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Abstract

In this paper, we propose HESIC, an end-to-end trainable

deep network for stereo image compression (SIC). To fully

explore the mutual information across two stereo images,

we use a deep regression model to estimate the homography

matrix, i.e., H matrix. Then, the left image is spatially trans-

formed by the H matrix, and only the residual information

between the left and right images is encoded to save bit-

rates. A two-branch auto-encoder architecture is adopted in

HESIC, corresponding to the left and right images, respec-

tively. For entropy coding, we use two conditional stereo

entropy models, i.e., Gaussian mixture model (GMM) based

and context based entropy models, to fully explore the corre-

lation between the two images to reduce the coding bit-rates.

In decoding, a cross quality enhancement module is proposed

to enhance the image quality based on inverse H matrix. Ex-

perimental results show that our HESIC outperforms state-

of-the-art SIC methods on InStereo2K and KITTI datasets

both quantitatively and qualitatively. Code is available at

https://github.com/ywz978020607/HESIC.

1. Introduction

Stereo image compression (SIC) aims to jointly compress

a pair of stereoscopic left and right images, to achieve high

compression rate for both the two images. In the fields

of autonomous driving [45], virtual reality [19] and video

surveillance [12], SIC has become one of the most criti-

cal techniques, which recently attracts increasing attention

from both academic and industrial communities. By fully

exploiting the mutual information in the two images, SIC

can potentially achieve higher compression rate than com-

pressing each image independently.

Compared with single image compression [4], SIC is

more challenging, which needs to fully exploit and utilize
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Figure 1. Brief framework of the proposed HESIC approach for

stereo image compression. Here, the “H” indicates homography

transformation.

the inner relationship between the left and right stereo im-

ages. There have been many research works on traditional

stereo image compression [18, 8, 27]. However, they rely on

hand-crafted features and the traditional optimization theory

to minimize the rate-distortion loss, which have limited com-

pression efficiency. Recently, Liu et al. [32] proposed the

first deep learning based stereo image compression method

named DSIC, which exploits the content redundancy be-

tween the stereo pair to reduce the joint bit-rate. However,

it has very high computational complexity due to the dense

warp scheme. In addition, it requires that the left and right

images must stand in the same horizontal line, which is

actually not feasible in practical applications.

In this paper, we propose an efficient stereo image com-

pression network based on homography transformation,

namely HESIC, which overcomes all the aforementioned

drawbacks of DSIC. As shown in Fig. 1, we use homography

transformation [35] to replace the dense warp module in

DSIC [32], which can significantly decrease the computa-

tional complexity. In addition, since homography transfor-

mation has no requirement for the relative position of the

two images, our method can cope with the case when the two

stereo images are not in the same horizontal line. Finally, our

HESIC approach not only outperforms the state-of-the-art
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deep learning based single image compression methods, but

also saves around 31.7% bit-rate compared to the latest SIC

method DSIC with similar image quality.

The main contributions of this paper are as follows:

• We propose a novel stereo image compression network

based on homography transformation, namely HESIC,

for the task of stereo image compression.

• We introduce two conditional entropy models specif-

ically for stereo image compression, aiming to fully

reduce the redundancy between two stereo images.

• We develop a cross quality enhancement module in the

decoder, which is able to enhance the image quality

using inverse homography matrix.

2. Related work

2.1. Single image compression

The traditional lossy image compression is typically com-

posed of three components: transformation, quantization and

entropy coding. The image is firstly transformed from pixel

domain to some frequency domains, to make the energy

concentrate on a few transform coefficients. These coeffi-

cients are then quantized and encoded by entropy model for

transmission and storage. The joint photographic experts

group (JPEG) standard is the most well-know image com-

pression method, which applies discrete cosine transform

(DCT) on image blocks, to make the energy concentrated

in Fourier domain [42]. Different from JPEG, the discrete

wavelet transform is adopted in JPEG2000 where the energy

is concentrated in wavelet domain [37, 22]. Due to the multi-

scale orthogonal wavelet decomposition, JPEG 2000 has

superior compression ratios than JPEG. There are also some

video compression methods which can be used for image

compression. For example, the high efficient video coding

(HEVC) standard provides several configurations, such as

intra-frame, random access and low delay [39]. In partic-

ular, the intra-frame configuration compresses each frame

independently, which can be used for image compression.

The better portable graphics (BPG) [7] image compression

algorithm proposed by Fabrice Bellard is developed based

on the intra-frame encoding of HEVC.

The transformation, quantization and entropy coding are

usually treated independently in traditional image compres-

sion methods, i.e., they are separately optimized. Recent

years have seen some deep learning based methods which

jointly optimize the three components through end-to-end

training [40, 3, 2, 31, 4, 34, 23, 1, 47, 43, 16, 14, 15]. The

advantage of deep neural network (DNN) is to learn the

nonlinear functions to map pixels into a more compressible

latent space, which can potentially improve the compres-

sion ratio. Most DNN based image compression methods

adopt an encoder-decoder network architecture. The en-

coder aims to encode the image into latent representations,

and the decoder is designed to recover the image from the

latent representations. Specifically, Toderici et al. [40] pro-

posed a recurrent neural network (RNN) based encoder and

decoder for image compression with variable compression

rates. Later, Ballé et al. [4] proposed an end-to-end image

compression model based on variational autoencoders. To

deal with the extreme low-bitrate image compression, Li et

al. [31] proposed a deep network considering the saliency of

image content at different locations. Most recently, Wang et

al. [43] proposed an invertible encoding module to replace

the conventional encoder-decoder structure, which achieves

comparable image compression performance with less net-

work parameters.

2.2. Stereo image matching and compression

Different from single image compression, SIC aims to

jointly compress two stereo images by exploring the mu-

tual information between them. The stereo image matching

is the core technique in SIC, which can be broadly clas-

sified into two categories, rigid [10, 35, 17, 25] and non-

rigid [36, 46, 38] matching. The non-rigid stereo matching

methods provide non-uniform pixel warp function, which

is more flexible but difficult to be learned, and they often

need a large amount of computational resources. Com-

pared to non-rigid matching, the rigid matching is much

easier to implement. The homography perspective trans-

formation [10, 35, 17, 25] is the typical technique for rigid

matching, which is widely used in image stitching, 3D re-

construction, etc. To calculate the homography matrix, the

traditional methods firstly use feature matching algorithms

such as SIFT [33] and SURF [6], to get feature points, and

then use RANdom SAmple Consensus (RANSAC) algo-

rithm [13] to calculate the transformation matrix. Recently,

Nguyen et al. [35] proposed to use unsupervised deep learn-

ing to get the homography matrix between two images.

Recently, Liu et al. [32] proposed a deep stereo image

compression (DSIC) network, which achieves SOTA perfor-

mance in SIC. This is also the only DNN based work we can

find specifically for SIC. In this work, the parameteric skip

functions and a conditional entropy model were proposed

to model the dependence between the left and right images,

leading to significant bit-rate saving in SIC. However, DSIC

still has some disadvantages. Firstly, it has high compu-

tational complexity, which means the training and testing

phases are time-consuming. Secondly, the DSIC method

requires the two stereo cameras to be on the same horizontal

line. In the case when there is a shift on the vertical direction,

the DSIC method may fail.

To overcome the aforementioned drawbacks of DSIC, we

propose in this paper a homography matrix based SIC net-

work, namely HESIC. As we know, the two stereo cameras
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Figure 2. The overall network architecture of the proposed method. The left and right stereo images are jointly compressed to significantly

save the bit-rates. Here, AE stands for arithmetic encoding, AD indicates arithmetic decoding, and ST is spatial transformation. Note that

the blue dotted lines are only for HESIC+, while the others are for both HESIC and HESIC+.

usually take photos from two different angles, which makes

homography transformation suitable for SIC. In addition, the

calculation and encoding of homography matrix are quite

computationally friendly, making it easy to be stored and

transmit. Although homography matrix has been success-

fully used in tasks like image stitching [20] and light field

compression [26], to the best of our knowledge, our work is

the first attempt to appply it in SIC task. As demonstrated

in experimental results, our HESIC provides much higher

image quality than DSIC with less coding bit-rates.

3. Proposed method

3.1. Framework

Fig. 2 shows the overall framework of the proposed

HESIC method. We first use a deep regression model to

estimate the homography matrix (H matrix) between stereo

images, and then the left image (denoted as x1) is spatially

transformed by the H matrix to compensate the difference

between x1 and the right image x2. The details of the regres-

sion model and H matrix will be introduced in Section 3.2.

After spatial transformation, x1 is compressed via an

auto-encoder, and we concatenate x2 with the transformed

x1 as the inputs to the second auto-encoder, which learns to

compress the residual information between stereo images.

Due to the correlation among x1 and x2, we model the

probability function of the latent representation in the sec-

ond auto-encoder (denoted as y2) conditioned on the latent

representation of x1 (denoted as y1) to reduce the bit-rate.

The information of the H matrix is also encoded into the

bit-stream, and is used to transform the compressed left im-

age (x̃1) at the decoder side. Then, the compressed residual

output from the second auto-encoder is concatenated with

the transformed x̃1 to reconstruct x̃2. The auto-encoder and

probability model are to be detailed in Section 3.3. Finally,

we propose a cross quality enhancement (CQE) network,

which takes as inputs both the H matrix and compressed

images to improve the compression quality of each image

by using the correlated information in stereo images. The

proposed CQE network is to be introduced in Section 3.4.

3.2. Homography matrix

To use the mutual information between stereo images,

the first thing is to match the images or features. In

DSIC [32], the two stereo features are matched by comput-

ing the weighted sum of feature vectors to obtain the similar

content of images. Since the pixel-level dense warp is used to

pass the mutual information, DSIC has high computational

complexity. Actually, stereo images are usually taken at the

same time from different angles, indicating that there is a

spatial transformation relationship between them. Thus, we

propose to use homography transformation to match stereo

images in out method.

The homography transformation based image matching

is flexible and lightweight, and the homography matrix (H

matrix) is easy to be calculated and transmit with different

conditions. Specifically, the coordinates of the point (u, v)
in the left image can be transformed to the point (u′, v′) in

the right image through the H matrix as follows,





u′

v′

1



 =





h11 h12 h13

h21 h22 h23

h31 h32 h33









u
v
1



 = H





u
v
1



 . (1)

To achieve end-to-end learning, we adopt a deep-learning-

based regression model [35] to generate the H matrix. The

regression model is composed of several convolutional and

fully connected layers. It firstly finds the corner coordinates

of the two images and then calculate the H matrix. After we

obtain the H matrix, a differentiable spatial transformation
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Figure 3. Illustrations of the two conditional stereo entropy models in our HESIC and HESIC+ methods.

(ST) module [35, 25] is adopted to warp the left image to

right image using the H matrix. Since the H matrix is a

decimal matrix, the coordinates of the point (u′, v′) may not

be integer if directly applying the H matrix in Eq. (1). Thus,

in ST, the inverse H matrix is firstly calculated and then the

coordinate (u′, v′) in the right image is reversely mapped to

(u, v) in the left image. The pixel value in position (u′, v′)
is obtained by averaging the surrounding pixels of (u, v) in

the left image through bilinear interpolation as follows [35],

sc =

MI
∑

i

NI
∑

j

IcL(i, j)max(0, 1−|u−i|)max(0, 1−|v−j|),

(2)

where MI ,NI are the height and width of the left image IL,

and IcL(i, j) is the pixel value at location (i,j) in channel c

of the left image. sc is the warped pixel value at location

(u′,v′) in channel c of the right image.

The transmit of H matrix is a problem in image compres-

sion since it may increase the coding bit-rates. Since corner

coordinates and H matrix can convert to each other, we adopt

to transmit the much lighter corner coordinates instead of the

H matrix. We first convert the corner coordinates to integers

and then encode them to store and transmit. For image with

size 512 × 512, the bit-rate overhead for transmitting the

corner coordinates is only 1.3 ∗ 10−4 bits per pixel (bpp),

which is negligible in image compression.

3.3. Autoencoder and probability model

In the proposed HESIC method, we first use an auto-

encoder to compress x1 as an independent image. Then,

due to the high correlation between stereo images, we feed

x2 concatenated with the spatially transformed x1 (by H

matrix) to the second auto-encoder, as such it learns to com-

press the residual information between x1 and x2. In the

two auto-encoders, we utilize the same encoder, decoder and

hyper transform networks as [4]. However, the single image

compression method [4] models the probability mass func-

tion (PMF) of ỹ only conditioned on the hyper-prior z̃, i.e.,

applying qỹ | z̃(ỹ | z̃)1 in entropy coding. In stereo image

compression, we propose estimating qỹ2 | ỹ1,z̃2
(ỹ2 | ỹ1, z̃2)

for the entropy coding of ỹ2. Due to the high correlation be-

tween left and right images, conditioned on the information

of ỹ1, the (cross) entropy of ỹ2 is expected to be smaller,

thus resulting in lower bit-rate. In this paper, we utilize two

conditional stereo entropy models, which are to be intro-

duced in the following.

GMM-based entropy model. We first follow [32, 11] to

estimate the conditional probability functions of qỹ1 | z̃1
and

qỹ2 | ỹ1,z̃2
via Gaussian mixture models (GMMs) as follows,

qỹ1 | z̃1
∼

N
∑

n=1

w
(n)
1 · N (µ

(n)
1 ,σ

(n)
1 ),

qỹ2 | ỹ1,z̃2
∼

N
∑

n=1

w
(n)
2 · N (µ

(n)
2 ,σ

(n)
2 ),

(3)

where N is the number of Gaussian functions. In (3),

w, µ and σ are the parameters of the GMMs, in which

{w
(n)
1 ,µ

(n)
1 ,σ

(n)
1 }Nn=1 and {w

(n)
2 ,µ

(n)
2 ,σ

(n)
2 }Nn=1 are gen-

erated by the deep networks g1 and g2, respectively. As

shown in Fig. 3 (a), g1 has the input of z̃1 and g2 takes as

inputs both ỹ1 and z̃2. Hence, g1 and g2 learn to estimate

qỹ1 | z̃1
and qỹ2 | ỹ1,z̃2

in (3), respectively. Given (3), the ex-

pected bit-rate for arithmetic coding [29] can be obtained as

follows,

R = Eỹ1∼pỹ1|z̃1

[− log2 qỹ1|z̃1
(ỹ1 | z̃1)]

+ Eỹ2∼pỹ2|ỹ1,z̃2

[− log2 qỹ2|ỹ1,z̃2
(ỹ2 | ỹ1, z̃2)],

(4)

where p stands for true PMF.

Context-based entropy model. Inspired by [34] which

successfully advances single image compression by adopt-

ing context-based entropy model, we introduce the auto-

regressive context model into stereo image compression as

1Note that we define the true PMF as p and the estimated PMF as q.
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another option for entropy coding. In addition to modelling

the PMFs of ỹ1 and ỹ2 only conditioned on z̃1 and ỹ1, z̃2,

respectively, the context-based model further describes the

element-wise dependency within ỹ1 and ỹ2. That is, defin-

ing ỹ i
1 and ỹ i

2 as the i-th element in ỹ1 and ỹ2, respectively,

qỹ1 | z̃1
and qỹ2 | ỹ1,z̃2

can be formulated as

qỹ1 | z̃1
(ỹ1 | z̃1) =

∏

i

qỹ i
1

| ỹ<i
1

, z̃1
(ỹ i

1 | ỹ<i
1 , z̃1),

qỹ2 | ỹ1,z̃2
(ỹ2 | ỹ1, z̃2) =

∏

i

qỹ i
2

| ỹ<i
2

, ỹ1,z̃2
(ỹ i

2 | ỹ<i
2 , ỹ1, z̃2),

(5)

because of the chain rule of probability function.

To model the PMFs in (5), we feed ỹ1 and ỹ2 into the

masked CNNs [41] which mask the elements ỹ≥i when

calculating the features for the i-th element, and thus it is

able to predict the PMFs conditioned on ỹ<i. Here we use

Gaussian distributions to model the PMFs as follows

qỹ i
1

| ỹ<i
1

, z̃1
∼ N (µi

1, σ
i
1),

qỹ i
2

| ỹ<i
2

, ỹ1,z̃2
∼ N (µi

2, σ
i
2).

(6)

As Fig. 3 (b) illustrates, the Gaussian parameters {µi
1, σ

i
1}i

and {µi
2, σ

i
2}i are generated by the deep networks c1 and c2,

which takes as inputs ỹ<i
1 , z̃1 and ỹ<i

2 , ỹ1, z̃2, respectively.

As such, the conditional PMFs in (5) can be estimated by

our context-based stereo entropy model. Finally, given (5),

the expected bit-rate can be calculated by (4).

3.4. Cross quality enhancement (CQE)

At the decoder side, we propose the CQE network to fur-

ther improve the compression quality. Our CQE network can

be trained jointly with the compression network, and thus

can be seen as a component of our deep decoder. Fig 2 shows

that the CQE network contains two sub-nets with the same

structure to enhance each image, and each sub-net has 3

residual blocks with skip connections. Recall that the H ma-

trix is learned by the regression model to describe the spatial

difference from x1 to x2. Therefore, in the CQE network,

we calculate the reverse H matrix (denoted as H−1 in Fig 2)

to transform x̃2, and then feed x̃1 with the transformed x̃2 to

the first sub-net to enhance x̃1. Similarly, the second sub-net

takes as inputs both x̃2 and the x̃1 transformed by the origi-

nal H matrix. As such, the proposed CQE network is able

to utilize the correlation between stereo images for enhanc-

ing the compression quality of both images. We define the

enhanced left and right images as x̂1 and x̂2, respectively.

3.5. Training strategy

In the training stage, we first pre-train the regression

model to get the H matrix with the loss function as follows,

LH = D(x2 , Fs(x1, Fr(x1,x2))), (7)

in which Fr(x1,x2) is the regression model to calculate the

H matrix, and Fs(x1, H) indicates the spatial transformation

by the H matrix. D denotes distortion which is defined as the

Mean Square Error (MSE) in this paper. After pre-training,

we design the loss function to train the whole network in an

end-to-end manner. With R defined as the estimated joint

coding bit-rate of the stereo images, the total loss function is

defined as follows,

Ltotal = λd(D(x1 , x̂1) +D(x2 , x̂2)) + λrR, (8)

where λd and λr are the weights to the distortion and the

bit-rate, respectively.

4. Experiments

4.1. Settings

Datasets. We evaluate the compression performance

of our method on two public stereo image datasets: In-

Stereo2K [5] and KITTI [21]. The InStereo2K dataset [5]

consists of 2,050 pairs of stereo images, from which we

randomly select 1,950 pairs for training and 50 pairs for

validation. The remaining 50 pairs are used for testing. The

KITTI dataset [21] provides the stereo images captured in

the scenario of autonomous driving. To evaluate on KITTI,

the models trained on InStereo2K are fine-tuned to the KITTI

dataset. We randomly select 1,950,50, and 50 samples in

KITTI for fine-tuning, validation, and testing respectively.

The stereo images in InStereo2K [5] are with close views,

while the images in KITTI [21] are with far-views. By us-

ing these two datasets, we can evaluate the compression

performance of the proposed method more comprehensively.

Implementation. In this paper, we train two networks

of the proposed HESIC method, which are with the GMM-

based and context-based entropy models, respectively. They

are defined as HESIC and HESIC+ in the following. The

Adam optimizer [28] is adopted with standard parameters

and learning rate of 10−4 in both the regression model train-

ing and the whole network training processes. The results

shown in the experiments are obtained by training the net-

work for 400 epochs. In the GMM-based model, we set

N = 5 in (3). For various coding bit-rates, we fix λr to

1.0 in loss function (8), and smoothly adjust the weight of

distortion λd from 0.001 to 0.1.

Evaluation. As mentioned in Section 3.5, the proposed

HESIC and HESIC+ methods are optimized towards MSE.

Hence, we evaluate the compression quality by peak signal-

to-noise ratio (PSNR), but following most previous learned

compression methods, we also report the results of the

multi-scale structural similarity (MS-SSIM) [44] index. In

addition, we compare the Bjøntegaard delta PSNR (BD-

PSNR) [9] and BD-rate to assess the rate-distortion perfor-

mance. Note that the higher value of BD-PSNR and lower
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Figure 4. Rate–distortion curves for PSNR (dB), MS-SSIM and MS-SSIM (dB) with different compression methods.

value of BD-rate indicate better image compression per-

formance. For the comparison methods, we compare our

HESIC and HESIC+ models with both single image compres-

sion methods including Ballé et al. [3] (ICLR’17), Ballé et

al. [4] (ICLR’18), Lee et al. [30] (ICLR’19), Hu et al. [24]

(AAAI’20), and state-of-the-art stereo image compression

method DSIC [32] (ICCV’19). Besides, we also compare

our model with the traditional image and video codecs, such

as BPG [7] and HEVC [39] (HM 16.20). Note that when

comparing with HEVC, we feed stereo images as two video

frames into the encoder.

4.2. Comparison against SOTA methods

Quantitative results. Table 1 presents the BD-PSNR

and BD-rate results of our and the other comparison methods

with Ballé (ICLR’18) [4] as the baseline. As we mentioned

before, the higher value of BD-PSNR, and the lower value of

BD-rate indicate better rate-distortion performance. As we

can see from Table 1, our method achieves the highest BD-

PSNR and lowest BD-rate on both InStereo2K and KITTI

datasets, i.e., we use the smallest amount of bit-rates to

achieve the best PSNR results. To intuitively show the com-

pression performance of different methods, Fig. 4 plots the

rate-distortion curves of our and the other comparison meth-

ods, in terms of PSNR, MS-SSIM and MS-SSIM (dB). Here,

since the difference of MS-SSIM among different methods is

not quite clear, we follow [32] to add MS-SSIM (dB) which

is calculated by 10log10(1/(1 − MS-SSIM)). Please note

that the bit-rate in this figure indicates the average bit-rate

of the left and right images. As shown in this figure, the RD

Table 1. BD-PSNR and BD-rate comparisons on different datasets,

with the best results in red and second bests in blue.

InStereo2K dataset

Methods BD-PSNR (dB) ↑ BD-rate (%) ↓

Ballé (ICLR’17) -0.489 14.195

BPG -0.501 14.162

HEVC/H.265 -0.005 -11.342

Lee (ICLR’19) 0.192 -8.167

Hu (AAAI’20) 0.169 -4.415

DSIC (ICCV’19) 0.238 -7.062

HESIC 1.312 -32.946

HESIC+ 1.373 -38.809

KITTI dataset

Methods BD-PSNR (dB) ↑ BD-rate (%) ↓

Ballé (ICLR’17) -0.311 16.750

BPG -1.418 105.068

HEVC/H.265 -1.367 105.804

Lee (ICLR’19) -0.897 55.633

Hu (AAAI’20) -0.677 41.406

DSIC (ICCV’19) 0.005 -4.027

HESIC 0.883 -25.967

HESIC+ 0.920 -28.836

curve of our method is above the curves of other methods

for both the two datasets. This demonstrates that our method

outperforms other compression methods with the best rate-

distortion performance. From Fig. 4, we can also note that

although our model is only optimized towards PSNR, we

still achieve the best compression performance among all

methods in terms of MS-SSIM.

Qualitative results. To vividly show the compression

performance of different methods, we visualize in Fig. 5
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Figure 5. Visual comparisons of the compressed left and right images using our and the comparison methods including Lee (ICLR’19) [30],

Ballé (ICLR’18) [4], and DISC (ICCV’19) [32]. Since the bpp value for a single image has no meaning for SIC task, we present here the

average bpp of the left and right images.

Table 2. Computational complexity of our and DSIC method

Method Network FLOPs Params Enc-time Dec-time

DSIC 766.4G 91.5M 322.06 ms 261.57 ms

HESIC 212.5G 69.3M 176.49 ms 174.38 ms

HESIC+ 191.1G 50.6M 186.80 ms 8878.89 ms

the compressed left and right images using our and other

compression methods. To make the comparison fair, all

images are compressed with similar bit-rate per pixel (bpp).

As can be seen from this figure, our method is able to use

less bit-rates to achieve higher PSNR values for both left and

right images. For the image quality, our method is capable to

clearly restore the details of the stripes on the tiger and the

lines on the basketball, while the comparison methods lead

to either blurred details [4] or ringing around edges [30].

Computational complexity. Table 2 compares the

FLOPs, number of network parameters, encoding and decod-

ing time of DSIC and our two models. For fair comparison,

the encoding and decoding time is tested on a RTX2070s

GPU for both DSIC and our method. As we can see from Ta-

ble 2, the FLOPs of both our HESIC and HESIC+ are around

3 times smaller than DSIC, while the FLOPS of HESIC+ is

further smaller than HESIC. The similar phenomenon can

be seen in network parameters. For encoding and decoding

time, our HESIC is more than 2 times faster than DSIC. This
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shows that our method with GMM entropy model is more

computational friendly, which is suitable for practical appli-

cations. However, our HESIC+ has larger decoding time due

to the auto-regressive entropy model, which calculates the

PMF of ỹ i from its previous elements ỹ<i, and therefore it

fails to be speed up by GPU parallel computation. The high

decoding time is the expense of better compresssion per-

formance, i.e., our HESIC+ achieves the best compression

performance as shown in Table 1 and Fig. 4. In other words,

we provide here two options for stereo image compression:

the HESIC model is more suitable if decoding speed is an

important consideration, while the HESIC+ model is more

appropriate if image quality is the most critical thing.

4.3. Ablation study

In this subsection, we implement several experiments to

investigate the effect of mutual entropy connection, H ma-

trix and the cross quality enhancement on the compression

performance of our method.

Case 1: Effectiveness of mutual entropy connection.

As shown in Fig. 2, there is a green line connecting ỹ1

from the first entropy model to the second one. We call

this line mutual entropy connection here. In order to verify

its effectiveness, we simply remove it and then the model

is equivalent to using two independent auto-encoders but

with a residual image as input. Then, we retrain the model

without the green line and denote this model as Case 1. As

shown in Fig. 6, the RD curves of Case 1 are significantly

lower than our original model, indicating the effectiveness

of the mutual entropy connection. With the mutual entropy

connection, the information of left image can help the right

image, resulting in better compression performance.

Case 2: Effectiveness of homography matrix. To ver-

ify the effectiveness of homography matrix, we remove the

regression model and spatial transformation in Fig. 2. In

other words, the stereo images are input to the encoder di-

rectly without the residual image. After retraining the model,

we can have its RD-curves in Fig. 6. As we can see, the

RD curves of Case 2 is almost the lowest among all curves.

This result demonstrates the H matrix plays a critical role in

improving the stereo image coding performance.

Case 3: Effectiveness of CQE. The CQE is a part of the

decoder, and we remove it to verify its effectiveness. As

shown in Fig. 6, the RD-curves of Case 3 are lower than our

original model with CQE. This demonstrates that the CQE

indeed helps improve our coding performance. In addition,

note that even without CQE, our method still performs better

than the comparison methods, i.e., the RD curves of Case

3 are higher than that of Ballé (ICLR’18). Considering the

position of Ballé (ICLR’18) in Fig. 4, we can conclude that

our method without CQE still outperforms other methods.

Figure 6. Rate-distortion curves for ablation study.

5. Conclusion

In this paper, we propose a novel homography transform

based deep neural network for stereo image compression,

which drastically increases stereo image quality with less

coding bit-rates. Firstly, a light homography matrix (H ma-

trix) is calculated through a regression model, which maps

the left image to right image to get the residual image. Then,

we use two conditional entropy models, i.e., Gaussian mix-

ture model based entropy model and context-based entropy

model, to jointly encode the two stereo images. Finally, at

the decoder, we propose a cross quality enhancement module

to further enhance the compressed image quality through

H and inverse H matrices. Experimental results verify the

effectiveness of our method through exhaustive comparisons

and ablation studies.
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