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Abstract

In this paper, we propose a progressive margin loss (PM-

L) approach for unconstrained facial age classification.

Conventional methods make strong assumption on that each

class owns adequate instances to outline its data distribu-

tion, likely leading to bias prediction where the training

samples are sparse across age classes. Instead, our PML

aims to adaptively refine the age label pattern by enforc-

ing a couple of margins, which fully takes in the in-between

discrepancy of the intra-class variance, inter-class vari-

ance and class center. Our PML typically incorporates with

the ordinal margin and the variational margin, simultane-

ously plugging in the globally-tuned deep neural network

paradigm. More specifically, the ordinal margin learns to

exploit the correlated relationship of the real-world age la-

bels. Accordingly, the variational margin is leveraged to

minimize the influence of head classes that misleads the pre-

diction of tailed samples. Moreover, our optimization care-

fully seeks a series of indicator curricula to achieve robust

and efficient model training. Extensive experimental result-

s on three face aging datasets demonstrate that our PML

achieves compelling performance compared to state of the

art. Code will be made publicly.

1. Introduction

Facial age classification (a.k.a., facial age estima-

tion) aims to predict the exact biological ages from given fa-

cial images, which has a lot of potential computer vision ap-

plications such as human-computer interaction [53, 15] and

facial attribute analysis [39, 4]. While numerous works have

been devoted recently [17, 27, 18, 50, 43], the performance

still remains limited in wild conditions, which is mainly

due to that the datasets often undergo long-tailed distribu-

∗Corresponding author.

tion with many minority classes (tail) and a few common

classes (head). When learning with the long-tailed age da-

ta, a common problem is that the head classes usually dom-

inate the training convergence. Therefore, the learned age

classification model tends to perform better on head class-

es, whereas the performance degrades in tail classes. This

quite motivates us to develop a robust facial age classifi-

cation approach versus imbalanced age data. In the left of

Fig. 1, we visualize some failure cases caused by existing

age classification methods.

Facial age classification approaches could be roughly di-

vided into the single label learning (SLL)-based [17, 18, 43,

11] and the label distribution learning (LDL)-based [50, 31,

51, 52, 36]. SLL-based methods typically classify one s-

ingle age for a given facial image, which treats each age

independently. However, they ignore human face changes

gradually with progressive ages, thus the facial appearance

is usually indiscriminative at adjacent age classes. To fur-

ther model the age correlation, Geng et al. [19] proposed an

LDL method to map the real-valued ground-truth to a Gaus-

sian label distribution. However, the performance degrades

in such long-tailed case where the feature representation of

minority is suppressed by the majority classes.

To address the long-tailed data issue, we propose a pro-

gressive margin loss (PML) approach for age classification,

which aims to leverage semantic margins to reduce intra-

class variance and enlarge inter-class variance simultane-

ously. As shown in Fig. 2, we carefully develop a progres-

sive margin loss at the top of deep neural networks with p-

reserving the age-difference cost information. Technically,

our proposed PML is composed of two crucial branches in-

cluding an ordinal margin learning and a variational margin

learning. The ordinal margin attempts to extract discrim-

inative features while maintaining the relation of the age

order. For efficient optimization, we develop a series of in-

dicators by following the curriculum-learning method. To

validate the effectiveness of our proposed method, we per-
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PML  1.042             Baseline  6.403

PML  1.135             Baseline  3.427
Ground Truth
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Age   35
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Figure 1. Our approach versus existing label distribution learning approaches. We expect the ground truth (red square or red triangle) to

be at the center of the label prediction, where one sample in the head category (blue square) and another sample in the tail category (blue

triangle) should be enforced by a margin from the real age. It is valuable to be notified that the dotted frame represents the position

before adjustment. Top: The baseline method reasons the multi-modal distribution, because the head classes dominate the tail classes. Our

proposed PML addresses this error by preventing the tail class from disturbance of the head. Bottom: The baseline method could hardly

find effective features in tail categories and limited to output the uniform distribution. Our PML achieves robust feature representation by

integrating the relation of adjacent age classes. (Best viewed in color PDF file.)

form extensive experiments on three widely-used face aging

datasets, where each dataset undergoes varying degrees of

the imbalance. From the results, we achieve superior perfor-

mance compared with the state-of-the-art methods especial-

ly only with fewer samples. For example, without using any

external datasets, we decrease the MAE by 1.56 compared

with the recently reported benchmark with only sparse and

limited samples.

2. Related Work

In this section, we briefly review the related works on

facial age estimation and imbalanced classification, respec-

tively.

Facial Age Classification. Conventional age classi-

fication methods could be roughly divided into two types:

feature representation [2, 9, 12] and age prediction [16, 8].

Feature representation-based methods aim to exploit dis-

criminative feature patterns from the facial images. Re-

spectively, age prediction-based methods learn to classify

the age labels with the extracted features. However, both

types are optimized in a two-stage manner, which likely

leads to local solution. To circumvent this limitation, deep

learning has been applied to jointly optimize both proce-

dures of feature representation and age prediction. For ex-

ample, Rothe et al. [50] formulated the age estimation as the

expectation-based classification problem, where the predic-

tion is accomplished by maximizing the expectation of out-

putting logits. Nevertheless, these methods hardly exploit

the full chronological relationship of practical ages. To in-

troduce the age label correlation to the model, Liu et al. [31]

proposed an ordinal deep feature learning (ODFL) method,

which enforces both the topology ordinal relation and the

age-difference information in the learned feature space.

Furthermore, Li et al. [27] developed the BridgeNet to mod-

el the ordinal relation of age labels via gated local regres-

sors. To further alleviate the problem of label ambiguity,

Geng et al. [19] designed a distribution learning approach

to transform the single scalar label to a vector. Neverthe-

less, the LDL schema gives rise to bias in predicting mi-

nority classes, where the samples within each age class are

variant in appearance. We cope with this issue by a pro-

gressive margin loss framework, which elaborately adjusts

the learned age patterns by fully considering the distributed

property of neighboring age classes.

Imbalanced Classification. With the remarkable suc-

cess achieved by data-driven CNNs [26, 32, 40, 19], deep

models have witnessed that the generation capacity is lim-

ited especially for imbalanced and distributed data [6, 25].

Existing imbalanced classification methods are coarsely di-

vided into re-sampling [3, 6, 48] and cost-sensitive loss

function [28, 30, 37]. Accordingly, re-sampling-based

methods aim to balance the scalability of the head class-

es and tail classes, but such schema easily prones to over-

fitting in the tail classes. The major reason is that the train-

ing model memorizes irrelevant noise when utilizing the

tailed data repeatedly [29]. Cost-sensitive methods are de-

veloped to improve the influence of minority classes by as-

signing higher misclassification costs to the minority class

than to the majority ones. In addition, both works [28, 34]

were proposed by the focal loss to mine hard-negative in-
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stances online and adaptive margin softmax to adjust the

margins for different classes adaptively. However, these

methods ignore the original relationship within samples

w.r.t. neighboring age classes. As far as one can tell from

the literature, few works of imbalanced classification have

been visited yet in facial age classification.

3. Approach

In this work, we claim that margin matters for robust

age label distribution learning. To achieve the proposed

progressive margin loss, we enforce our model to integrate

with the practical age progression in the learned distribu-

tion, which is semantic and interpretable. Fig. 2 demon-

strates the overall architecture of our proposed method. In

detail, the PML contains three components: a backbone

feature extractor fE(·), an ordinal margin learning branch

fO(·) and a variational margin learning branch fV (·). For

an input image I , the feature denoted by x is extracted by

the layer-4 of the backbone ResNet-34 network [23]. Then

we define the class center c, the inter-variance φ and the

intra-varianceψ, which will be updated according to the re-

cursive formula for calculating the mean and the variance.

Moreover, our approach learns both the ordinal and vari-

ational margins by taking c, φ and ψ as the inputs to the

fO(·) and fV (·). Finally, we introduce a curriculum learn-

ing protocol [24, 20] to smoothly simulate data distribution

from being balanced to imbalanced. To clarify the notation-

s, Table 1 tabulates the detailed descriptions of all employed

variables and functions in this work.

3.1. Problem Formulation

Let y ∈ {0, ..., 100} denote the ground-truth age for each

input I . Based on the property of label ambiguity, a fa-

cial image feature responds to different similarities across

ages and the similarity roughly obeys the Gaussian distri-

bution [17]. Our goal is to transform the scalar age value y

to an adaptive label distribution y ∈ R
101 as follows.

yk =
1

σ
√
2π

exp(− (k − y)2

2σ2
), (1)

where k ∈ [0, 100], σ is the variance of label distribution.

yk is the k-th element of y which represents the probability

that the true age is k years old, respectively.

To classify the progressive ages with the long-tailed da-

ta, we propose a progressive margin loss to reason out ro-

bust label distributions. To this end, our approach main-

tains the ordinal age correlation and suppresses the noise of

majority classes on the minority ones in the learned fea-

ture space. Moreover, our approach leverages Kullback-

Leibler(KL) divergence to measure the distance between the

ground-truth distribution and the predicted one.

Table 1. Detailed description of the variables.

Symbol Definition

I ∈ R
W×H Raw face image with W ×H pixels

x ∈ R
D Extracted feature with D-dimension

y ∈ R
c Age label distribution consisting

of c Age scalar values y

c ∈ R
c×D Class centers with D-dimension

φ ∈ R
c×1 Intra-class variances

ψ ∈ R
c×c Inter-class variances

V ∈ R
c×(D+1+c) Concatenation of the c, φ and ψ

s(·) Dot similarity measure function

d(·) Cosine distance measure function

fO(·) Function of ordinal margin learning

fV (·) Function of variational margin learning

Mo ∈ R
c×2 Ordinal margins including a tuple of

mean and variance

Mv ∈ R
c×c Variational margins computing by

one-vs.-all (OvA) schema

In this way, the optimal parameter θ∗ is determined by

θ∗ = argmin
θ

1

n

n
∑

i=1

yilog
yi

ŷi

= argmin
θ

− 1

n

n
∑

i=1

yilogŷi,

(2)

Actually, Equ.2 is the softmax cross-entropy loss func-

tion, which was widely used in the margin-based metric

learning [22, 7, 30]. The main insight of these methods is

to enforce the intra-class concentrations and inter-class di-

versity by introducing margins to the softmax loss. How-

ever, these methods only consider single labels indepen-

dently, thus ignoring correlated information of neighboring

ages. Hence, the fixed positive margin is inflexible to ex-

ploit the real-world age distribution. To address the afore-

mentioned problem, our PML suits the distribution learning

framework by the newly-learned margins and moreover can

be optimized by the standard back-propagation algorithm.

The PML is formulated as follows.

Lmp
= − 1

n

n
∑

i=1

yilogŷ
∗

i , (3)

ŷ∗

i = [
exp(s(xi,W1)−mp1)

exp(s(xi,W1)−mp1) +
∑

t 6=1 exp(s(xi,Wt))
,

...,
exp(s(xi,Wc)−mpc)

exp(s(xi,Wc)−mpc) +
∑

t 6=c exp(s(xi,Wt))
]T,

(4)

where s(·) denotes the similarity function, e.g. dot prod-

uct similarity [35], and m denotes the parameters for our

learned margins of the k-th class, respectively.
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Figure 2. Flowchart of Our PML. Our architecture starts with the input faces, feeding to the feature extractor network fE(·). Having

obtained these deep features, we first compute class center c, intra-class variance φ and inter-class variance ψ with each class as is

shown in blue dotted rectangle. Then we reason out ordinal margin based on the concatenation of all variables (i.e. V ) mentioned above.

Meanwhile, we perform the residual ∆V ∗ by subtracting the preserved prior curriculum instructor variable V ∗ from the concatenated

variable V . Based on the residual, the variational margin is deduced. Finally, we fuse with the both types of progressive margins versus

imbalanced age classes.

Obviously, how to learn the appropriate and interpretable

margins is a crucial part in our PML. Since long-tailed age

classification is determined by the chronological relation

and imbalanced degree of data simultaneously, our pro-

posed PML takes both factors into account in our learned

margins, which could be optimized in a globally-tuned man-

ner.

3.2. Progressive Margin Loss

The proposed progressive margin loss framework mainly

includes the ordinal margin learning module and the varia-

tional margin learning module. To be specific, the ordinal

margin aims at making the deep feature more discrimina-

tive and simultaneously preserving the ordinal correlation.

We assume that the class center is the mean of its samples,

which responses the holistic property of one class in the em-

bedding space. In other words, it not only indicates the fea-

ture discriminability, but also includes the discrepancy be-

tween the majority and minority class. Since a high-level

feature x embeds abundant semantic information of the in-

put sample, we take x to represent this sample. For each x

w.r.t one class, the class center is performed as follows.

cj =
1

Nj

Nj
∑

i=1

xi, (5)

where cj and Nj denote the center of j-th class and the

number of samples in the j-th class, and xi is the feature

which belongs to this class, respectively. However, Equ.5

requires Nj instances of j-th class (i.e. the whole instances

belong to j-th class), which cannot be directly applied to

mini-batch iterative training. Based on the recursive formu-

la for calculating the mean, our PML computes the class

center as follows.

ctj = c
t−1
j + I(yi = j)

I(yi = j)xi − ct−1
j

N t−1
j + 1

, (6)

where t denotes the training iterations and I(·) ∈ {0, 1} is

the indicator function. I(·) outputs 1 only if the condition-

s in brackets are true, vice versa. According to the class

center c, the inter-class variance is performed as follows.

ψt
j = [d(ctj , c0), ..., d(c

t
j , cc)], (7)

where d(·) denotes the cosine distance measure func-

tion [41].

To compute the intra-class, we reformulate the recursive

formula for calculating the variance as follows.

φt
j = φt−1

j + I(yi = j)d(xi, c
t−1
j )d(xi − ctj), (8)

where cj , φj and ψj response holistic feature represen-

tation, intra-class variance and inter-class variance of j-th

class, respectively.

Our proposed PML concats all of them as inputs to fO(·)
to get ordinal margin. For simplicity, we assume that Mo
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obeys the Gaussian distribution. Having enforced the con-

straint to our ordinal margin network, the margins are gen-

erated as below.

Mo = fO([c, φ,ψ]),Mo ∈ R
c×2, (9)

where [c, φ,ψ] ∈ R
c×(D+1+c) denotes the concatenation of

these variables. Note that Mo is composed of the computed

mean and variance, which transforms to M∗
o ∈ R

c×c by

discretely sampling from the range of 0 to c. After combing

Equ.9 with Equ.3, the ordinal margin can be optimized in a

unified framework.

Mo enhances the feature discriminativeness by consider-

ing the age ordinal relation. However, it may fall into a sub-

optimal solution for adjacent age classes with imbalanced

training samples. In such case, the minority age samples are

likely misclassified to the majority age labels. Instead, our

proposed variational margin is progressively suppressed the

majority classes with its own influence. We performed the

residual of class center, inter-class variance and intra-class

variance between to adjacent iterations as.

∆V = [ct, φt,ψt]− [ct−1, φt−1,ψt−1],

Mv = fV (∆V ),Mv ∈ R
c.

(10)

Noticing that M∗
o ∈ R

c×c exploits the relation about the

one-vs.-all (OvA) mechanism [5], which pays attention to

local examples. Mv ∈ R
c is complementary to M∗

o by en-

hancing the learned feature of each class especially for the

minority class, which efficiently prevents the disturbance of

other classes. We formulate this sense as follows.

Mpj = λM∗
o + βMv, (11)

where Mpj denotes progressive margin, λ and β is used to

balance M∗
o and Mv , respectively.

3.3. Optimization with Curricula

To further make the margin learning process more stable

and fast, our proposed PML follows the insight of curricu-

lum learning [24, 20]. Specifically, we divide the training

data into five curricula to optimize the network parameters,

where each curriculum consists of varying degrees of da-

ta imbalance. In this way, the proposed PML is learned

by gradually including samples distribution from being bal-

anced to imbalanced. Unlike classic curriculum learning

mechanism where each curriculum contains non-crossing

label fields, we design a sampling method to model the con-

sistency of label fields. Our protocol of curriculum learning

is defined as

D1 ⊂ D2 ⊂ D3 ⊂ D4 ⊂ D5, D5 = Dall,

Di = {Xi, Yi} ,

s.t. Xi = x(0,δi) ∪ ρ
(

x(δi+1,c)
)

.

(12)

Algorithm 1: Training Procedure of Our PML

Input: Training set: D = {Ii}i=1:n, maximal iteration

T .

Output: Parameters of fE(·), fO(·) and fV (·) .

1 for t < T do

2 /*Extracting the feature of i-th face image.*/

3 xi = fE(Ii);
4 /*Assuming xi belongs to j-th class and updating

the class of each class by Equ.5.*/

5 ctj = xi, /*For iteration-1*/;

6 ctj = c
t−1
j +

xi−c
t−1

j

N
t−1

j
+1

;

7 /*Updating the inter-class variance by Equ.7.*/

8 ψt
j = [d(ctj , c0), ..., d(c

t
j , cc)];

9 /*Updating the intra-class variance by Equ.8.*/

10 φt
j = φt−1

j + d(xi − ct−1
j )d(xi − ctj);

11 /*Learning the ordinal margin by Equ.9.*/

12 Mo = fO([c, φ,ψ]);
13 /*Optimization with Curricula.*/

∆V = [ct, φt,ψt]− [c∗, φ∗,ψ∗];
14 /*Learning the variational margin by Equ10.*/

15 Mv = fV (∆V ),Mv ∈ R
c;

16 /*Optimizing our PML by Equ.11 and Equ.3.*/

17 Mpj = λM∗
o + βMv;

18 Lmp
= −yilogŷ∗

i ;

19 end

20 Return: fE
θ (·), fO

θ (·) and fV
θ (·).

For splitting, we firstly sort each class by its owned in-

stances in an ascending order, where δi denotes the dividing

line of the i-th course. Then, the function of ρ(x(a,b)) rep-

resents a sampling operation, which draws the same number

of instances as the (a− 1)-th class from the range of a to b.

More specifically, our PML takes data from D1 to D5

as the inputs to train the deep convolution neural networks,

until it converges in each curriculum. Based on the class

property of previous curriculum Vpre = [c∗, φ∗,ψ∗] , the

variational margin between the adjacent curricula can be ob-

tained as

∆V ∗ = [ct, φt,ψt]− Vpre,

M∗
v = fV (∆V ∗),Mv ∈ R

c.
(13)

Since the class property Vpre is acquired in a further

balanced course than current ones, the learned Vpre is the

unbiased representation towards each class. By referenc-

ing this unbiased instructor, the learning procedure of Mp

becomes stable. Through this curriculum learning fashion,

the optimization process is slightly affected by data imbal-

ance. Experimentally, we find out that this learning schema

can achieve comparable performance with the state-of-the-

art methods by using fewer training samples. Note that we
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only enforce theses margins in the training procedure for

achieving discriminative feature representation.

Algorithm 1 shows the optimization procedure of the

proposed PML.

4. Experiments

To evaluate the effectiveness of the proposed method, we

conducted experiments on three widely-used datasets for

uncontrolled age classification. We conducted experiments

our method on Morph II [49], FG-NET [44] and ChaLearn

LAP 2015 [13]. For fair comparisons, we only used addi-

tional IMDB-WIKI dataset [51] for pre-training to evaluate

ChaLearn LAP 2015.

4.1. Evaluation Datasets and Metrics

Evaluation Datasets. Morph II. This database is the

widely-used benchmark for age estimation, which consists

of 55,134 face images of 13,617 subjects. The age range of

this database covers from 16 to 77 years old. In our experi-

ments, we used two types of testing protocols in our evalua-

tions. Setting I. The dataset was randomly divided to train-

ing part (80%) and testing part (20%). Setting II. A subset

of 5,493 face images from Caucasian descent followed the

work [54].

FG-NET. The FG-NET dataset contains 1,002 face im-

ages of 82 subjects and the age ranges from 0 to 69. We

followed the previous methods [31, 43] to use leave-one-

out (LOPO) setting for evaluation.

ChaLearn LAP 2015. This dataset was released in 2015

at the ChaLearn LAP challenge, which collects 4,691 im-

ages. The ChaLearn LAP was labeled with the apparent

age, and each label was set as an average of at least 10 peo-

ple. This dataset contains training, validation and testing

subsets with 2476, 1136 and 1079 images, respectively.

IMDB-WIKI. The IMDB-WIKI consists of 523,051 im-

ages in total and the range is from 0 to 100. To follow

the common setting, we selected about 300,000 images for

training, where all non-face and severely occluded images

were removed.

Evaluation Metrics. In the experiments we leveraged

Mean Absolute Error (MAE) to calculate the discrepancy

between estimated age and the ground-truth. Obviously, the

lower the MAE value, the better performance it achieves.

According to previous work [36], we also used the ǫ-error

to measure the performance on the ChaLearn dataset. In

particular, this standard testing protocol is defined as fol-

lows.

ǫ = 1−
n
∑

i=1

exp(− (yi − y∗i )
2

2σ∗
i
2 ),

where y∗i is the ground-truth age value, σ∗ is the annotated

standard deviation, respectively.

4.2. Implementation Details

For each input image, we first detected the whole face

with MTCNN [58]. Then we aligned it based on the de-

tected facial landmarks. For IMDB-WIKI, we straightly re-

moved invalid images. In the training stage, we augmented

all images randomly with horizontal flipping, scaling, rota-

tion and translation. Moreover, we adopted ResNet-34 [23]

as our backbone network and this network was pretrained

on ImageNet [10]. For all experiments, we employed the

Adam optimizer and SGD optimizer [46]. The weight decay

and the momentum were set to 0.0005 and 0.9, respectively.

The initial learning rate was set to 0.0001 and we lever-

aged two methods for learning rate adjustment. λ and β

were tuned by cross validations. In the Adam optimization

method, we used CosineAnnealingLR [38] to adjust learn-

ing rates. Meanwhile, we used ExponentialLR for the SGD

optimizer. For parallel acceleration, we trained our model

with PyTorch [45] on 4 Tesla V100 GPUS.

4.3. Results and Analysis

Comparisons on Morph II. Table 2 and Table 3 show

the MAEs of our approach on Morph II dataset with dif-

ferent settings. Noticing that we did not use IMDB-WIKI

for pretraining in this dataset. According to the results, our

model achieves 2.150 and 2.307 under the Setting I and

Setting II, respectively. More specifically, in Setting I, our

method achieves the best performance among all models ex-

cept AVDL, but this model was pretrained on IMDB-WIKI.

In Setting II, our model achieves the best performance a-

mong all state-of-the-art methods regardless of using the

external datasets. From the results, we made two-fold con-

clusions: (1) Compared label distribution learning methods

such as DLDL-V2 [18] and M-V Loss[43] leverages a fixed

pattern to learned feature. Such schema ignores the issue

of age imbalance, which likely hurts the discriminativeness

of minority features. (2) Particularly from the results on

Setting II, we see that our PML outperforms most state of

the arts with sparse training data. This achievement is due

to that the learned margin enlarges the inter-class variance

by preserving the age-related semantic information.

Comparisons on FG-NET. As shown in Table 4, we

compared our model with the state-of-the-art models on

FG-NET. Our method PML achieves the lowest MAE of

2.17. Moreover, compared with AVDL that was pretrained

by IMDB-WIKI, our PML decreases the MAE by 0.17 with

our progressive margin loss. Compared with the state-of-

the-art DHAA that was trained from scratch, our PML de-

creases the MAE by a large margin. Obviously, the results

show that our method significantly works well on few-shot

dataset.

Comparisons on ChaLearn LAP 2015. We further

compared our model with the state-of-the-art models on the

ChaLearn LAP 2015. As shown in Table 5, our method
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PML       6.09
Baseline 9.22

PML       14.63
Baseline 16.71

PML       21.18
Baseline 26.71

PML       39.52
Baseline 31.43

PML       43.39
Baseline 41.50

PML       44.60
Baseline 31.64

6 15 21 40 43 48

Figure 3. Comparisons of predicted distributions on FG-NET. The first row shows six aligned faces and their corresponding ground-truths.

The second row shows the predicted distributions of the baseline and our PML approach. Seeing from these distributions, in our method,

the predictions is more accurate and reliable than baseline method.

Table 2. Comparisons of MAEs of our approach compared with d-

ifferent state-of-the-art methods on Morph II under Setting I. Bold

indicates the best (∗ indicates the model was pre-trained on the

IMDB-WIKI dataset and † indicates the model was pre-trained

on the MS-Celeb-1M, respectively. We annotated the 2nd perfor-

mance as the italic type. )

Method Morph Year

OR-CNN [42] 3.34 2016

ODFL [31] 3.12 2017

ARN [1] 3.00 2017

CasCNN [56] 3.30 2018

M-V Loss[43] 2.41/2.16∗ 2018

DRFs [52] 2.17 2018

DLDL-V2 [18] 1.97† 2018

SADAL [33] 2.75 2019

BridgeNet 2.38∗ 2019

AVDL [57] 1.94∗ 2020

PML 2.15 -

Table 3. Comparisons of MAEs of our approach compared with

different state-of-the-art methods on Morph II under Setting II.

Method Morph Year

DEX [50] 3.25/2.68∗ 2018

AgeED [54] 2.93/2.52∗ 2018

DRFss [52] 2.91 2018

DHAA [55] 2.49∗ 2019

AVDL [57] 2.37∗ 2020

PML 2.31 -

achieves 2.915 MAE which was pretrained on IMDB-WIKI

and surpasses the state-of-the-art performance. The results

prove that our PML deals with the samples with large vari-

ance, while the progressive margin learning achieves to fil-

ter noisy instance.

Table 4. Comparisons of MAEs of our approach compared with

different state-of-the-art methods on the FG-NET dataset.

Method FG-NET Year

DEX [50] 4.63/3.09∗ 2018

DRFs [52] 3.85 2018

M-V Loss [43] 4.10/2.68∗ 2018

AgeED [54] 4.34/2.96∗ 2018

C3AE [57] 2.95 2019

BridgeNet [27] 2.56∗ 2019

DHAA [55] 3.72/2.59∗ 2019

AVDL [57] 2.32∗ 2020

NRLD [11] 2.55∗ 2020

PML 2.16 -

Table 5. Comparisons of MAEs of our approach compared with

different state-of-the-art methods on ChaLearn LAP 2015 dataset.

Method ChaLearn ǫ-error Year

ARN [1] 3.153∗ - 2017

TinyAgeNet [18] 3.427† 0.301† 2018

CVL ETHZ [51] 3.252∗ 0.282∗ 2018

AgeED [54] 3.210∗ 0.280∗ 2018

ThinAgeNet [18] 3.135† 0.272† 2018

ODL [31] 3.950 0.312 2019

DHAA [55] 3.052∗ 0.265∗ 2019

PML 3.455 0.293 -

PML∗ 2.915∗ 0.243∗ -

Qualitative Results. To better demonstrate the effec-

tiveness of our PML intuitively, we visualized the predict-

ed distributions and the learned features with versus with-

out the PML framework. For fair comparisons, we created

the baseline model, which has the same architectures as our

PML except using the standard KL loss. Fig. 3 shows the

six resulting examples from young to old on FG-NET. From
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Train Test

PML

Baseline

(a) Majority Classes

Train Test

PML

Baseline

(b) Minority Classes

Train Test

PML

Baseline

(c) Majority and Minority Classes

Figure 4. The visualization of learned feature x with t-SNE.

We conducted both experiments of training and testing splits on

Morph II, compared with the baseline method without the pro-

gressive margin. (a) The visualization of features from 6 majority

classes. Seeing from these results, each head class is distinguished

by our PML. (b) The visualization of our embedded features from

6 minority classes. With these minority classes, our approach

learns more discriminative feature than the baseline. (c) Learned

by both the majority and minority classes, the spanned feature s-

pace of minority classes is narrowed and disturbed by the majority

classes in the baseline method. Fortunately, our PML framework

teaches each class to characterize their manifolds by constraining

the margin to all classes. (Zoomed in for better visualization.)

the Fig. 3, we observe that the learned label distributions of

our PML significantly suit real-world age correlation than

the baseline model. Fig. 4 shows the learned feature with

t-SNE [47]. We see that the proposed progressive margin

loss effectively guarantees the boundary of each class in the

learned embedding space.

Table 6. Comparisons of MAEs of our approach on Morph II and

ChaLearn LAP 2015 dataset under different curriculum learning

protocols. (WITHOUT pre-training on IMDB-WIKI)

Dataset Groups Imbalance Ratio Sample MAE

Morph II D1(20%) 27/1 1,382 3.751

D2(40%) 430/1 17,611 2.828

D3(60%) 1054/1 37,342 2.503

D4(80%) 1335/1 42,438 2.314

ChaLearn D1(20%) 6/1 199 6.720

D2(40%) 16/1 840 5.306

D3(60%) 28/1 1,303 4.622

D4(80%) 60/1 2,009 3.878

Analysis. To further investigate the effects of our PM-

L regrading with different quantity of training samples, we

conducted comparisons on both Morph II and ChaLearn

with various courses. For simplicity, we set the dividing

line {δ1, δ2, δ3, δ4} of dataset to {20%, 40%, 60%, 80%} re-

spectively. By following Equ.12, a series of curricula from

balance to imbalance could be achieved gradually. As the

3rd and 4th columns of Table 6 show, we see that with the

quantity of samples increases, the imbalance ratio increas-

es. As the Table 6 shows, we see that our PML decreas-

es the MAEs from curriculum D1 to D4 on both dataset-

s. More specifically, in course D4, we achieve compara-

ble results with the state-of-the-art methods while training

with less samples, i.e., 80% of the entire dataset. It mainly

benefits from the learning instructor of previous curriculum,

these instructors assign balanced initial spaces for all class-

es. Hence, this reduces the probability from trapping into

sub-optima.

5. Conclusions

In this paper, we have proposed a progressive margin loss

framework (PML) for unconstrained facial age classifica-

tion. The proposed PML has progressively learned the age

label pattern by taking both real-world age relations and

critical property of the class center into account. Exper-

iments on three datasets have demonstrated the effective-

ness of proposed approach. In future works, we will focus

on self-supervised margin learning in a contrastiveA man-

ner [21, 14] by including fewer labels.
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