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Abstract

The omnidirectional images (ODIs) are usually at low-

resolution, due to the constraints of collection, storage and

transmission. The traditional two-dimensional (2D) im-

age super-resolution methods are not effective for spher-

ical ODIs, because ODIs tend to have non-uniformly dis-

tributed pixel density and varying texture complexity across

latitudes. In this work, we propose a novel latitude adap-

tive upscaling network (LAU-Net) for ODI super-resolution,

which allows pixels at different latitudes to adopt distinct

upscaling factors. Specifically, we introduce a Laplacian

multi-level separation architecture to split an ODI into dif-

ferent latitude bands, and hierarchically upscale them with

different factors. In addition, we propose a deep reinforce-

ment learning scheme with a latitude adaptive reward, in

order to automatically select optimal upscaling factors for

different latitude bands. To the best of our knowledge,

LAU-Net is the first attempt to consider the latitude differ-

ence for ODI super-resolution. Extensive results demon-

strate that our LAU-Net significantly advances the super-

resolution performance for ODIs. Codes are available at

https://github.com/wangh-allen/LAU-Net.

1. Introduction

With the rapid development of virtual reality (VR), om-

nidirectional images (ODIs) are playing increasingly impor-

tant roles in human’s life. When viewing ODIs, people can

obtain immersive and interactive experience via changing

their viewports in the range of 360× 180◦. Typically, peo-

ple watch ODIs through head-mounted displays (HMD), in

which only the viewport with a limited range is visible. To

*Authors contributed equally.
†Corresponding author.

make this small viewport in high-resolution (HR), the whole

ODI requires extremely high resolution [11]. However, due

to the constraints of capture, storage and transmission , the

resolution of ODIs cannot be sufficiently high.

Super-resolution (SR) is a common technique to address

the aforementioned issue, which aims to restore an HR image

from a single or a sequence of low-resolution (LR) images

[12]. As a challenging ill-posed inverse problem, SR has

received extensive study for decades [33, 45, 4, 36, 1]. How-

ever, the existing SR methods target at two-dimensional (2D)

planar images, which are not appropriate for ODIs. For

storage convenience, the spherical ODIs are usually pro-

jected into 2D planes. The widely used projection method

is equirectangular projection (ERP), which leads to non-

uniform pixel density across latitudes, in particular geomet-

ric distortion in high-latitude areas. As shown in Fig. 1, the

density of pixels after ERP is in negative correlation to lati-

tudes, i.e., the pixel distribution in higher latitudes tends to

be more sparse than those in lower latitudes. In addition, the

image patches at high-latitude areas usually have significant

stretch distortion. Since the 2D SR methods do not consider

these characteristics of ODIs, as verified in Finding 2, they

often result in unsatisfactory SR results for ODIs.

For ODI SR, the existing methods primarily rely on as-

sembling a sequence of LR ODIs to form an HR ODI. The

representative works include Nagahara et al. [27], Arican et

al.[2], and Bagnato et al. [3]. All these methods have the

same disadvantage, i.e., their performance heavily depends

on the number of LR images and the registration accuracy

among them. Recently, Ozcinar et al. [28] proposed a gen-

erative adversarial network (GAN) to perceptually super-

resolve the ODIs, and remove the artifacts in the spherical

space. However, they merely treat the ERP projected ODI

as a normal 2D image, without considering the varying pixel

density across latitudes.

In this paper, we propose a novel latitude adaptive upscal-
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Figure 1. The basic framework of our method for omnidirectional image super-resolution.

ing network (LAU-Net), to dynamically upscale different

latitude bands of ODIs with various upscaling factors. To

determine the optimal upscaling factors for different latitude

bands, we jointly train several evaluators for different bands

with a multi-level CNN to find the optimal upscaling factor.

The evaluators are trained by reinforcement learning (RL)

with the reward encouraging both high SR performance and

low computation complexity. As shown in Fig 1, “easy”

patches with high latitude and low image complexity are

stopped training at the first level, while “hard” patches with

low latitude and high image complexity progressively go

deeper until the last level. Using early quit strategy com-

bined with RL network, our LAU-Net obtains better objec-

tive quality while saving computations effectively. The main

contributions of our work are as follows:

• We establish a large database for ODI SR, which con-

sists of 1,000 high-quality ODI images, with diverse

image resolutions and content.

• We propose a new network named LAU-Net for ODI

SR, in which different latitude bands are allowed to

have distinct upscaling factors for resource efficiency.

• We develop an RL scheme to automatically select the

optimal upscaling factors for different latitude bands,

which significantly improves the SR performance using

less computational resource.

2. Related work

Single image super resolution (SISR) is a long stud-

ied inverse problem. The traditional SISR methods in-

clude example-based [37, 43] and dictionary learning based

[29, 44] approaches, while the recent SISR methods focus on

deep neural networks [9, 18, 19, 10, 31, 19, 34, 5, 48, 7, 8, 6].

Dong et al. proposed the first SISR network called SRCNN

[9], which achieves remarkable improvement over the tra-

ditional methods. Since then, many works are proposed to

further enhance the SR performance. The representative

works include VDSR [18], DRCN [19], SRResNet [38],

MemNet [35], EDSR [25], D-DPBN [15], and RCAN [48].

All these methods aim to improve the objective quality of

the super-resolved images in terms of mean squared error

(MSE). In order to improve the perceptual quality, Ledig et

al. [22] proposed a generative adversarial network (GAN)

for SISR, called SRGAN [22], which replaces the MSE loss

with VGG loss. The SRGAN method inspires many follow-

up works, like CX [26], ESRGAN [40], RankSRGAN [47],

etc.

However, all the above SISR methods are proposed for

standard 2D images. For ODI SR, Nagahara et al.[27] pro-

posed to combine a series of LR ODIs using spatio-temporal

nearest neighbor interpolation, to obtain a fused HR ODI.

To handle the inaccurate alignment among LR ODIs, Ari-

can et al.[2] cast the registration and SR problem as a joint

least-square norm minimization problem, and solve it using a

Levenberg-Marquardt method. Different from [27, 2] which

require multiple LR images, Ozcinar et al.[28] proposed to

use deep network for ODI SR, which only needs a single LR

image. However, [28] did not consider the latitude differ-

ence in ODIs, i.e., all latitude bands are super-resolved by

the same upscaling factor. Actually, since the high latitude

area will be shrunk in the spherical domain, there is no need

to upscale this area with a large factor.

Our work is the first attempt to achieve latitude adaptive

ODI super-resolution. Rather than applying the same upscal-

ing factor for all latitude bands, we allow each band to be

super resolved by different factors, based on a multi-level

separation and reinforcement learning scheme. To the best

of our knowledge, this is the first time different upscaling

factors are optimized and performed for different latitudes in

ODI. This latitude adaptive mechanism can not only advance

the SR performance, but also save the computing resource.

3. Database and analysis

3.1. ODI-SR database

We collected 1,000 high quality ODIs from Huang et

al. [17] and the Internet for ODI SR. The resolution of
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Figure 2. Texture complexity across different latitudes in ODI-SR database. Note that higher ENT and contrast values and lower IDM and

ASM values indicate higher texture complexity.

Figure 3. The PSNR results of different latitude bands reconstructed

by different 2D SR methods.

these ODIs ranges from 2K, i.e., 1,920×1,080, to 24K, i.e.,

24,048×12,024. To enrich diversity, these ODIs are selected

to contain different kinds of content, including cityscape,

natural scene, indoor scene, human activity and exhibition.

From this database, we randomly select 800 images for train-

ing, 100 images for validation, and 100 images for testing.

3.2. ODI analysis

Through analyzing the ODI-SR database, we have the

following inspiring findings about characteristics of ODIs,

which play important roles in designing our LAU-Net.

Finding 1: Compared to high latitude, low latitude areas

tend to have higher texture complexity.

Following [23, 13], we measure the texture complexity

of different latitude areas in ODIs in terms of four com-

mon used textual features from [14]. These four features

are entropy, contrast, angular second moment (ASM), and

inverse differential moment (IDM). Note that the entropy

and contrast values are in positive correlation with texture

complexity, while ASM and IDM indices are in negative

correlation with texture complexity.

Fig. 2 plots the change of the four features across latitudes

in different categories in our ODI-SR database. We can see

that the lower latitude areas tend to have higher entropy and

contrast values, while the higher latitude areas tend to get

higher ASM and IDM values. This demonstrates that the

texture complexity is highly related with the latitude, and

the low latitude areas show higher texture complexity. This

completes the analysis of Finding 1.

Finding 2: Compared to high latitude, it is more difficult

to super-resolve low latitude areas using 2D SR methods.

To verify this finding, we first equally split each ODI into

five latitude bands, i.e., each band covers 36◦ (=180◦/5)

in latitude. For each band, we down-sample it by 4×
and then perform SR using five state-of-the-art SISR meth-

ods, including SRResNet[22], EDSR[25], SRDenseNet[38],

RCAN[48] and EBRN[30]. Fig 3 presents the PSNR results

in different latitude areas with the five SISR methods. As

can be seen, there is a big PSNR gap between the low and

high latitude bands, i.e., the PSNR of lowest latitude is more

than 2 dB lower than that of the highest latitude band. How-

ever, when people watch ODIs, the low latitude area usually

attracts more attention, which should be reconstructed with

higher accuracy. The existing SISR methods fail to achieve

high PSNR in low latitude area. The possible reason is that

they treat each band equally and assign equivalent computing

resource to them. Actually, as analyzed in Finding 1, the low

latitude area has higher texture complexity, and thus requires

more computing resource to achieve similar reconstruction

accuracy as the high latitude.

4. Latitude Adaptive Upscaling Network

In this section, we introduce our LAU-Net in detail. The

multi-level architecture of LAU-Net is introduced in Section

4.1, and the structure of the spatial segmentation module and

the evaluator is introduced in Section 4.2. Finally, Section

4.3 introduces the training algorithm and loss function.

4.1. Network architecture

Fig. 4 shows the network architecture of the proposed

LAU-Net. As can be seen, the LAU-Net has a multi-level

pyramid structure, with each level consisting of a channel

attention dense subnet (CAD-net) and a spatial segmentation

module (SSM). The role of CAD-net is to extract the high-

level features from the input LR image, while SSM serves

to dynamically drop the unnecessary latitude bands at the

current level and send the remained bands to the next level.

At the j-th level, the corresponding latitude bands can be

upscaled by 2j×. In other words, our network is able to

achieve ODI SR at flexible upscaling factors by changing

the number of levels. Here, for the sake of brevity, we only

show in Fig. 4 the network architecture with 3 levels, i.e.,

8× upscaling. Next, we introduce the details of each level.
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Figure 4. The architecture of the proposed LAU-Net.

Figure 5. Framework of the proposed RL model for easy latitude

band dropping.

First level: The first level aims to achieve 2× upscaling

on the whole LR ODI. The input to the first level is the LR

ODI image ILR ∈ R
c×h×w. After a convolutional layer and

CAD-net, we can obtain the extracted high-level feature F1

as follows:

F1 = fCAD(Conv(ILR)), (1)

where Conv denotes single convolutional layer and fCAD

represents the operation of CAD-net. The CAD-net is com-

posed of B channel attention dense blocks with global skip

connections across each block, for extracting high level fea-

tures. Each dense block contains 8 basic convolutional layers

with local connections, and a channel attention (CA) block

proposed in [48]. Then, F1 is upsampled using a sub-pixel

convolutional layer to generate the super-resolved image

G1 ∈ R
c×2h×2w as follows,

G1 = fREC(F1) + fUP(ILR). (2)

Here, fREC indicates the sub-pixel convolutional upsam-

pling and fUP is the deconvolutional upsampling layer. The

super-resolved image G1 is then fed into SSM to drop the

unnecessary latitude bands determined by the RL evaluator,

[Id1, Ir1] = fSSM(G1), (3)

where Id1 is the dropped latitude band, and Ir1 is the remained

bands which are input to the next level. More details about

SSM and RL evaluator are shown in Section 4.2.

Second and third levels: The second level aims to fur-

ther upscale the remained latitude bands Ir1 from the first

level. As shown in Fig 4, there are two inputs to the second

level, i.e., Ir1 and alignment feature maps F2 from the first

level. The definition of F2 is as follows,

F2 = fFA(fREC(F1)). (4)

Here, fFA indicates the feature size alignment operation, in

which F1 is horizontally cropped to F2 to keep the same

latitude range as Ir1. Then, we can obtain the super-resolved

image G2 as follows,

G2 = fREC(fCAD(F2)) + fUP(I
r
1). (5)

The SSM is also applied in the second level to drop the unnec-

essary latitude bands, and we can have [Id2, Ir2] = fSSM(G2).
Here, Id2 indicates the dropped latitude at the second level

and Ir2 is the remained latitude bands send to the next level.
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For 8× upscaling, the third level is also the final level.

The inputs to the third level are Ir2 and F3 = fFA(F2). The

super-resolved image G3 = fREC(fCAD(F3)) + fUP(I
r
2).

In summary, we obtain Id1, Id2 and G3 from the first, second

and third levels, respectively. However, they are only partial

latitude bands of the ODI. To obtain the complete HR ODI,

we firstly upsample Id1 and Id2 to Î
d

1 and Î
d

2 by a sub-pixel

convolution layer, to make them with the same width res-

olution as G3, and then merge them to produce the final

reconstructed HR ODI image. To avoid boundary artifacts in

merge process, following [49], we reserve overlapping areas

and use weighted averaging to generate smooth boundaries.

4.2. Spatial segmentation module

In our method, we have several SSMs corresponding to

different levels, and the input to the SSM at the j-th level

is Gj . For simplicity, we take the SSM at the first level for

example. We firstly segment G1 into K stripes with the

same size along latitude, i.e., {X1,X2, . . . ,XK}. The height

of each stripe is calculated by hd = 2h
K , where 2h is the

height of G1. After segmentation, each stripe is fed into an

independent evaluator fEk
to determine whether it should be

dropped or remained. The dropped “easy” stripes are forced

to early exit, while the remained “hard” patches are fed to the

next level. Except for the first SSM, number of evaluators in

other SSM is determined by the number of remaining stripes.

Noted that in two different SSMs, parameters are shared

between evaluators which processing the same stripes.

Evaluator. The evaluator is the key component to achieve

early quit strategy. As shown in Fig 5, a evaluator contains

4 convolutional layers, followed by a global pooling layer

and a fully-connected layer. Since the process of determin-

ing early quit or not at each level is non-differentiable, we

formulate it as a Markov Decision Process (MDP) and use

reinforcement learning (RL) to train the evaluator. Next, we

first describe the state and action, and then introduce the

latitude-adaptive reward.

State and Action. For k-th evaluator at j-th level,

the state is the input latitude stripe X
j
k. Given the state

X
j
k, the evaluator fEk

generates a dispersed distribution of

dropping or not, which can be formulated as fEk
(Xj

k) =

π(a | X
j
k), a ∈ {0, 1}. In the training phase, the action

is sampled from this probabilistic distribution, denoted by

ajk ∼ π(a | X
j
k). In testing phase, the action is determined

by the highest probability, i.e., ajk = argminaπ(a | X
j
k).

Latitude-adaptive Reward. In an RL framework, the

evaluator is trained to maximize a accumulated reward, and

thus a proper design of reward function is critical. In this

paper, to better serve the ODI SR task, we propose latitude-

adaptive reward which not only considers the overall SR

performance, but also the complexity of different latitudes of

ODI. Inspired by [39, 46], the current reward and the accu-

mulated reward of k-th evaluator at j-th level is formulated

as follows:

rjk = α · 1{1}(a
j
k), (6)

Rj
k =

J−1∑

i=j

γi−1rik − cos θk · ‖Î(k)− Igt(k)‖2 (7)

where α is the reward weight for quitting, which also serves

as a trade-off between performance of network and compu-

tations. The 1{1}(·) represents an indicator function. When

the stripe is determined to be dropped, i.e., ajk = 1, the

reward given to evaluators. We denote θk as the median

latitude of k-th stripe. Similar to WS-PSNR defined in [32],

we use θk to consider the non-uniform pixel distribution

across latitudes. We use Î(k) and Igt(k) to represent the

MSE between the final output and groundtruth of k-th stripe.

In addition, γ is the discount factor of future reward and J
is number of total levels in LAU-Net.

4.3. Training policy

The First Stage. The training process is composed of

two stages. In the first stage, we train the multi-level CNN

without early exit or evaluator, i.e., RL network is not be

involved in the first stage. All ODIs are trained through

all the pyramid level. For CNN, given N pairs of training

samples, we optimize the weighted ℓ1 reconstruction loss

between predicted HR latitude bands and the corresponding

ground-truths across multiple levels. The loss function for

the j-th level is defined as follows:

Lj =
1

N

N∑

i=1

‖Wj(Î
d

j (i)− I
gt
j (i))‖1, (8)

where Î
d

j is the super-resolved output at the j-th level, and I
gt
j

is the corresponding ground truth. Wj is the weight matrix

which defines the importance of each pixel in terms of its

latitude. In Wj , the elements in the same row have the same

value. Suppose that the latitude of the p-th row in Wj is q,

following [32], we can have the values of the p-th row in Wj

as cos( q+0.5−H/2
H π), where H is the height of I

gt
j .

It is worth noting that without horizontal copping and

merging operation in the first stage, complete ODI is output

from each level. In this case, the total loss remains the same

as the second stage. We train CNN network for more than

50 epochs for early convergence so that so that CNN and

evaluator subnet are better associated and optimized.

The Second Stage. In the second stage, we jointly train

the evaluator and the multi-level CNN as shown in Fig 5.

In this stage, considering that the low latitude area is more

important than the high latitude, we define the overall loss

function across all the levels by giving more emphasis on
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Table 1. The average and standard deviation of WS-PSNR (dB) and WS-SSIM results of different methods. The red values indicate the best

and the blue values indicate the second best results.
Scale 8× 16×

Method
ODI-SR SUN 360 Panorama ODI-SR SUN 360 Panorama

WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM WS-PSNR WS-SSIM

Bicubic 19.64±2.96 0.5908±0.0834 19.72±3.15 0.5403± 0.0862 17.12± 3.06 0.4332±0.0845 17.56± 3.06 0.4638± 0.0848

SRCNN 20.08± 1.65 0.6112±0.0712 19.46± 1.83 0.5701± 0.0819 18.08± 2.03 0.4501± 0.0806 17.95±2.12 0.4684±0.0813

VDSR 20.61± 1.74 0.6195± 0.0796 19.93± 1.91 0.5953± 0.0798 18.24± 2.35 0.4996± 0.0824 18.21± 2.47 0.4867±0.0829

LapSRN 20.72± 1.89 0.6214± 0.0823 20.05± 2.51 0.5998± 0.0816 18.45±2.54 0.5161±0.0861 18.46± 2.53 0.5068± 0.0841

MemNet 21.73±1.84 0.6284± 0.0802 21.08± 2.35 0.6015±0.0875 20.03±2.68 0.5411±0.0822 19.88±2.13 0.5401±0.0830

MSRN 22.29±1.86 0.6315±0.0815 21.34± 2.43 0.6002± 0.0918 20.05± 3.02 0.5416± 0.0968 19.87± 3.27 0.5316± 0.0976

EDSR 23.97± 1.74 0.6417± 0.0724 22.46± 2.32 0.6341± 0.0861 21.12± 2.58 0.5698± 0.0829 21.06± 2.49 0.5645± 0.0864

D-DBPN 24.15± 1.72 0.6573± 0.0758 23.70± 2.25 0.6421± 0.0858 21.25± 2.42 0.5714± 0.0831 21.08± 2.45 0.5646± 0.0918

RCAN 24.26± 1.68 0.6628± 0.0714 23.88± 2.02 0.6542± 0.0824 21.94± 1.75 0.5824± 0.0815 21.74± 2.28 0.5742± 0.0892

EBRN 24.29±1.72 0.6656±0.0698 23.89±2.04 0.6598±0.0832 21.86± 1.68 0.5809± 0.0792 21.78±2.12 0.5794±0.0842

360-SS 21.65± 1.91 0.6417± 0.0865 21.48± 2.56 0.6352±0.0872 19.65± 2.44 0.5431±0.0868 19.62±2.96 0.5308±0.0879

LAU-Net 24.36± 1.73 0.6801± 0.0736 24.02± 2.13 0.6708± 0.0801 22.07± 1.74 0.5901±0.0812 21.82± 2.36 0.5824± 0.0865

Figure 6. Visual comparisons of 8× super-resolved images from the “nature landscape” category of ODI-SR dataset.

the low latitude regions:

Ltotal =
J∑

j=1

Lj · 2
j−1. (9)

For evaluators, we update parameters following REIN-

FORCE algorithm [41]:

∆ωk = ∇ωk

J−1∑

j=1

log π(ajk | X
j
k;ω)R

j
k, (10)

ωk := ωk + β∆ωk, (11)

where ωk denotes parameters of evaluators, and β denotes

the learning rate.

5. Experiment

5.1. Dataset and implementation details

The network is trained using 800 images from our ODI-

SR database. For testing, we used 100 images from ODI-SR

database which are different from the training images, and

100 ODIs from the SUN 360 Panorama Database [42]. The

LR ODIs are generated by bicubic downsampling on the HR

ODIs. The number of level is set to 3 for 8× upscaling and
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Figure 7. Visual comparisons of 8× super-resolved images using different methods on SUN 360 Panorama dataset.

Figure 8. WS-PSNR vs. the number of parameters. The comparison

is conducted on ODI-SR test set with the 8× up-scaling factor.

4 for 16× upscaling. The number of dense blocks B is set

to 4 in each CAD-net. The number of patches K is set to

12, which means latitude range is 15◦ for each stripe. To

avoid boundary artifacts, an extra ±1.5◦ is added for each

stripe. Since our network is latitude aware, the training patch

should cover all latitudes. Thus, the training patch size is set

to 128×32 for 4× upscaling, 64×16 for 16× upscaling and

the batch size is 4. The model weights are initialized using

the method in [16]. The Adam optimizer [20] is employed

with β1 = 0.9, β2 = 0.999, and ε = 10−8. The learning

rate is initially set to 10−4 and decreased by a factor of 10

every 100 epochs. Data augmentation techniques are utilized

Table 2. Computational complexity of different models.

Method FLOPs Network params Running time

LapSRN 23G 1.3M 0.049s

EDSR 2473.4G 45.5M 2.231s

D-DBPN 766.4G 23.2M 0.682s

RCAN 617.9G 16M 0.416s

EBRN 595.5G 9.5M 0.403s

360-SS 15G 1.6M 0.010s

LAU-Net 342.8G 9.4M 0.352s

Table 3. Influence of CA dense block number on ODI-SR.

Number 1 2 3 4 5

WS-PSNR 23.85dB 24.08dB 24.19dB 24.36dB 24.37dB

WS-SSIM 0.6588 0.6656 0.6751 0.6801 0.6803

to enlarge the training data.

5.2. Comparison with SOTAs

To validate the effectiveness of the proposed LAU-Net,

we compare it with 9 SISR methods for 2D images, includ-

ing SRCNN [9], VDSR [18], LapSRN [21], MemNet [35],

MSRN [24], EDSR [25], D-DBPN [15], RCAN [48], and

EBRN [30], and one SISR method for ODI, i.e., 360-SS [28],

which is the only method we can find for ODI SISR. For fair

comparison, we retrain all the methods using the ODI-SR

database. The weighted-to-spherically-uniform PSNR (WS-
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Table 4. Influence of number of evaluators on ODI-SR.

K 4 8 12

WS-PSNR 22.64 24.15 24.36

WS-SSIM 0.6521 0.6710 0.6801

PSNR) [32] and weighted-to-spherically-uniform SSIM

(WS-SSIM), which are particularly designed for ODI quality

measurement, are used as metrics to evaluate the perfor-

mance of different methods in the experiments.

Quantitative results. Considering that the resolution re-

quired for ODIs in real-world conditions is much higher than

that of 2D images, Table 1 presents the average and standard

deviation of WS-PSNR and WS-SSIM results of different

methods for 8× and 16× upscaling on ODI-SR and SUN

360 Panorama datasets. As we can see, our LAU-Net per-

forms better than all other methods in terms of all metrics in

both our ODI-SR database and SUN 360 Panorama database.

In addition, our results also have a relatively low standard

deviation, which means that the reconstruction performance

of our network is more stable and generalized. Note that our

results are obtained without any self-ensemble strategy.

Qualitative results. Fig 6 and 7 visualize the super-

resolved images on ODI-SR and SUN 360 Panorama datasets

using different methods for 8× upscaling. As can be seen,

our method is able to reconstruct clear textures and accurate

structures at both high and low latitude areas. Other SR

methods either leads to blurred edges or distorted structures.

Computational complexity. Computational complexity

is important for ODI-SR in real applications. Fig 8 draws the

number of parameters and the WS-PSNR results of different

methods. As can be seen, our LAU-Net achieves higher WS-

PSNR results than other methods, with fewer parameters

than D-DBPN [15], RCAN [48], and EDSR [25]. This

demonstrates that our LAU-Net can well balance the number

of parameters and the reconstruction performance, owing to

its well-designed architecture. We also present in Table 2

the FLOPs, number of network parameters and the average

running time of different methods. As can be seen, the

running time of our method is faster than the others. This is

because the high latitude and low image complexity patches

are early dropped in our network, which greatly reduces the

running time without affecting too much objective results.

5.3. Ablation study

CA dense block. Firstly, we investigate the influence

of the number of CA dense blocks on the SR performance.

Table 3 shows the WS-PSNR results of our LAU-Net with

different number of CA dense blocks. As can be seen, the

WS-PSNR value improves with the increasing number of

CA blocks. However, the increment becomes very small

when the number is larger than 4. Thus, we choose to use 4

CA dense blocks in the CAD-net.

Evaluators. The number of evaluators K is an important

Table 5. Influence of loss function on ODI-SR.

Loss function WS-PSNR WS-SSIM

L1 loss 24.31 0.6765

L2 loss 24.28 0.6712

Ours 24.36 0.6801

factor in our network. The more evaluators indicate more

horizontal cropping operations and finer segmentation in

SSM. Table 4 show the WS-PSNR and WS-SSIM results

with the number of evaluators K ranging from 4 to 16. As

we can see from this table, both WS-PSNR and WS-SSIM

values increase with K is increased from 4 to 12. The smaller

number of evaluators may not result in good results because

a large band of the ODIs are forced to exit prematurely.

When the number of evaluator is set to 12, our network

has sufficient sampling density and is able to reasonably

distinguish high latitude patches and low latitude patches.

Latitude-adaptive loss. In Eq. (8), we design a latitude-

weighted loss function for each level in LAU-Net using a

weight matrix Wj . In Eq. (9), we further give priority to

the low-latitude area by multiplying 2j−1 to the weight of

the j-th level. To investigate the effectiveness of latitude-

weighted loss, we remove the Wj in Eq. (8), and directly

use the conventional L1 and L2 loss to train the network.

In Eq. (9), the total loss is simply the sum of the loss of

each level without 2j−1. Table 5 compare the WS-PSNR

and WS-SSIM results with L1, L2 and our latitude-adaptive

loss. As can be seen, our latitude-adaptive loss achieves the

best performance, indicating its effectiveness.

6. Conclusion

In this paper, we propose a novel latitude adaptive upscal-

ing network called LAU-Net for ODI SR. We first establish

a large ODI database with diverse resolutions and image

content. Based on our finding that the low latitude bands

have higher texture complexity than the high latitude bands,

we design a progressive pyramid network architecture in

LAU-Net. The core component in LAU-Net is the spatial

segmentation module, in which the ODI is split into differ-

ent latitude bands, and several reinforcement learning based

evaluators decide the optimal upscaling factor of the band.

The consequence is that the high latitude bands quit the net-

work from shallower levels, while the low latitude bands

go deeper. Extensive quantitative and qualitative results on

different ODI datasets demonstrate the superiority of the

proposed method over the other state-of-the-art SR methods.
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