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Abstract

Despite their appealing flexibility, deep neural networks

(DNNs) are vulnerable against adversarial examples. Vari-

ous adversarial defense strategies have been proposed to re-

solve this problem, but they typically demonstrate restricted

practicability owing to unsurmountable compromise on uni-

versality, effectiveness, or efficiency. In this work, we pro-

pose a more practical approach, Lightweight Bayesian Re-

finement (LiBRe), in the spirit of leveraging Bayesian neu-

ral networks (BNNs) for adversarial detection. Empow-

ered by the task and attack agnostic modeling under Bayes

principle, LiBRe can endow a variety of pre-trained task-

dependent DNNs with the ability of defending heteroge-

neous adversarial attacks at a low cost. We develop and

integrate advanced learning techniques to make LiBRe ap-

propriate for adversarial detection. Concretely, we build

the few-layer deep ensemble variational and adopt the pre-

training & fine-tuning workflow to boost the effectiveness

and efficiency of LiBRe. We further provide a novel in-

sight to realise adversarial detection-oriented uncertainty

quantification without inefficiently crafting adversarial ex-

amples during training. Extensive empirical studies cover-

ing a wide range of scenarios verify the practicability of Li-

BRe. We also conduct thorough ablation studies to evidence

the superiority of our modeling and learning strategies.1

1. Introduction

The blooming development of deep neural networks

(DNNs) has brought great success in extensive industrial

applications, such as image classification [23], face recog-

nition [9] and object detection [49]. However, despite

their promising expressiveness, DNNs are highly vulnera-

ble to adversarial examples [56, 19], which are generated by

adding human-imperceptible perturbations upon clean ex-

amples to deliberately cause misclassification, partly due to

their non-linear and black-box nature. The threats from ad-

*Corresponding author
1Code at https://github.com/thudzj/ScalableBDL.
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Figure 1: Given a pre-trained DNN, LiBRe converts its last few

layers (excluding the task-dependent output head) to be Bayesian,

and reuses the pre-trained parameters. Then, LiBRe launches

several-round adversarial detection-oriented fine-tuning to render

the posterior effective for prediction and meanwhile appropriate

for adversarial detection. In the inference phase, LiBRe estimates

the predictive uncertainty and task-dependent predictions of the

input concurrently, where the former is used for adversarial detec-

tion and determines the fidelity of the latter.

versarial examples have been witnessed in a wide spectrum

of practical systems [51, 12], raising an urgent requirement

for advanced techniques to achieve robust and reliable deci-

sion making, especially in safety-critical scenarios [13].

Though increasing methods have been developed to

tackle adversarial examples [41, 67, 25, 18, 66], they are

not problemless. On on hand, as one of the most popu-

lar adversarial defenses, adversarial training [41, 67] intro-

duces adversarial examples into training to explicitly tailor

the decision boundaries, which, yet, causes added training

overheads and typically leads to degraded predictive per-

formance on clean examples. On the other hand, adversar-

ial detection methods bypass the drawbacks of modifying

the original DNNs by deploying a workflow to detect the

adversarial examples ahead of decision making, by virtue

of auxiliary classifiers [43, 18, 66, 5] or designed statis-

tics [14, 39]. Yet, they are usually developed for specific

tasks (e.g., image classification [66, 31, 18]) or for specific

adversarial attacks [38], lacking the flexibility to effectively

generalize to other tasks or attacks.

By regarding the adversarial example as a special case

of out-of-distribution (OOD) data, Bayesian neural net-

works (BNNs) have shown promise in adversarial detec-

tion [14, 37, 53]. In theory, the predictive uncertainty ac-

quired under Bayes principle suffices for detecting hetero-
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geneous adversarial examples in various tasks. However, in

practice, BNNs without a sharpened posterior often present

systematically worse performance than their deterministic

counterparts [60]; also relatively low-cost Bayesian infer-

ence methods frequently suffer from mode collapse and

hence unreliable uncertainty [15]. BNNs’ requirement of

more expertise for implementation and more efforts for

training than DNNs further undermine their practicability.

In the work, we aim to develop a more practical adversar-

ial detection approach by overcoming the aforementioned

issues of BNNs. We propose Lightweight Bayesian Refine-

ment (LiBRe), depicted in Fig. 1, to reach a good balance

among predictive performance, quality of uncertainty esti-

mates and learning efficiency. Concretely, LiBRe follows

the stochastic variational inference pipeline [2], but is em-

powered by two non-trivial designs: (i) To achieve efficient

learning with high-quality outcomes, we devise the Few-

lAyer Deep Ensemble (FADE) variational, which is reminis-

cent of Deep Ensemble [30], one of the most effective BNN

methods, and meanwhile inspired by the scalable last-layer

Bayesian inference [28]. Namely, FADE only performs

deep ensemble in the last few layers of a model due to their

crucial role for determining model behaviour, while keeps

the other layers deterministic. To encourage various ensem-

ble candidates to capture diverse function modes, we de-

velop a stochasticity-injected learning principle for FADE,

which also benefits to reduce the gradient variance of the

parameters. (ii) To further ease and accelerate the learn-

ing, we propose a Bayesian refinement paradigm, where we

initialize the parameters of FADE with the parameters of

its pre-trained deterministic counterpart, thanks to the high

alignment between FADE and point estimate. We then per-

form fine-tuning to constantly improve the FADE posterior.

These designs make the whole learning procedure analo-

gous to training a standard DNN, freeing the end users from

the piecemeal details of Bayesian learning.

As revealed by [22], the uncertainty quantification purely

acquired from Bayes principle may be unreliable for per-

ceiving adversarial examples, thus it is indispensable to pur-

sue an adversarial detection-oriented uncertainty correction.

For universality, we place no assumption on the adversarial

examples to detect, so we cannot take the common strat-

egy of integrating the adversarial examples crafted by spe-

cific attacks into detector training [39]. Alternatively, we

cheaply create uniformly perturbed examples and demand

high predictive uncertainty on them during Bayesian refine-

ment to make the model be sensitive to data with any style of

perturbation. Though such a correction renders the learned

posterior slightly deviated from the true Bayesian one, it can

significantly boost adversarial detection performance.

The task and attack agnostic designs enable LiBRe to

quickly and cheaply endow a pre-trained task-dependent

DNN with the ability to detect various adversarial examples

when facing new tasks, as testified by our empirical studies

in Sec 5. Furthermore, LiBRe has significantly higher in-

ference (i.e., testing) speed than typical BNNs thanks to the

adoption of lightweight variational. We can achieve further

speedup by exploring the potential of parallel computing,

giving rise to inference speed close to the DNN in the same

setting. Extensive experiments in scenarios ranging from

image classification, face recognition, to object detection

confirm these claims and testify the superiority of LiBRe.

We further perform thorough ablation studies to deeply un-

derstand the adopted modeling and learning strategies.

2. Related Work

Detecting adversarial examples to bypass their safety

threats has attracted increasing attention recently. Many

works aim at distinguishing adversarial examples from be-

nign ones via an auxiliary classifier applied on statistical

features [18, 66, 5, 7, 63]. [21] introduces an extra class in

the classifier for adversarial examples. Some recent works

exploit neighboring statistics to construct more powerful

detection algorithms: [31] fits a Gaussian mixture model of

the network responses, and resorts to the Mahalanbobis dis-

tance for adversarial detection in the inference phase; [39]

introduces the more advanced local intrinsic dimensional-

ity to describe the distance distribution and observes better

results. RCE [46] is developed with the promise of leading

to an enhanced distance between adversarial and normal im-

ages for kernel density [14] based detection. However, most

of the aforementioned methods are restricted in the classi-

fication scope, and the detectors trained against certain at-

tacks may not effectively generalize to unseen attacks [38].

Bayesian deep learning [20, 59, 2, 1, 35, 26] provides

us with a more theoretically appealing way to adversarial

detection. However, though the existing BNNs manage to

perceive adversarial examples [14, 48, 53, 37, 47, 32], they

are typically limited in terms of training efficiency, predic-

tive performance, etc., and thus cannot effectively scale up

to real-world settings. More severely, the uncertainty esti-

mates given by the BNNs for adversarial examples are not

always reliable [22], owing to the lack of particular designs

for adversarial detection. In this work, we address these is-

sues with elaborated techniques and establish a more prac-

tical adversarial detection approach.

3. Background

In this section, we motivate Lightweight Bayesian Re-

finement (LiBRe) by briefly reviewing the background of

adversarial defense, and then describe the general workflow

of Bayesian neural networks (BNNs).

3.1. Adversarial Defense

Typically, let D = {(xi, yi)}
n
i=1 denote a collection of n

training samples with xi ∈ R
d and yi ∈ Y as the input data
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and label, respectively. A deep neural network (DNN) pa-

rameterized by w ∈ R
p is frequently trained via maximum

a posteriori estimation (MAP):

max
w

1

n

n
∑

i=1

log p(yi|xi;w) +
1

n
log p(w), (1)

where p(y|x;w) refers to the predictive distribution of the

DNN model. By setting the prior p(w) as an isotropic

Gaussian, the second term amounts to the L2 (weight de-

cay) regularizer with a tunable coefficient λ in optimization.

Generally speaking, the adversarial example corresponding

to (xi, yi) against the model is defined as

x
adv
i = xi + argmin

δ
i

∈S
log p(yi|xi + δi;w), (2)

where S = {δ : ‖δ‖ ≤ ǫ} is the valid perturbation set

with ǫ > 0 as the perturbation budget and ‖·‖ as some norm

(e.g., l∞). Extensive attack methods have been developed

with promise to solve the above minimization problem [19,

40, 4, 57], based on gradients or not.

The central goal of adversarial defense is to protect the

model from making undesirable decisions for the adversar-

ial examples xadv
i . A representative line of work approaches

this objective by augmenting the training data with on-the-

fly generated adversarial examples and forcing the model to

yield correct predictions on them [41, 67]. But their limited

training efficiency and compromising performance on clean

data pose a major obstacle for real-world adoption. As an

alternative, adversarial detection methods focus on distin-

guishing the adversarial examples from the normal ones so

as to bypass the potentially harmful outcomes of making

decisions for adversarial examples [43, 5, 39]. However,

satisfactory transferability to unseen attacks and tasks be-

yond image classification remains elusive [38].

3.2. Bayesian Neural Networks

In essence, the problem of distinguishing adversarial

examples from benign ones can be viewed as a special-

ized out-of-distribution (OOD) detection problem of partic-

ular concern in safety-sensitive scenarios – with the model

trained on the clean data, we expect to identify the adver-

sarial examples from a shifted data manifold, though the

shift magnitude may be subtle and human-imperceptible. In

this sense, we naturally introduce BNNs into the picture at-

tributed to their principled OOD detection capacity along

with the equivalent flexibility for data fitting as DNNs.

Modeling and training. Typically, a BNN is specified

by a parameter prior p(w) and an NN-instantiated data like-

lihood p(D|w). We are interested in the parameter posterior

p(w|D) instead of a point estimate as in DNN. It is known

that precisely deriving the posterior is intractable owing to

the high non-linearity of neural networks. Among the wide

spectrum of approximate Bayesian inference methods, vari-

ational BNNs are particularly attractive due to their close re-

semblance to standard backprop [20, 2, 36, 54, 55, 52, 45].

Generally, in variational BNNs, we introduce a variational

distribution q(w|θ) with parameters θ and maximize the

evidence lower bound (ELBO) for learning (scaled by 1/n):

max
θ

Eq(w|θ)

[

1

n

n
∑

i=1

log p(yi|xi;w)

]

−
1

n
DKL(q(w|θ)‖p(w)).

(3)

Inference. The obtained posterior q(w|θ)2 offers us

the opportunities to predict robustly. For computational

tractability, we usually estimate the posterior predictive via:

p(y|x,D) = Eq(w|θ) [p(y|x;w)] ≈
1

T

T
∑

t=1

p(y|x;w(t)), (4)

where w(t) ∼ q(w|θ), t = 1, ..., T denote the Monte Carlo

(MC) samples. In other words, the BNN assembles the pre-

dictions yielded by all likely models to make more reliable

and calibrated decisions, in stark contrast to the DNN which

only cares about the most possible parameter point.

Measure of uncertainty. For adversarial detection, we

are interested in the epistemic uncertainty which is indica-

tive of covariate shift. A superior choice of uncertainty met-

ric is the softmax variance given its previous success for ad-

versarial detection in image classification [14] and insight-

ful theoretical support [53]. However, the softmax output

of the model may be less attractive during inference (e.g.,

in open-set face recognition), letting alone that not all the

computer vision tasks can be formulated as pure classifi-

cation problems (e.g., object detection). To make the met-

ric faithful and readily applicable to diverse scenarios, we

concern the predictive variance of the hidden feature z cor-

responding to x, by mildly assuming the information flow

inside the model as x −→ z −→ y. We utilize an unbiased

variance estimator and summarize the variance of all coor-

dinates of z into a scalar via:

U(x) =
1

T − 1

[

T
∑

t=1

‖z(t)‖22 − T (‖
1

T

T
∑

t=1

z
(t)‖22)

]

, (5)

where z(t) denotes the features of x under parameter sam-

ple w(t) ∼ q(w|θ), t = 1, ..., T , with ‖·‖2 as ℓ2 norm. It

is natural to simultaneously make prediction and quantify

uncertainty via Eq. (4) and Eq. (5) when testing.

4. Lightweight Bayesian Refinement

Despite their theoretical appealingness, BNNs are sel-

dom adopted for real-world adversarial detection, owing to

a wide range of concerns on their training efficiency, pre-

dictive performance, quality of uncertainty estimates, and

2We use q(w|θ) equivalently with p(w|D) in the following if there is

no misleading.
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inference speed. In this section, we provide detailed and

novel strategies to relieve these concerns and build the prac-

tical Lightweight Bayesian Refinement (LiBRe) framework.

Variational configuration. At the core of variational

BNNs lies the configuration of the variational distribu-

tion. The recent surge of variational Bayes has enabled us

to leverage mean-field Gaussian [2], matrix-variate Gaus-

sian [36, 54], multiplicative normalizing flows [37] and

even implicit distributions [33, 52] to build expressive and

flexible variational distributions. However, on one side,

there is evidence to suggest that more complex variation-

als are commonly accompanied with less user-friendly and

less scalable inference processes; on the other side, more

popular and more approachable variationals like mean-field

Gaussian, low-rank Gaussian [15] and MC Dropout [17]

tend to concentrate on a single mode in the function space,

rendering the yielded uncertainty estimates unreliable [15].

Deep Ensemble [30], a powerful alternative to BNNs,

builds a set of parameter candidates θ = {w(c)}Cc=1, which

are separately trained to account for diverse function modes,

and uniformly assembles their corresponding predictions

for inference. In a probabilistic view, Deep Ensemble

builds the variational q(w|θ) = 1
C

∑C

c=1 δ(w − w(c))
with δ as the Dirac delta function. Yet, obviously, opti-

mizing the parameters of such a variational is computation-

ally prohibitive [30]. Motivated by the success of last-layer

Bayesian inference [28], we propose to only convert the last

few layers of the feature extraction module of a DNN, e.g.,

the last residual block of ResNet-50 [23], to be Bayesian

layers whose parameters take the deep ensemble variational.

Formally, breaking down w into wb and w−b, which de-

note the parameters of the tiny Bayesian sub-module and

the other parameters in the model respectively, we devise

the Few-lAyer Deep Ensemble (FADE) variational:

q(w|θ) =
1

C

C
∑

c=1

δ(wb −w
(c)
b )δ(w−b −w

(0)
−b ), (6)

where θ = {w
(0)
−b ,w

(1)
b , ...,w

(C)
b }. Intuitively, FADE will

strikingly ease and accelerate the learning, permitting scal-

ing Bayesian inference up to deep architectures trivially.

ELBO maximization. Given the FADE variational, we

develop an effective and user-friendly implementation for

learning. Equally assuming an isotropic Gaussian prior as

the MAP estimation for DNN, the second term of the ELBO

in Eq. (3) boils down to weight decay regularizers with co-

efficients λ on w
(0)
−b and λ

C
on w

(c)
b , c = 1, ..., C, which can

be easily implemented inside the optimizer.3 Then, we only

need to explicitly deal with the first term in the ELBO. An-

alytically estimating the expectation in this term is feasible

but may hinder different parameter candidates from explor-

ing diverse function modes (as they may undergo similar

3The derivation is based on relaxing the Dirac distribution as Gaussian

with small variance. See Sec 3.4 of [16] for detailed derivation insights.

optimization trajectories). Thus, we advocate maximizing a

stochastic estimate of it on top of stochastic gradient ascent:

max
θ

L =
1

|B|

∑

(x
i

,y
i

)∈B

log p(yi|xi;w
(c)
b ,w

(0)
−b ), (7)

where B is a stochastic mini-batch, and c is drawn from

unif{1, C}, i.e., the uniform distribution over {1, ..., C}.

However, intuitively, ∇w
(0)

−b

L exhibits high variance across

iterations due to its correlation with the varying choice of c,
which is harmful for the convergence (see Sec 5.4 and [27]).

To disentangle such correlation, we propose to replace the

batch-wise parameter sample w
(c)
b with instance-wise ones

w
(c

i

)
b , ci

i.i.d.
∼ unif{1, C}, i = 1, ..., |B|, which ensures w

(0)
−b

to comprehensively consider the variable behaviour of the

Bayesian sub-module at per iteration. Formally, we solve

the following problem for training:

max
θ

L∗ =
1

|B|

∑

(x
i

,y
i

)∈B

log p(yi|xi;w
(c

i

)
b ,w

(0)
−b ). (8)

Under such a learning criterion, each Bayesian param-

eter candidate accounts for a stochastically assigned, sep-

arate subset of B. Such stochasticity will be injected into

the gradient ascent dynamics and serves as an implicit

regularization [42], leading {w
(c)
b }Cc=1 to investigate di-

verse weight sub-spaces and ideally diverse function modes.

Compared to Deep Ensemble [30] which depends on ran-

dom initialization to avoid mode collapse, our approach is

more theoretically motivated and more economical.

Though computing L∗ involves the same FLOPS as

computing L, there is a barrier to make the computation

compatible with modern autodiff libraries and time-saving

– de facto computational kernels routinely process a batch

given shared parameters while estimating L∗ needs the

kernels to embrace instance-specialized parameters in the

Bayesian sub-module. In spirit of parallel computing, we

resort to the group convolution, batch matrix multiplication,

etc. to address this issue. The resultant computation burden

is negligibly more than the original DNN thanks to the sup-

port of powerful backends like cuDNN [6] for these opera-

tors and the tiny size of the Bayesian sub-module.

Adversarial example free uncertainty correction. It is

a straightforward observation that the above designs of the

BNN are OOD data agnostic, leaving the ability to detect

adversarial examples solely endowed by the rigorous Bayes

principle. Nevertheless, as a special category of OOD data,

adversarial examples hold several special characteristics,

e.g., the close resemblance to benign data and the strong

offensive to the behaviour of black-box deep models, which

may easily destroy the uncertainty based adversarial detec-

tion [22]. A common strategy to address this issue is to

incorporate adversarial examples crafted by specific attacks

into detector training [39], which, yet, is costly and may
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limit the learned models from generalizing to unseen at-

tacks. Instead, we propose an adversarial example free un-

certainty correction strategy by considering a superset of the

adversarial examples. We feed uniformly perturbed training

instances (which encompass all kinds of adversarial exam-

ples) into the BNN and demand relatively high predictive

uncertainty on them. Formally, with ǫtrain as the training

perturbation budget, we perturb a mini-batch of data via

x̃i = xi + δi, δi
i.i.d.
∼ U(−ǫtrain, ǫtrain)

d, i = 1, ..., |B|. (9)

Then we calculate the uncertainty measure U cheaply with

T = 2 MC samples, and regularize the outcome via solving

the following margin loss:

max
θ

R =
1

|B|

∑

(x
i

,y
i

)∈B

min(‖z̃
(c

i,1

)
i − z̃

(c
i,2

)
i ‖22, γ), (10)

where z̃
(c

i,j

)
i refers to the features of x̃i given parameter sam-

ple w(c
i,j

) = {w
(c

i,j

)
b ,w

(0)
−b}, with ci,j

i.i.d.
∼ unif{1, C} and

ci,1 6= ci,2, i = 1, ..., |B|, j = 1, 2. γ is a tunable thresh-

old. Surprisingly, this regularization remarkably boosts the

adversarial detection performance (see Sec 5.4).

Efficient learning by refining pre-trained DNNs.

Though from-scratch BNN training is feasible, a recent

work demonstrate that it probably incurs worse predic-

tive performance than a fairly trained DNN [60]. There-

fore, given the alignment between the posterior parameters

θ = {w
(0)
−b ,w

(1)
b , ...,w

(C)
b } and their DNN counterparts,

we suggest to perform cost-effective Bayesian refinement

upon a pre-trained DNN model, which renders our work-

flow more appropriate for large-scale learning.

With the pre-training DNN parameters denoted as w† =

{w†
b ,w

†
−b}, we initialize w

(0)
−b as w

†
−b and w

(c)
b as w

†
b for

c = 1, ..., C. Continuing from this, we fine-tune the vari-

ational parameters to maximize L∗ + αR4 under weight

decay regularizers with suitable coefficients to realise ad-

versarial detection-oriented posterior inference. The whole

algorithmic procedure is presented in Algorithm 1. Such

a practical and economical refinement significantly benefits

from the prevalence of open-source DNN model zoo, and is

promised to maintain non-degraded predictive performance

by the well-evaluated pre-training & fine-tuning workflow.

Inference speedup. After learning, a wide criticism on

BNNs is their requirement for longer inference time than

DNNs. This is because BNNs leverage a collection of MC

samples to marginalize the posterior for prediction and un-

certainty quantification, as shown in Eq. (4) and Eq. (5).

However, such a problem is desirably alleviated in our ap-

proach thanks to the adoption of the FADE variational. The

main part of the model remains deterministic, allowing us

to perform only once forward propagation to reach the entry

of the Bayesian sub-module. In the Bayesian sub-module,

4α refers to a trade-off coefficient.

Algorithm 1: Lightweight Bayesian Refinement

Input: pre-trained DNN parameters w†, weight decay

coefficient λ, threshold γ, trade-off coefficient α
1 Initialize {w

(c)
b }Cc=1 and w

(0)
−b based on w

†

2 Build optimizers optb and opt−b with weight decay λ/C

and λ for {w
(c)
b }Cc=1 and w

(0)
−b respectively

3 for epoch = 1, 2, ..., E do

4 for mini-batch B = {(xi, yi)}
|B|
i=1 in D do

5 Estimate the log-likelihood L∗ via Eq. (8)

6 Uniformly perturb the clean data via Eq. (9)

7 Estimate the uncertainty penalty R via Eq. (10)

8 Backward the gradients of L∗ + αR via autodiff

9 Perform 1-step gradient ascent with optb & opt−b

we expect to take all the C parameter candidates into ac-

count for prediction to thoroughly exploit their heteroge-

neous predictive behaviour, i.e., T = C. Naively sequen-

tially calculating the outcomes under each parameter can-

didate w
(c)
b is viable, but we can achieve further speedup

by unleashing the potential of parallel computing. Take the

convolution layer in the front of the Bayesian sub-module as

an example (we abuse some notations here): Given a batch

of features xin ∈ R
b×i×h×w and C convolution kernels

w(c) ∈ R
o×i×k×k, c = 1, ..., C, we first repeat xin at the

channel dimension for C times, getting x′
in = R

b×Ci×h×w,

and concatenate {w(c)}Cc=1 as w′ ∈ R
Co×i×k×k. Then,

we estimate the outcomes in parallel via group convolution:

x′
out = conv(x′

in,w
′, groups = C), and the outcome cor-

responding to w(c) is x
(c)
out = x′

out[:, co − o : co, ...]. The

cooperation between FADE variational and the above strat-

egy makes our inference time close to that of the DNNs in

the same setting (see Sec 5.4), while only our approach en-

joys the benefits from Bayes principle and is able to achieve

robust adversarial detection.

5. Experiments

To verify if LiBRE could quickly and economically equip

the pre-trained DNNs with principled adversarial detection

ability in various scenarios, we perform extensive empirical

studies covering ImageNet classification [8], open-set face

recognition [64], and object detection [34] in this section.

General setup. We fetch the pre-trained DNNs avail-

able online, and inherit all their settings for the Bayesian

refinement unless otherwise stated. We use C = 20 can-

didates for FADE across scenarios. The FADE posterior is

generally employed for the parameters of the last convolu-

tion block (e.g., the last residual block for ImageNet and

face tasks or the feature output heads for object detection).

We take the immediate output of the Bayesian sub-module

as z for estimating feature variance uncertainty.

Attacks. We adopt some popular attacks to craft ad-

versarial examples under ℓ2 and ℓ∞ threat models, includ-
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Method
Prediction accuracy ↑ AUROC of adversarial detection under model transfer ↑

TOP1 TOP5 PGD MIM TIM DIM

MAP 76.13% 92.86% - - - -

MC dropout [17] 74.86% 92.33% 0.660 0.723 0.695 0.605

LMFVI 76.06% 92.92% 0.125 0.200 0.510 0.018

MFVI 75.24% 92.58% 0.241 0.205 0.504 0.150

LiBRe 76.19% 92.98% 1.000 1.000 0.982 1.000

Table 1: Left: comparison on accuracy. Right: comparison on AUROC of adversarial detection under model transfer. (ImageNet)

Method FGSM BIM C&W PGD MIM TIM DIM FGSM-ℓ2 BIM-ℓ2 PGD-ℓ2
KD [14] 0.639 1.000 0.999 1.000 1.000 0.999 0.624 0.633 1.000 1.000

LID [39] 0.846 0.999 0.999 0.999 0.997 0.999 0.762 0.846 0.999 0.999

MC dropout [17] 0.607 1.000 0.980 1.000 1.000 0.999 0.628 0.577 0.999 0.999

LMFVI 0.029 0.992 0.738 0.943 0.996 0.997 0.021 0.251 0.993 0.946

MFVI 0.102 1.000 0.780 0.992 1.000 0.999 0.298 0.358 0.952 0.935

LiBRe 1.000 0.984 0.985 0.994 0.996 0.994 1.000 0.995 0.983 0.993

Table 2: Comparison on AUROC of adversarial detection for regular attacks ↑. (ImageNet)

ing fast gradient sign method (FGSM) [19], basic itera-

tive method (BIM) [29], projected gradient descent method

(PGD) [40], momentum iterative method (MIM) [10], Car-

lini & Wagner’s method (C&W) [4], diverse inputs method

(DIM) [62], and translation-invariant method (TIM) [11].

We set the perturbation budget as ǫ =16/255. We set step

size as 1/255 and the number of steps as 20 for all the it-

erative methods. When attacking BNNs, the minimization

goal in Eq. (2) refers to the posterior predictive in Eq. (4)

with T = 20. More details are deferred to Appendix.

Baselines. Given the fact that many of the recent adver-

sarial detection methods focus on specific tasks or attacks

and hence can hardly be effectively extended to the chal-

lenging settings considered in this paper (e.g., attacks under

model transfer, object detection), we mainly compare Li-

BRe to baselines implemented by ourselves, including 1)

the fine-tuning start point MAP; 2) two standard adversar-

ial detection approaches KD [14] and LID [39], which both

work on the extracted features by MAP; 3) three popular

BNN baselines MC dropout [17], MFVI [2], and LMFVI.

MC dropout trains dropout networks from scratch and en-

ables dropout during inference. MFVI is trained by the

typical mean-field variational inference, and LMFVI is a

lightweight variant of it with only the last few layers con-

verted to be Bayesian (similar to LiBRe). MFVI and LMFVI

work in a Bayesian refinement manner in analogy to LiBRe

for fair comparison. MC dropout, MFVI, and LMFVI are

all trained without uncertainty calibration R and take the

feature variance as the measure of uncertainty.

Metric. The adversarial detection is essentially a binary

classification, so we report the area under the receiver op-

erating characteristic (AUROC) based on the raw predictive

uncertainty (for MFVI, LMFVI, MC dropout, and LiBRe),

or the output of an extra detector (for KD and LID).

5.1. ImageNet Classification

We firstly check the adversarial detection effectiveness

of LiBRe on ImageNet. We utilize the ResNet-50 [23] archi-

tecture with weight decay coefficient λ = 10−4, and set the

uncertainty threshold γ as 0.5 according to the observation

that the normal samples usually have < 0.5 feature variance

uncertainty. We set α = 1 without tuning. We uniformly

sample a training perturbation budget ǫtrain ∈ [ ǫ2 , 2ǫ] at per

iteration. We perform fine-tuning for E = 6 epochs with

learning rate of {w
(c)
b }Cc=1 annealing from 10−3 to 10−4

with a cosine schedule and that of w
(0)
−b fixed as 10−4.

To defend regular attacks, KD and LID require to train a

separate detector for every attack under the supervision of

the adversarial examples from that attack. Thus, to show

the best performance of KD and LID, we test the trained

detectors only on their corresponding adversarial examples.

By contrast, LiBRE, MC dropout, LMFVI, and MFVI do

not rely on specific attacks for training, thus have the poten-

tial to detect any (unseen) attack, which is more flexible yet

more challenging. With that said, they can be trivially ap-

plied to detect the adversarial examples under model trans-

fer, which are crafted against a surrogate ResNet-152 DNN

but are used to attack the trained models, to further assess

the generalization ability of these defences.

The results are presented in Table 1 and Table 2. We

also illustrate the uncertainty of normal and adversarial ex-

amples assigned by LiBRe and a baseline in Fig. 2. It is an

immediate observation that LiBRe preserves non-degraded

prediction accuracy compared to its refinement start point

MAP, and meanwhile demonstrates near-perfect capacity of

detecting adversarial examples. The superiority of LiBRe is

especially apparent under the more difficult model transfer

paradigm. The results in Fig. 2 further testify the ability

of LiBRe to assign higher uncertainty for adversarial exam-

ples to distinguish them from the normal ones. Although

KD and the golden standard, LID, obtain full knowledge of

the models and the attacks, we can still see evident margins

between their worst-case5 results and that of LiBRe.

5The worst case is of much more concern than the average for assessing

robustness.
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(a) LiBRe, ImageNet (b) LMFVI, ImageNet (c) LiBRe, Face (d) MC dropout, Face

Figure 2: The histograms for the feature variance uncertainty of normal and adversarial examples given by LiBRe or the baselines.

Method
Softmax CosFace ArcFace

MAP MCD LMFVI LiBRe MAP MCD LMFVI LiBRe MAP MCD LMFVI LiBRe

VGGFace2 0.9256 0.9254 0.9198 0.9246 0.9370 0.9370 0.9360 0.9376 0.9356 0.9334 0.9358 0.9348

LFW 0.9913 0.9898 0.9912 0.9892 0.9930 0.9932 0.9920 0.9935 0.9933 0.9930 0.9933 0.9943

CPLFW 0.8630 0.8638 0.8610 0.8598 0.8915 0.8890 0.8925 0.8910 0.8808 0.8803 0.8833 0.8837

CALFW 0.9107 0.9110 0.9087 0.9120 0.9327 0.9345 0.9333 0.9352 0.9292 0.9300 0.9250 0.9283

AgedDB-30 0.9177 0.9170 0.9128 0.9167 0.9435 0.9422 0.9387 0.9433 0.9327 0.9317 0.9337 0.9337

CFP-FP 0.9523 0.9543 0.9480 0.9489 0.9564 0.9567 0.9583 0.9597 0.9587 0.9586 0.9554 0.9573

CFP-FF 0.9873 0.9870 0.9874 0.9874 0.9927 0.9926 0.9916 0.9927 0.9914 0.9910 0.9911 0.9921

Table 3: Accuracy comparison on face recognition ↑. MCD is short for MC dropout. Bold refers to the best results under specific loss

function. Blue bold refers to the overall best results.

Attack
Softmax CosFace ArcFace

MC dropout LMFVI LiBRe MC dropout LMFVI LiBRe MC dropout LMFVI LiBRe

FGSM 0.866 0.155 1.000 0.889 0.001 1.000 0.794 0.001 1.000

BIM 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000 1.000

PGD 1.000 0.992 0.999 1.000 0.998 0.998 1.000 0.990 1.000

MIM 1.000 1.000 0.999 1.000 1.000 0.999 1.000 1.000 1.000

TIM 1.000 1.000 0.999 1.000 1.000 0.998 1.000 1.000 1.000

DIM 0.910 0.025 1.000 0.850 0.000 1.000 0.746 0.000 1.000

FGSM-ℓ2 0.860 0.659 1.000 0.825 0.014 0.999 0.660 0.002 0.999

BIM-ℓ2 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000

PGD-ℓ2 1.000 0.996 0.999 1.000 0.999 1.000 1.000 0.994 1.000

Table 4: Comparison on adversarial detection AUROC ↑. We report the averaged AUROC over the verification datasets. (face recognition)

The uncertainty-based detection baselines MC dropout,

LMFVI, and MFVI are substantially outperformed by Li-

BRe when considering the worst case. It is noteworthy that

MC dropout is slightly better than LMFVI and MFVI for

adversarial detection, despite with worse accuracy. We also

find that the performance of LMFVI is matched with that

of MFVI, supporting the proposed lightweight variational

notion. Thus we use LMFVI as a major baseline in face

recognition instead of MFVI due to its efficiency.

5.2. Face Recognition

In this section, we concern the more realistic open-set

face recognition on CASIA-WebFace [64]. We adopt the

IResNet-50 architecture [9] and try three task-dependent

loss: Softmax, CosFace [58], and ArcFace [9]. We follow

the default hyper-parameter settings of [58, 9] and set λ as

5 × 10−4. We tune some crucial hyper-parameters accord-

ing to a held-out validation set and set γ = 1, α = 100, and

E = 4. We uniformly sample ǫtrain ∈ [ǫ, 2ǫ] at per itera-

tion. We adopt the same optimizer settings as on ImageNet.

We perform comprehensive evaluation on face verification

datasets including LFW [24], CPLFW [68], CALFW [69],

CFP [50], VGGFace2 [3], and AgeDB-30 [44].

We provide the comparison results in Table 3, Table 4,

and sub-figure (c) and (d) of Fig. 2. As expected, LiBRe

frequently yields non-degraded recognition accuracy com-

pared to MAP. Though the major goal of LiBRe is not to

boost the task-dependent performance of the pre-trained

DNNs, to our surprise, LiBRe demonstrates dominant per-

formance under the CosFace loss function. Regarding the

quality of adversarial detection, LiBRe also bypasses the

competitive baselines, especially in the worst case. These

results prove the universality and practicability of LiBRe.

5.3. Object Detection on COCO

Then, we move to a more challenging task – object de-

tection on COCO [34]. Attacking and defending in object

detection are more complicated and harder than in image

classification [61]. Thus, rare of the previous works have

generalized their methodology into this scenario. By con-

trast, the task agnostic designs in LiBRe make it readily

applicable to object detection without compromising effec-

tiveness. Here, we launch experiments to identify this.

We take the state-of-the-art YOLOV5 [65] to perform

experiments on COCO. In detail, we setup the experiments

with λ = 5 × 10−4, γ = 0.02, and α = 0.02. The other
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Method
Object detection Adversarial detection

mAP@.5 mAP@.5:.95 FGSM BIM PGD MIM

MAP 0.559 0.357 - - - -

LiBRe 0.545 0.344 0.957 0.936 0.972 0.966

Table 5: Results on object detection. (COCO)

settings are aligned with those on face recognition.

Multi-objective attack. Distinct from the ordinary clas-

sifiers, the object detector exports the locations of objects

along with their classification results. Thus, an adversary

needs to perform multi-objective attack to either make the

detected objects wrongly classified or render the objects of

interest undetectable. Specifically, we craft adversarial ex-

amples by maximizing a unified loss of the two factors de-

rived from [65] w.r.t. the input image, which enables us to

reuse the well developed FGSM, BIM, PGD, MIM, etc.

Table 5 exhibits the results. As expected, LiBRe shows

satisfactory performance for detecting the four kinds of ad-

versarial examples, verifying the universality of the Bayes

principle based adversarial detection mechanism.

5.4. Ablation Study

Comparison on uncertainty measure. As argued, the

feature variance uncertainty is more generic than the widely

used softmax variance. But, do they have matched effec-

tiveness for adversarial detection? Here we answer this

question. We estimate the AUROC of detecting various ad-

versarial examples based on softmax variance uncertainty

and list the results in row 2-3 of Table 6. Notably, the

softmax variance brings much worse detection performance

than feature variance. We attribute this to that the transfor-

mations to produce softmax output aggressively prune the

information uncorrelated with the task-dependent target, but

such information is crucial for qualifying uncertainty.

Effectiveness of R. Another question of interest

is whether the compromising adversarial detection perfor-

mance of LMFVI and MFVI stems from the naive training

without uncertainty regularization R. For an answer, we

train two variants of LMFVI and MFVI which incorporate

R into the training like LiBRe. Their results are offered in

row 4-5 of Table 6. These results reflect that training under

R will indeed significantly boost the adversarial detection

performance. Yet, the two variants are still not as good as

LiBRe, implying the supremacy of FADE.

Effectiveness of L∗. We then look at another key de-

sign of LiBRe – optimizing L∗, the instance-wise stochastic

estimation of the expected log-likelihood (the first term of

the ELBO), rather than L. To deliver a quantitative analysis,

we train LiBRe by optimizing L and estimate the adversarial

detection quality of the learned model, obtaining the results

presented in row 6 of Table 6. The obviously worse results

than original LiBRe substantiate our concerns on L in Sec 4.

Inference speed. We compare the inference speed of

LiBRe to the baselines in sub-figure (a) of Fig. 3. LiBRe

and LMFVI are orders of magnitude faster than the other

Ablation Method FGSM C&W PGD DIM

w/ SV
MC dropout 0.759 0.013 0.049 0.752

LiBRe 0.708 0.107 0.361 0.650

w/ UR
LMFVI 0.990 0.921 0.980 0.989

MFVI 0.986 0.943 0.999 0.992

w/ L LiBRe 0.433 0.820 0.887 0.247

Table 6: AUROC comparison for ablation study. As a reference,

the results of LiBRe are 1.000, 0.985, 0.994, and 1.000, respec-

tively. SV refers to using softmax variance as uncertainty measure.

UR refers to training under the uncertainty regularization R. L
refers to using batch-wise MC estimation in training. (ImageNet)
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(a) Inference speed comparison (b) Candidate similarity in the posterior

Figure 3: Left: the time for estimating the posterior predictive of

a mini-batch of 32 ImageNet instances with T = 20 MC samples

on one RTX 2080-Ti GPU (MAP performs deterministic inference

without MC estimation). Right: the similarity between the candi-

dates in the learned FADE posterior.

two BNNs. LiBRe is only slightly slower than MAP, but

can yield uncertainty estimates for adversarial detection.

A visualization of the posterior. To verify the claim

that our learning strategies lead to posteriors without mode

collapse, we reduce the dimension of the candidates in the

learned FADE posterior via PCA and then compute the co-

sine similarity between them. Sub-figure (b) of Fig. 3 de-

picts the results, which signify the candidate diversity.

6. Conclusion

In this work, we propose a practical Bayesian approach

to supplement the pre-trained task-dependent DNNs with

the ability of adversarial detection at a low cost. The de-

veloped strategies enhance the efficiency and the quality of

adversarial detection without compromising predictive per-

formance. Extensive experiments validate the practicability

of the proposed method. For future work, we can develop

a parameter-sharing variant of FADE for higher efficiency,

apply LiBRe to DeepFake detection, etc.
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