate further research:

https://go.vision.in.tum.de/rootba.

2. Related work

We propose a way to solve large-scale bundle adjustment

using QR decomposition, so we review both works on bun-

dle adjustment (with a focus on large-scale problems) and

works that use QR decomposition for other tasks in com-

puter vision and robotics. For a general introduction to nu-

merical algorithms (including QR decomposition and itera-

tive methods for solving linear systems), we refer to [5, 15].

(Large-scale) bundle adjustment A detailed overview of

bundle adjustment in general can be found in [31], includ-

ing an explanation of the Schur complement (SC) reduction

technique [7] to marginalize landmark variables. Byröd and

Åström use the method of conjugate gradients (CG) on the

normal equations [17, 6] to minimize the linearized least

squares problem without the Schur complement [8]. They

also QR-decompose the Jacobian, but only for block pre-

conditioning without marginalizing landmarks. Agarwal

et al. have proposed preconditioned CG on the RCS after

SC to solve the large-scale case [2], and Wu et al. further ex-

tend these ideas to a formulation which avoids explicit com-

putation of the SC matrix [32]. A whole number of other

works have proposed ways to further improve efficiency,

accuracy and/or robustness of BA [13, 21, 20, 35, 27], all

of them using the Schur complement. More recently, in

Stochastic BA [36] the reduced system matrix is further de-

composed into subproblems to improve scalability. Sev-

eral open source BA implementations are available, e.g.,

the SBA package [24], the g2o framework [22], or Ceres

Solver [1], which has become a standard tool for solving

BA-like problems in both academia and industry.

Nullspace marginalization, square root filters, and QR

decomposition The concept of nullspace marginalization

has been used in contexts other than BA, e.g., for the multi-

state constraint Kalman filter [26] and earlier in [3]. [34]

proves the equivalence of nullspace marginalization and the

Schur complement in the specific case of robot SLAM.

Several works explicitly point out the advantage of ma-

trix square roots in state estimation [25, 4, 11, 33], but to

the best of our knowledge matrix square roots have not yet

been used for problem size reduction in BA. The QRkit [30]

emphasizes the benefits of QR decomposition for sparse

problems in general and also mentions BA as a possible

application, but the very specific structure of BA prob-

lems and the involved matrices is not addressed. The or-

thogonal projector used in the Variable Projection (VarPro)

method [28, 18] is related to the nullspace marginalization

in our approach. However, VarPro focuses on separable

non-linear least squares problems, which do not include

standard BA. While [18] mentions the use of QR decom-

position to improve numeric stability, we take it one step

further by more efficiently multiplying in-place with Q
⊤

2

rather than explicitly with I − Q1Q
⊤

1 (further discussed

in Section 4.3). This also enables our very efficient way

to compute landmark damping (not used in VarPro). Our

landmark blocks can be seen as a specific instance of Smart

Factors proposed in [10], where nullspace projection with

explicit SVD decomposition is considered. Instead of the

re-triangulation in [10], we suggest updating the landmarks

with back substitution. The factor grouping in [9] allows to

mix explicit and implicit SC. This idea is orthogonal to our

approach and could be considered in future work.

3. QR decomposition

We briefly introduce the QR decomposition, which can

be computed using Givens rotations (see appendix). For

further background, we refer the reader to textbooks on least

squares problems (e.g., [5]). Let A be an m × n matrix
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of full rank with m ≥ n, i.e., rank(A) = n. A can be

decomposed into an m × m orthogonal matrix Q and an

m × n upper triangular matrix R. As the bottom (m − n)

rows of R are zeros, we can partition R and Q:

A = QR = Q

(

R1

0

)

=
(

Q1 Q2

)

(

R1

0

)

= Q1R1 , (1)

where R1 is an n×n upper triangular matrix, Q1 is m×n,

and Q2 is m× (m−n). Note that this partitioning of Q di-

rectly implies that the columns of Q2 form the left nullspace

of A, i.e., Q
⊤

2 A = 0. Since Q is orthogonal, we have

Q
⊤
Q = Im = QQ

⊤
, (2)

where Im is the m×m identity matrix. From (2) we derive:

Q
⊤

1 Q1 = In , Q
⊤

2 Q2 = Im−n , Q
⊤

1 Q2 = 0 , (3)

Q1Q
⊤

1 = Im −Q2Q
⊤

2 . (4)

4. Square root bundle adjustment

We assume a very general form of bundle adjustment,

similar to [2]: let x be a state vector containing all the opti-

mization variables. We can subdivide x into a pose part xp

containing extrinsic and possibly intrinsic camera param-

eters for all np images (index i), and a landmark part xl

consisting of the 3D coordinates of all nl landmarks (index

j). The total bundle adjustment energy is a sum of squared

residuals

E(xp, xl) =
∑

i

∑

j∈O(i)

rij(xp, xl)
2 = ‖r(xp, xl)‖2 , (5)

where j ∈ O(i) means that landmark j is observed in frame

i and r(x) is the concatenation of all residuals rij into one

vector. We call the total number of residuals Nr. For a

pose dimensionality dp, the length of the total state vector

(xp, xl) is dpnp + 3nl =: Np + 3nl. Typically, dp = 6 if

only extrinsic camera parameters need to be estimated, and

dp = 9 if intrinsic calibration is also unknown.

4.1. Least squares problem

The energy in (5) is usually minimized by the

Levenberg-Marquardt algorithm, which is based on lin-

earizing r(x) around the current state estimate x
0 =

(x0
p, x

0
l ) and then solving a damped linearized problem

min
∆x

∥

∥

∥

∥

∥

∥





r

0
0



+





Jp Jl√
λDp 0

0
√
λDl





(

∆xp

∆xl

)

∥

∥

∥

∥

∥

∥

2

=

min
∆xp,∆xl

(

‖r +
(

Jp Jl
)

(

∆xp

∆xl

)

‖2

+ λ‖Dp∆xp‖2 + λ‖Dl∆xl‖2
)

,

(6)

with r = r(x0), Jp = ∂r
∂xp

∣

∣

∣

x
0
, Jl = ∂r

∂xl

∣

∣

∣

x
0
, and ∆x =

x−x
0
. Here, λ is a damping coefficient and Dp and Dl are

diagonal damping matrices for pose and landmark variables

(often D
2 = diag(J⊤

J)).
To simplify notation, in this section we consider the un-

damped problem (i.e., λ = 0) and discuss the efficient ap-

plication of damping in Section 5.3. The undamped prob-

lem in (6) can be solved by forming the corresponding nor-

mal equation
(

Hpp Hpl

Hlp Hll

)(

−∆xp

−∆xl

)

=

(

bp
bl

)

, (7)

where

Hpp = J
⊤

p Jp , Hll = J
⊤

l Jl , (8)

Hpl = J
⊤

p Jl = H
⊤

lp , (9)

bp = J
⊤

p r , bl = J
⊤

l r . (10)

The system matrix H of this problem is of size (Np+3nl)
2
,

which can become impractically large (millions of rows and

columns) for problems like those in [2] (see Figure 1 for an

example).

4.2. Schur complement (SC)

A very common way to solve (7) is by applying the Schur

complement trick (see e.g., [7, 2, 32]): we form the RCS

H̃pp(−∆xp) = b̃p , (11)

with

H̃pp = Hpp −HplH
−1
ll Hlp , (12)

b̃p = bp −HplH
−1
ll bl . (13)

The solution ∆x
∗

p of (11) is the same as the pose compo-

nent of the solution of (7), but now the system matrix has

a much more tractable size of N
2
p , which is usually in the

order of thousands × thousands. Note that as Hll is block-

diagonal with blocks of size 3 × 3, the multiplication with

H
−1
ll is cheap. Given an optimal pose update ∆x

∗

p, the op-

timal landmark update is found by back substitution

−∆x
∗

l = H
−1
ll (bl −Hlp(−∆x

∗

p)) . (14)

4.3. Nullspace marginalization (NM)

Using QR decomposition on Jl = QR, and the invari-

ance of the L2 norm under orthogonal transformations, we

can rewrite the term in (6):

‖r +
(

Jp Jl
)

(

∆xp

∆xl

)

‖2

= ‖Q⊤
r +

(

Q
⊤
Jp Q

⊤
Jl

)

(

∆xp

∆xl

)

‖2

= ‖Q⊤

1 r +Q
⊤

1 Jp∆xp +R1∆xl‖2

+ ‖Q⊤

2 r +Q
⊤

2 Jp∆xp‖2 .

(15)

11725



Jp Jl r
Q⊤

2
Jp

Q⊤

1
Jp

Q⊤

2
r

Q⊤

1
rR

Jp Jl r

0

(a) (b) (c)

Figure 2: Dense landmark blocks. (a) Sparsity structure of the pose Jacobian is fixed during the optimization. Non-zero

elements shown in blue, potentially non-zero elements after Givens QR shown in gray, and elements that will always stay

zero shown in white. (b) Dense storage for the outlined (red) landmark block that efficiently stores all Jacobians and residuals

for a single landmark. (c) Same landmark block after in-place marginalization. As Givens rotations operate on individual

rows, marginalization can be performed for each landmark block separately, possibly in parallel.

As R1 is invertible, for a given ∆x
∗

p, the first term can al-

ways be set to zero (and thus minimized) by choosing

∆x
∗

l = −R
−1
1 (Q⊤

1 r +Q
⊤

1 Jp∆x
∗

p) . (16)

So (6) reduces to minimizing the second term in (15):

min
∆xp

‖Q⊤

2 r +Q
⊤

2 Jp∆xp‖2 . (17)

Again, this problem is of significantly smaller size than the

original one. However, as opposed to the (explicit) Schur

complement trick, we do not explicitly have to form the

Hessian matrix.

4.4. Equivalence of SC and NM

With the QR decomposition Jl = Q1R1 used in the last

paragraphs, we get

Hpp = J
⊤

p Jp , (18)

Hpl = J
⊤

p Q1R1 , (19)

Hll = R
⊤

1 Q
⊤

1 Q1R1 = R
⊤

1 R1 , (20)

bp = J
⊤

p r , (21)

bl = R
⊤

1 Q
⊤

1 r . (22)

Using this, we can rewrite the Schur complement matrix

H̃pp and vector b̃p and simplify with (4):

H̃pp = Hpp − J
⊤

p Q1R1(R
⊤

1 R1)
−1

R
⊤

1 Q
⊤

1 Jp

= Hpp − J
⊤

p (INr
−Q2Q

⊤

2 )Jp

= J
⊤

p Q2Q
⊤

2 Jp ,

(23)

b̃p = bp − J
⊤

p Q1R1(R
⊤

1 R1)
−1

R
⊤

1 Q
⊤

1 r

= J
⊤

p Q2Q
⊤

2 r .
(24)

Thus, the SC-reduced equation is nothing but the normal

equation of problem (17), which proves the algebraic equiv-

alence of the two marginalization techniques. Additionally,

we can show that the equations for back substitution for

Schur complement (14) and nullspace marginalization (16)

are also algebraically equivalent:

∆x
∗

l = −H
−1
ll (bl +Hlp∆x

∗

p)

= −(R⊤

1 R1)
−1(R⊤

1 Q
⊤

1 r + (J⊤

p Q1R1)
⊤∆x

∗

p)

= −R
−1
1 (Q⊤

1 r +Q
⊤

1 Jp∆x
∗

p) .

(25)

Note that the above arguments also hold for the damped

problem (6), the difference being that the Hessian will have

an augmented diagonal and that the matrices in the QR de-

composition will have a larger size.

5. Implementation details

Bundle adjustment is a very structured problem, so we

can take advantage of the problem-specific matrix structures

to enable fast and memory-efficient computation.

5.1. Storage

We group the residuals by landmarks, such that Jl has

block-sparse structure, where each block is 2kj × 3 with kj
the number of observations for a particular landmark, see

Figure 2 (a). As each landmark is only observed by a subset

of cameras, the pose Jacobian Jp is also sparse.

We group the rows corresponding to each landmark and

store them in a separate dense memory block, which we

name a landmark block. We store only the blocks of the

pose Jacobian that correspond to the poses where the land-

mark was observed, because all other blocks will always be

zero. For convenience we also store the landmark’s Jaco-

bians and residuals in the same landmark block, as shown

in Figure 2 (b). This storage scheme can be applied both to

the undamped and the damped Jacobian (see Section 5.3 for

damping).
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Q⊤

2
Jp

Q⊤

1
Jp

Q⊤

2
r

Q⊤

1
rR

0

(c)

0 0

Q̂⊤

2
Jp

Q̂⊤

1
Jp

Q̂⊤

2
r

Q̂⊤

1
rR̂

0

(b)

Q⊤

2
Jp

Q⊤

1
Jp

Q⊤

2
r

Q⊤

1
rR

0

(a)

0 0

Q
λ Q⊤

λ

Figure 3: Illustration of the landmark damping in the Levenberg-Marquardt optimization. (a) We add three zero rows with

diagonal damping for landmarks to the marginalized landmark block. (b) With 6 Givens rotations we eliminate the values on

diagonal, which gives us a new landmark block with marginalized out landmark. (c) By applying the transposed rotations in

reverse order and zeroing out the diagonal we can bring the landmark block to the original state. Zero entries of the landmark

block are shown in white, parts that change are shown in green, and parts that stay unchanged are shown in blue.

5.2. QR decomposition

Applying a sequence of Givens rotations in-place trans-

forms the landmark block to the marginalized state shown

in Figure 2 (c). The bottom part corresponds to the reduced

camera system, and the top part can be used for back sub-

stitution. This transformation can be applied to each block

independently, possibly in parallel. We never have to ex-

plicitly store or compute the matrix Q; we simply apply the

sequence of Givens rotations to the landmark block one by

one, as they are computed. Note that alternatively we can

use three Householder reflections per landmark block, with

which we noticed a minor improvement in runtime.

5.3. Levenberg­Marquardt damping

The augmentation of the Jacobians by diagonal matrices

as used in (6) consists of two parts that we treat differently

to optimally exploit the nature of the BA problem in our

implementation.

Landmark damping We first look at damping the land-

mark variables: rather than actually attaching a large diag-

onal matrix
√
λDl to the full landmark Jacobian Jl, we can

again work on the landmark block from Figure 2 (b) and

only attach a 3×3 sub-block there, see Figure 3 (a) and (b).

To simplify the expressions in figures, we slightly abuse no-

tation when considering a single landmark and denote the

corresponding parts of Jp, Jl and r in the landmark block

by the same symbols. The matrices involved in the QR de-

composition of the undamped system are Q1, Q2, R1 and

those for the damped system are marked with a hat. Note

that Q and Q̂ are closely related; the additional three diag-

onal entries in the damped formulation can be zeroed using

only six Givens rotations, such that

Q̂ =
(

Q̂1 Q̂2

)

=

(

Q1 Q2 0
0 0 I3

)

Qλ , (26)

where Qλ is a product of six Givens rotations. Thus, ap-

plying and removing landmark damping is computationally

cheap: we apply the Givens rotations one by one and store

them individually (rather than their product Qλ) to undo the

damping later. Figure 3 illustrates how this can be done in-

place on the already marginalized landmark block. This can

speed up LM’s backtracking, where a rejected increment is

recomputed with the same linearization, but with increased

damping. By contrast, for an explicit SC solver, changing

the damping would mean recomputing the Schur comple-

ment from scratch.

Pose damping Marginalizing landmarks using Givens ro-

tations in the damped formulation of (6) does not affect the

rows containing pose damping. Thus, it is still the origi-

nal diagonal matrix
√
λDp that we append to the bottom of

Q̂
⊤
Jp:

Ĵp =





Q̂
⊤

1 Jp
Q̂

⊤

2 Jp√
λDp



 . (27)

In practice, we do not even have to append the block, but

can simply add the corresponding summand when evaluat-

ing matrix-vector multiplication for the CG iteration (28).

5.4. Conjugate gradient on normal equations

To solve for the optimal ∆x
∗

p in small and medium sys-

tems, we could use dense or sparse QR decomposition of

the stacked Q
⊤

2 Jp from landmark blocks to minimize the

linear least squares objective ‖Q⊤

2 Jp∆xp + Q
⊤

2 r‖2. How-

ever, for large systems this approach is not feasible due to

the high computational cost. Instead, we use CG on the nor-

mal equations as proposed in [2]. Other iterative solvers like

LSQR [29] or LSMR [14] that can be more numerically sta-

ble than CG turned out to not improve stability for the case

of bundle adjustment [8].

CG accesses the normal equation matrix H̃pp only by

multiplication with a vector v, which we can write as

H̃pp v = (Q̂⊤

2 Jp)
⊤(Q̂⊤

2 Jp v) + λD
2
p v . (28)
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This multiplication can be efficiently implemented and well

parallelized using our array of landmark blocks. Thus, we

do not need to explicitly form the normal equations for the

reduced least squares problem.

Still, the CG part of our solver has the numerical prop-

erties of the normal equations (squared condition num-

ber compared to the marginal Jacobian Q̂
⊤

2 Jp). To avoid

numeric issues when using single-precision floating-point

numbers, we scale the columns of the full Jacobian to have

unit norm and use a block-Jacobi preconditioner, both stan-

dard procedures when solving BA problems and both also

used in the other evaluated solvers. We also note that with

the Levenberg-Marquardt algorithm, we solve a strictly pos-

itive definite damped system, which additionally improves

the numeric stability of the optimization.

Storing the information used in CG in square root form

allows us to make sure that H̃pp is always strictly positive

definite. As we show with our experiments (see Section

6.4), for many sequences small round-off errors during SC

(explicit or implicit) render H̃pp to be numerically indefinite

with single-precision floating-point computations.

With the computed ∆x
∗

p we can do back substitution for

each individual landmark block independently and in paral-

lel. We already have all the necessary information (Q̂
⊤

1 Jp,

R̂, Q̂
⊤

1 r) stored in the landmark blocks after marginaliza-

tion.

5.5. Parallel implementation

As pointed out above, the linearization, marginalization,

and back substitution can be computed independently for

each landmark block. There is no information shared be-

tween landmark blocks, so we can use a simple parallel for

loop to evenly distribute the workload between all available

CPU cores. The matrix-vector multiplications that consti-

tute the most computationally expensive part of CG can also

be efficiently parallelized. In this case, multiplication re-

sults of individual landmark blocks have to be summed, so

we employ the common parallel reduce pattern. How effec-

tive these simple parallelization schemes are is underlined

by our evaluation, which shows excellent runtime perfor-

mance of the square root bundle adjustment implementa-

tion, compared to both our custom and Ceres’ SC solvers.

6. Experimental evaluation

6.1. Algorithms and setup

We implement our
√
BA solver in C++ in single (

√
BA-

32) and double (
√
BA-64) floating-point precision and

compare it to the methods proposed in [2] as implemented

in Ceres Solver [1]. This solver library is popular in the

computer vision and robotics community, since it is ma-

ture, performance-tuned, and offers many linear solver vari-

ations. That makes it a relevant and challenging baseline

√
B
A

-3
2

(o
u

rs
)

√
B
A

-6
4

(o
u

rs
)

ex
p

li
ci

t-
3

2

ex
p

li
ci

t-
6

4

ce
re

s-
im

p
li

ci
t

ce
re

s-
ex

p
li

ci
t

solver implementation custom Ceres

float precision s d s d d

landmark marginalization NM SC SC

RCS storage LMB H – H

Table 1: The evaluated solvers—proposed and baseline—

are implemented either completely in our custom code

base, or using Ceres, with single (s) or double (d) floating-

point precision, using Nullspace (NM) or Schur comple-

ment (SC)-based marginalization of landmarks, and stor-

ing the reduced camera system sparsely in landmark blocks

(LMB), sparsely as a reduced Hessian (H), or not at all (–).

to benchmark our implementation against. While Ceres is

a general-purpose solver, it is very good at exploiting the

specific problem structure as it was built with BAL prob-

lems in mind. Our main competing algorithms are Ceres’

sparse Schur complement solvers, which solve the RCS it-

eratively by either explicitly saving H̃pp in memory as a

block-sparse matrix (ceres-explicit), or otherwise comput-

ing it on the fly during the iterations (ceres-implicit). In

both cases, the same block-diagonal of H̃pp that we use in√
BA is used as preconditioner. As the bottleneck is not

computing Jacobians, but marginalizing points and the CG

iterations, we use analytic Jacobians for our custom solvers

and Ceres’ exact and efficient autodiff with dual numbers.

For an even more direct comparison, we additionally imple-

ment the sparse iterative explicit Schur complement solver

without Ceres, sharing much of the code with our
√
BA

implementation. While Ceres always uses double preci-

sion, we use our custom implementation to evaluate numer-

ical stability by considering single (explicit-32) and double

(explicit-64) precision. Table 1 summarizes the evaluated

configurations.

For Ceres we use default options, unless otherwise speci-

fied. This includes the scaling of Jacobian columns to avoid

numerical issues [2]. Just like in our custom implementa-

tion, we configure the number of threads to be equal to the

number of (virtual) CPU cores. Our Levenberg-Marquardt

loop is in line with Ceres: starting with initial value 10−4
,

we update the damping factor λ according to the ratio of

actual and expected cost reduction, and run it for at most 50

iterations, terminating early if a relative function tolerance

of 10−6
is reached. In the inner CG loop we use the same

forcing sequence as Ceres, with a maximum of 500 itera-

tions and no minimum. We run experiments on an Ubuntu
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Figure 4: Performance profiles for all BAL datasets show percentage of problems solved to a given accuracy tolerance τ

with increasing relative runtime α. Our proposed
√
BA solver outperforms other methods across all accuracy tolerances. In

single precision, the solver is about twice as fast as with double, but does not lose in accuracy, underpinning the favorable

numerical properties of the square root formulation. In contrast, while the SC solver in double precision is equally accurate,

this is not the case for the single-precision variant. Keep in mind that Ceres is not as tailored to the exact problem setup as

our custom implementation, possibly explaining its slower performance. Note that the performance profiles are cut off at the

right side of the plots to show only the most relevant parts.

18.04 desktop with 64GB RAM and an Intel Xeon W-2133

with 12 virtual cores at 3.60GHz. In our own solver imple-

mentation we rely on Eigen [16] for dense linear algebra

and TBB[19] for simple parallel for and parallel reduce

constructs.

6.2. Datasets

For our extensive evaluation we use all 97 bundle adjust-

ment problems from the BAL [2] project page. These con-

stitute initialized bundle adjustment problems and come in

different groups: the trafalgar, dubrovnik, and venice prob-

lems originate from successive iterations in a skeletal SfM

reconstruction of internet image collections [30]. They are

combined with additional leaf images, which results in the

thus denser final problems. The ladybug sequences are re-

constructions from a moving camera, but despite this we al-

ways model all camera intrinsics as independent, using the

suggested Snavely projection model with one focal length

and two distortion parameters. Figure 5 visualizes some ex-

emplar problems after they have been optimized.

As is common, we apply simple gauge normalization as

preprocessing: we center the point cloud of landmarks at

the coordinate system origin and rescale to median absolute

deviation of 100. Initial landmark and camera positions are

then perturbed with small Gaussian noise. To avoid close-

to-invalid state, we remove all observations with a small or

negative z value in the camera frame, completely removing

landmarks with less than two remaining observations. We

additionally employ the Huber norm with a parameter of

1 pixel for residuals (implemented with IRLS as in Ceres).

This preprocessing essentially follows Ceres’ BAL exam-

ples. It is deterministic and identical for all solvers by using

a fixed random seed and being computed on state in double

precision, regardless of solver configuration.

6.3. Performance profiles

When evaluating a solver, we are primarily interested in

accurate optimization results. Since we do not have inde-

pendent ground truth of correct camera positions, intrinsics,

and landmark locations, we use the bundle adjustment cost

as a proxy for accuracy. Lower cost in general corresponds

to better solutions. But depending on the application, we

may desire in particular low runtime, which can be a trade-

off with accuracy. The difficulty lies in judging the perfor-

mance across several orders of magnitudes in problem sizes,

cost values, and runtimes (for the BAL datasets the number

of cameras np ranges from 16 to 13682). As proposed in

prior work [23, 12], we therefore use performance profiles

to evaluate both accuracy and runtime jointly. The perfor-

mance profile of a given solver maps the relative runtime α

(relative to the fastest solver for each problem and accu-

racy) to the percentage of problems solved to accuracy τ .

The curve is monotonically increasing, starting on the left

with the percentage of problems for which the solver is the

fastest, and ending on the right with the percentage of prob-

lems on which it achieves the accuracy τ at all. The curve

that is more to the left indicates better runtime and the curve

that is more to the top indicates higher accuracy. A precise

definition of performance profiles is found in the appendix.

6.4. Analysis

Figure 4 shows the performance profiles with all BAL

datasets for a range of tolerances τ ∈ {10−1
, 10−2

, 10−3}.

We can see that our proposed square root bundle adjustment

solver
√
BA-64 is very competitive, yielding better accu-

racy than some SC-based iterative solvers, and often at a

lower runtime.
√
BA-32 is around twice as fast and equally

accurate, which highlights the good numerical stability of

the square root formulation. It clearly outperforms all other
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Figure 5: Convergence plots from small to large problems and rendered optimized landmark point clouds. The y-axes show

the total BA cost (log scale), and the horizontal lines indicate cost thresholds for the tolerances τ ∈ {10−1
, 10−2

, 10−3}.
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Figure 6: Memory consumption for the relatively sparse la-

dybug problems grows linearly with the problem size. The

number of cameras here ranges from 49 to 1723.

solvers across all tolerances. The fact that explicit-32 does

not always reach the same accuracy as its double precision

counterpart explicit-64 indicates that SC-based solvers do

not exhibit the same numerical stability. We also do not ob-

serve the same twofold speedup, which is related to the fact

that explicit-32 does have to backtrack in the LM loop sig-

nificantly more often to increase damping when the Schur

complement matrix becomes indefinite due to round-off er-

rors. This happens at least once for 84 out of the 97 prob-

lems with explicit-32 and even with explicit-64 for 7 of the

problems. With
√
BA, we have never encountered this.

A similar conclusion can be drawn from the convergence

plots in Figure 5, which show a range of differently sized

problems. For the small ladybug as well as the medium

and large skeletal problems, our solver is faster. Even on

the large and much more dense final4585, the square root

solver is competitive. In the square root formulation mem-

ory and thus to some degree also runtime grows larger

for denser problems—in the sense of number of observa-

tions per landmark—since a specific landmark block grows

quadratically in size with the number of its observations.

This is in contrast to density in the sense of number of cam-

eras co-observing at least one common landmark, as for the

SC. Still, across all BAL datasets, only for the largest prob-

lem, final13682, where the landmarks have up to 1748 ob-

servations, does
√
BA-32 run out of memory. For sparse

problems, such as ladybug, one can see in Figure 6 that the

memory grows linearly with the number of landmarks, and

for
√
BA-32 is similar to Ceres’ iterative SC solvers. In

summary, while for very small problems we expect direct

solvers to be faster than any of the iterative solvers, and for

very large and dense problems implicit SC solvers scale bet-

ter due to their memory efficiency [2], the proposed
√
BA

solver outperforms alternatives for medium to large prob-

lems, i.e., the majority of the BAL dataset.

7. Conclusion

We present an alternative way to solve large-scale bun-

dle adjustment that marginalizes landmarks without having

to compute any blocks of the Hessian matrix. Our square

root approach
√
BA displays several advantages over the

standard Schur complement, in terms of speed, accuracy,

and numerical stability. We have combined a very general

theoretical derivation of nullspace marginalization with a

tailored implementation that maximally exploits the spe-

cific structure of BA problems. Experiments comparing

our solver to both a custom SC implementation and the

state-of-the-art Ceres library show how
√
BA can handle

single-precision floating-point operations much better than

the Schur complement methods, outperforming all evalu-

ated competing approaches. We see great potential in
√
BA

to benefit other applications that play up to its strong perfor-

mance on sparse problems, for example incremental SLAM.

11730



References

[1] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.

http://ceres-solver.org.

[2] Sameer Agarwal, Noah Snavely, Steven M Seitz, and

Richard Szeliski. Bundle adjustment in the large. In Euro-

pean Conference on Computer Vision (ECCV), pages 29–42.

Springer, 2010.

[3] David S Bayard and Paul B Brugarolas. An estimation algo-

rithm for vision-based exploration of small bodies in space.

In American Control Conference (ACC), pages 4589–4595.

IEEE, 2005.

[4] Gerald J Bierman. Factorization methods for discrete se-

quential estimation. Courier Corporation, 2006.
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