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Abstract

The dense video captioning task aims to detect and de-

scribe a sequence of events in a video for detailed and co-

herent storytelling. Previous works mainly adopt a “detect-

then-describe” framework, which firstly detects event pro-

posals in the video and then generates descriptions for the

detected events. However, the definitions of events are di-

verse which could be as simple as a single action or as com-

plex as a set of events, depending on different semantic con-

texts. Therefore, directly detecting events based on video

information is ill-defined and hurts the coherency and accu-

racy of generated dense captions. In this work, we reverse

the predominant “detect-then-describe” fashion, proposing

a top-down way to first generate paragraphs from a global

view and then ground each event description to a video seg-

ment for detailed refinement. It is formulated as a Sketch,

Ground, and Refine process (SGR). The sketch stage first

generates a coarse-grained multi-sentence paragraph to de-

scribe the whole video, where each sentence is treated as an

event and gets localised in the grounding stage. In the re-

fining stage, we improve captioning quality via refinement-

enhanced training and dual-path cross attention on both

coarse-grained event captions and aligned event segments.

The updated event caption can further adjust its segment

boundaries. Our SGR model outperforms state-of-the-art

methods on ActivityNet Captioning benchmark under tradi-

tional and story-oriented dense caption evaluations. Code

will be released at github.com/bearcatt/SGR.

1. Introduction

Video understanding is an important research topic in

computer vision. Thanks to the development of deep learn-

ing and large-scale datasets [3, 10], recent video under-

standing approaches have achieved promising performance

in action recognition [4, 5, 35] and temporal action local-

isation [15, 25, 41]. However, an obvious limitation of

these approaches is that their predictions are based on a pre-
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Figure 1. Comparisons between top-down and bottom-up DVC

frameworks. Bottom-up DVC breaks the DVC task into multi-

ple “event captioning” sub-tasks with an event detection process.

While our SGR captions the whole video in a unified fashion and

localises each event afterwards.

defined discrete set of action categories, which lack many

fine-grained details of the video information. In order to

provide more detailed information in the video, the task of

Dense Video Captioning (DVC) [11] aims to discover a se-

quence of key events in a video and describe them using

a coherent story. Therefore, DVC can benefit many real-

world applications such as content-based video retrieval

and recommendation, and has become an important task in

language-based video understanding research.

DVC is a challenging task since the generated event cap-

tions are expected to be correct, concise, and coherent in the

context of a video-level story, so as to support video under-

standing. Most existing methods [11, 13, 33, 43] in this field

adopt a common “detect-then-describe” framework which

solves the problem from a straightforward bottom-up per-

spective, i.e., first detect a large set of event proposals (even

up to 103), then caption each proposal to obtain dense de-

scriptions. However, one obvious issue of this framework is

that the event proposals are independently generated with-

out considering their temporal correlations, thus making the

resultant event captions highly redundant and incoherent.

To address this issue, Mun et al. [18] proposed a stream-

lined DVC framework that learns a proposal selection mod-
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𝐸": A	woman	is	seen	speaking	to	the	camera	while	holding	an	

accordion	and	moving	her	hands	around.

𝐸"
𝐸$

𝐸$: She	demonstrates	how	to	play	the	instrument	while	still	speaking	to	

the	camera	and	moving	around.

𝐸" 𝐸$ 𝐸%

𝐸": A	woman	is	standing	on	a	lit	stage.

𝐸$: She	is	holding	an	accordion	as	she	talks.

𝐸%: She	is	surrounded	by	two	other	accordions	as	she	instructs	on	how	to

play the	instrument.	

Episode	1

Episode	2

Figure 2. Illustration of the diverse definition of event proposals.

The first episode consists of salient events, which are long and

informative, while in the second episode, a simple action is also

considered as an event, which is very short and indistinctive.

ule to find a small subset of the event proposals that oc-

cur sequentially in the video. In this way, they explicitly

consider the temporal correlations among the selected event

proposals. However, their framework is still limited due to

the ill-defined event proposal generation. As shown in Fig-

ure 2, the definition of events varies dramatically in prac-

tice, from as simple as an action (E1, Episode 2) to as com-

plicated as a combination of multiple salient events (E1,

Episode 1). Therefore, detecting the event proposals based

solely on the video information like [18] and other bottom-

up DVC approaches may have an ill-defined target, i.e., the

detector is not aware of which kinds of event proposals are

suitable to be captioned. As a result, the quality of the gen-

erated event captions may be negatively affected.

In this paper, we reverse the predominant “detect-then-

describe” fashion and propose to solve DVC from a top-

down perspective, i.e., generating a video-level story at first

and then ground each sentence in the story to video segment

for detailed refinement. By doing this, the event segments

are predicted not only based on the visual information, but

also the semantic coherence from the text. Thus the afore-

mentioned issues are waived. Our model is formulated as a

Sketch, Ground, and Refine (SGR) procedure.

In the Sketch stage, we focus on the structure coherency

of the event captions. We first leverage the entire video in-

formation to generate a coherent video-level paragraph so

as to describe the video from a global perspective. Note

that, the sentences in this paragraph naturally defines a se-

quence of story-oriented events in the video. Therefore, it is

not necessary for our framework to generate a large number

of event proposals as in bottom-up approaches. In fact, our

top-down SGR contains no event proposal generation pro-

cess. Instead, we use a video Grounding module to localise

the sentences (i.e., events) in our video-level paragraph.

The sentences generated so far may lack some fine-

grained details since we did not explicitly consider their

event-specific information. Thus, in the Refine stage, we

focus on the fine-grained details of the event captions.

Specifically, we propose a Dual-Path Cross Attention mod-

ule to dynamically focus on the event-level information and

the coarse-grained sentence. A refinement-enhanced train-

ing scheme is also designed to facilitate the refinement.

Based on the refined descriptions, we further adjust their

event segments by feeding them into the grounding module

again. We illustrate the difference between our SGR and the

previous DVC frameworks in Figure 1.

We evaluate our method on the benchmark ActivityNet

Captioning dataset [11] and YouCook2 dataset [42]. Our

model achieves state-of-the-art performance under both tra-

ditional and story-oriented dense caption evaluations.

2. Related Works

Video Captioning aims to describe a video using a sin-

gle sentence. Recent approaches mostly follow the encoder-

decoder framework [19, 20, 21, 31, 32, 34], where the en-

coder is typically a Convolutional Neural Networks (CNN)

followed by a Recurrent Neural Network (RNN), and the

decoder is an RNN that predict one token at each decod-

ing step. However, in practice, a video is generally in-

formative and contains multiple events, which is beyond

the capacity of a short sentence. Therefore, some recent

works [12, 36, 38] appealed to generating a long paragraph

to describe the video in detail, where each sentence in the

paragraph may focus on a specific event in the video. On

top of this, Dense Video Captioning further requires to lo-

calise the temporal boundaries of these events.

Dense Video Captioning (DVC) is first proposed by

Krishna et al. [11], where they combine an event pro-

posal module and a video captioning module to tackle the

DVC task: the proposal module first selects a large set of

event segments from the video, then the captioning module

captions each event segment, i.e., the detect-then-describe

framework. Recent works [13, 33, 43] improved this frame-

work by making the event proposal module and the video

captioning module end-to-end trainable, so that the anno-

tated event captions can also guide the training of the event

proposal module. Specifically, Li et al. [13] propose to pre-

dict a “descriptiveness” score for each event proposal during

the proposal generation process, which measures the com-

plexity of describing each proposal while also guides the

proposal generation. Wang et al. [33] utilise a bidirectional

video encoder to exploits both past and future contexts to

make proposal predictions, and further adopt this bidirec-

tional representation for event captioning. Zhou et al. [43]

try to bridge the event detection and caption module into a

unified model by applying a differentiable masking mecha-

nism over a Transformer [29] based encoder-decoder archi-
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Figure 3. The overall framework of the proposed SGR. The video encoder E first encodes the video into a feature sequence. Based on it,

the paragraph decoder D1 then sketches a video-level story describing the whole video. The localiser G then ground the sentences in the

story to the video segments. Then, the sentence decoder D2 refines the sentences by leveraging their event-specific information, while the

refined sentences are further used to adjust the segment boundaries.

tecture. As discussed in the introduction, the above methods

tend to generate a large number of independent proposals

for dense captioning which may lead to redundant or incon-

sistent results. To tackle this issue, Mun et al. [18] apply an

event sequential generation module to find a small subset of

event proposal that occurs sequentially in the video, so as to

reduce the number of proposal and make the caption results

more coherent.

The aforementioned DVC approaches all follow the

bottom-up “detect-then-describe” framework, which is

problematic since the video-based event proposing is ill-

defined. Unlike them, we propose a top-down DVC frame-

work termed “Sketch, Ground, and Refine” (SGR), which

contains no event proposing process. SGR shares some

high-level ideas with works from other areas. In [7], the

authors propose to perform image captioning using global

image features while refining the captions using region fea-

tures. [24] for text-video retrieval task retrieves video at

paragraph-level while localizing segments at sentence-level.

The paragraph-level retrieval result can be improved using

sentence-level predictions.

3. Method

3.1. Overview

As illustrated in Figure 3, our framework consists of four

modules: video encoder E , temporal sentence localiser G,

coarse-grained paragraph decoder D1 and fine-grained sen-

tence decoder D2. Compared with traditional bottom-up

methods [11, 13, 18], the proposed SGR inverses the stan-

dard “detect-then-describe” pipeline for dense video cap-

tioning. Algorithm 1 presents how the framework generates

dense video captions for a video V . Specifically, we first

Algorithm 1 Top-Down Dense Video Captioning

1: procedure DVC(V )

2: Hv ← E(V ) ⊲ encode

3: {Si}ni=1 ← D1(Hv) ⊲ sketch

4: {Ei}ni=1 ← G(Hv, {Si}ni=1) ⊲ ground

5: {Sr
i }ni=1 ← D2(Hv, {Ei}ni=1, {Si}ni=1) ⊲ refine cap

6: {Er
i }ni=1 ← G(Hv, {Sr

i }ni=1) ⊲ refine seg
return {Sr

i }ni=1, {Er
i }ni=1

convert V into a sequence of snippet representations Hv

with the video encoder E . Then, we sketch the structure

of events in V by generating a paragraph P consisting of

multiple sentences {Si}ni=1 through decoder D1, and then

localise the video segment Ei of each sentence Si in P via

the localiser G. Afterwards, the event descriptions are re-

fined with another decoder D2, given the coarse-grained Si

and its localised segment Ei from the last step. In the end,

the video segment can again be adjusted to be more pre-

cise by G based on the refined event descriptions. Denote

the refined Si and Ei as Sr
i and Er

i , respectively. Note that

we reuse some features at different steps for computational

efficiency, as shown in Figure 3.

We adopt a two-step training strategy to train the model.

Step 1, we jointly train E , D1 and G for paragraph sketch-

ing and temporal sentence grounding under the loss func-

tion L = Ls + λLg , where Ls is the paragraph genera-

tion loss and Lg is the temporal grounding loss. The hyper-

parameter λ balances the two loss terms. Step 2, based on

the trained E , D1 and G, we optimise D2 specifically with

other modules fixed. D2 is trained by objective Lr through

Reinforcement Learning with refine-specific rewards. We

describe the details in the following.
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3.2. Encoding: Contextual Video Encoder

Our video encoder E is composed of a fixed CNN back-

bone and a stack of transformer layers, which aims to en-

codes video V into a sequence of context-aware snippet rep-

resentations Hv .

The video is initially divided into T fixed-length snip-

pets with duration of τv for each snippet. The CNN back-

bones independently extract features for each snippet as

Fv ∈ R
T×df , where df is the feature dimension. Since

the temporal context is important for event understanding,

we thus use transformer layers [29] with multi-head atten-

tion (MHA) to encode long-range dependencies among el-

ements in Fv . Let H l
v ∈ R

T×dm be the input to the l-th
transformer encoding layer (dm is the hidden dimension),

the output H l+1
v is computed as follows:

H l+1
v = FFN(H l

v + MHA(H l
v,H

l
v,H

l
v)) (1)

where,

FFN(x) = max(0, xW1 + b1)W2 + b2 (2)

MHA(Q,K,V ) = Cat({ATTi(Q,K,V )}hi=1)WO

ATT(Q,K,V ) = σ(
(QWQ)(KWK)T√

dm
)(V WV )

H0
v is a linear transformation of Fv into dimension of dm.

Cat(·) denotes vector concatenation and W∗ are learnable

parameters. σ is the softmax function. We omit layer nor-

malisation and residual connection for simplicity. The out-

put from the final layer is Hv .

3.3. Sketching: Paragraph Decoder

The goal of sketching is to organise a story-oriented

event structure in the video. We employ a paragraph de-

coder D1 to this end. When D1 describes the video V from

a global perspective, it naturally addresses the challenges

of capturing diverse event categories and semantic relation-

ships between different events.

We apply a transformer-based decoder asD1. Denote the

hidden states of the l-th layer of D1 as H l
p. Based on the

encoded video feature Hv and H l
p, the l-th layer generates

semantic hidden states H l+1
p as follows:

H l,s
p = H l

p + MHA(H l
p,H

l
p,H

l
p) (3)

H l,c
p = H l,s

p + MHA(H l,s
p ,Hv,Hv) (4)

H l+1
p = H l,c

p + FFN(H l,c
p ) (5)

FFN and MHA are the same functions as defined in the

Eq. 2. H0
p is the input word embedding with position

encoding. Denoting the final hidden states of D1 as

Hp ∈ R
Lp×dm (Lp is the length of the generated para-

graph P ), a captioning head maps Hp into word distribu-

tions, i.e., the probability of predicting the j-th word wj is

p(wj |w<j ,Hv) = softmax(Hp,jWemb), where Wemb is

the word embedding matrix.

Training. We use “teacher forcing” scheme to train

the paragraph generation modules. Given the ground-truth

paragraph P ∗, the objective is to minimise the negative log-

likelihood of the ground-truth words w∗
j in P ∗ given all pre-

ceding ground-truth words w∗
<j and the video feature se-

quence Hv:

Ls =
∑

w∗

j
∈P∗

− log p(w∗
j |w

∗
<j ,Hv). (6)

To address the exposure bias issue of teacher forcing, sched-

uled sampling [2] and label smoothing [27] are also applied

during training.

Inference. Since the paragraph decoder is mainly used

to sketch event structures in the video that are semantically

coherent, we mainly focus on the semantic order and flu-

ency. Therefore, we use greedy decoding to generate para-

graph in inference for efficiency, and semantic hidden states

Hp at the last decoding layer will be used afterwards.

3.4. Grounding: Temporal Sentence Localiser

Since we do not perform event proposal generation at the

beginning of dense video captioning, a grounding module

G is necessary to align the generated event description to its

corresponding video segment.

Different from standard temporal sentence localisation

task where the query description is a single sentence without

any contexts, the query event description Si in our setting

also contains the context information from the paragraph

P = {Si}ni=1 for localisation. Such contexts not only pro-

vide semantics of neighbourhood events for the query event,

but also inform about the relative order of the event, i.e. the

event of last sentence Sn is more likely happens at the end

of the video. Therefore, we propose a temporal sentence

localiser G that employs paragraph context to benefit event

description localisation.

For each sentence Si ∈ P , we first extract its semantic

representation Hsi ∈ R
Lsi

×dm which is a subset of Hp

from D1. Lsi is the length of Si. As a multi-head attention

(MHA) transformer is used to represent textual features, the

Hsi naturally incorporates event contexts from previously

generated sentences, and does not require additional com-

putations. Then, we dynamically merges the video feature

sequence Hv with the query text Hsi as follows:

H
si
v = Hv + ATT(Hv,Hsi ,Hsi) (7)

We then apply several 1-D convolutions over temporal di-

mension on top of Hsi
v in order to predict more accurate

temporal boundaries over time. Denoting the output fea-

ture as H̃si
v , we use three linear classifiers to predict three

confidence scores cs, cc, ce ∈ R
T :

cx = f(H̃si
v Wx), for x ∈ {s, c, e} (8)
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where f is sigmoid function. The t-th values of cs, cc, ce
denote the confidences for the t-th snippet to be the start,

centre and end location of the corresponding video segment

Ei respectively.

Training. Suppose E∗
i = [tsi , t

e
i ] is the target temporal

location for the ground-truth event description S∗
i , where tsi

and tei are the start and end timestamp respectively, we can

obtain the ground-truth labels c∗s , c∗c , and c∗e for snippets

in V , indicating whether a snippet is inside the start, centre

and end regions of the target event, following recent works

of temporal action localisation [14, 15].

Specifically, we denote the start region of E∗
i as rsi =

[tsi − α1di, t
s
i + α1di] and the end region as rei = [tei −

α1di, t
e
i + α1di], where di = tei − tsi is the duration of

E∗
i , and α1 is hyper-parameter to control the width of

the region. The centre region of E∗
i is defined as rci =

[tci − α2di, t
c
i + α2di], where tci = (tsi + tei )/2 is the centre

timestamp of E∗
i and α2 is the width-controller for centre

regions. For the t-th snippet in V , its corresponding video

timestamps are rt = [τv(t − 0.5), τv(t + 0.5)], where τv is

the length of a snippet. We calculate the intersection-over-

are (IoA) between rt and rsi , rci , or rei for all snippets to

generate labels c∗s , c∗c , and c∗e: if the IoA is larger than a

threshold θ, then the label is 1 otherwise 0.

Therefore, with the predicted sequence cx and the

ground-truth sequence c∗x (x ∈ {s, c, e}), we minimise the

balanced logistic regression loss used in [15] for start, cen-

tre and end region prediction:

Lg =
1

T

∑

x∈{s,c,e}

T∑

t=1

(α+
x c

∗
x,t log cx,t

+ α−
x (1− c∗x,t) log (1− cx,t)),

(9)

where α+
x = T∑

t c
∗

x,t
and α−

x = T
T−

∑
t c

∗

x,t
are the balance

weights for positive and negative samples.

Inference. For each query description Si, we first gen-

erate its confidence scores cs, cc, ce for all snippets in V .

Then we enumerate all valid combinations of start and

end indexes in the video, i.e. [ιs, ιe] is valid if ιe ≥ ιs.

The confidence score of the candidate segment [ιs, ιe] is

cs,ιs + ce,ιe + cc,ιc , where ιc is the centre index of the seg-

ment. The event segment with the largest confidence score

is selected as the grounding prediction Ei.

3.5. Refining: Fine­grained Sentence Decoder

The coarse paragraph P obtained in the sketching phase

is not designed to describe a specific event, which may fail

to capture fine-grained event-specific details. Therefore, we

further design a fine-grained sentence decoder D2 to refine

sentences in P with the help of grounded video segments

{Ei}ni=1 from G.

We design a Dual-Path Cross Attention module (DPCA)

for D2, which dynamically attends on both the coarse-

grained sentence Si and its aligned video segment Ei to

generate a fine-grained event description. The awareness

of specific video segment Ei encourages the model to be fo-

cused and generate more event-level details; while Si serves

as a reference for the refine process. Specifically, for Si, we

reuse its feature Hsi from D1; for Ei, we reuse the Hv

from E and crop it according to the boundary of Ei, denote

as Hei ∈ R
Tei

×dm , where Tei is the number of snippets

inside Ei. D2 is a transformer-based decoder similar to D1,

but is equipped with DPCA (see Figure 3) to incorporate

both Hei and Hsi during decoding. The computation in

Eq. 4 is modified as follows:

H l,c
r = H l,c

r + MHA(H l,s
r ,Hsi ,Hsi)

+ MHA(H l,s
r ,Hei ,Hei)

(10)

where H l,∗
r denotes the hidden states of D2.

Training. Given a generated sentence Si from D1 and

its localised segment Ei, we use the ground-truth sentence

in P ∗ whose segment has the highest intersection-over-

union (IoU) score with Ei as the reference sentence in train-

ing. Denoting the selected reference sentence as S∗
i and its

ground-truth video segment as E∗
i . The refinement decoder

D2 is trained on triplets of (Ei, Si, S
∗
i ). When there is only

small overlap between Ei and E∗
i , the input video segment

Ei can be mismatched with S∗
i which may harm the refine-

ment. In this case, we shift the boundaries of Ei to increase

its overlap with E∗
i . The shift is limited so that the new Ei

has at least 0.5 IoU with the original Ei.

We first train D2 with the teacher forcing scheme as

Eq. 6. In order to improve the refining performance, we

propose to further fine-tune D2 with refinement-enhanced

rewards in reinforcement learning (RL). The RL train-

ing aims to minimise the negative reward Lr(S
r
i ) =

−ESr
i
∼π[R(Sr

i )], where Sr
i is a refined sentence generated

via policy π, and R(·) is a non-differential reward func-

tion, i.e. the METEOR score [1] that measures similarity

between Sr
i and Ŝ∗

i . The policy π randomly samples sen-

tence according to polynomial word distribution predicted

from D2. The model can be optimised through policy gra-

dient [26] as follows:

∇Lr(S
r
i ) = −(R(Sr

i )− b)∇ log π(Sr
i ), (11)

where b is a baseline to stabilise training. In self-critical

RL [23], b = R(S̄r
i ) is the reward of a greedy-decoded sen-

tence S̄r
i . Thus, the model is encouraged to generate sen-

tences that have higher rewards than S̄r
i . The term R(Sr

i )−b
is referred as the advantage function in the RL literature.

We propose a new advantage function to encourage the

sentence refinement, which explicitly considers two goals.

Firstly, the refined sentence Sr
i should have a better qual-

ity than the coarse-grained sentence Si from D1 in sketch-

ing, besides being better than the greedy-decoded sentence
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Method B@1 B@4 C M

DCE [11] 10.81 0.71 12.43 5.69

TDA-CG [33]∗ 10.75 1.31 7.99 5.86

DVC [13] 12.22 0.73 12.61 6.93

MFT [36] 13.31 1.24 21.00 7.08

SDVC [18] 17.92 0.93 30.68 8.82

SG 13.68 1.56 21.54 7.79

SG w/ refine caption 13.83 1.63 21.87 8.85

SGR 14.05 1.67 22.12 9.07

Table 1. Dense video captioning results (using C3D feature) of our

model and state-of-the-art methods on BLEU@N (B@N), CIDEr

(C) and METEOR (M) on ActivityNet Captioning validation set.

∗ indicates the results re-calculated by new evaluation tool.

S̄r
i of itself. Hence, the refine-aware advantage function is

computed as:

Asi = R(Sr
i )−R(S̄r

i ) +R(Sr
i )−R(Si) (12)

Secondly, all refined sentences should convey a coherent

story when concatenated together. Therefore, we also lever-

age a paragraph-level advantage function:

Ap = R(P r)−R(P̄ r) +R(P r)−R(P ) (13)

P r and P̄ r are the concatenation of Sr
i and S̄r

i , respectively,

and P is from D1. Each input (Ei, Si) is optimised by ad-

vantage function Asi +Ap in RL training.

Inference. We use beam search to generate refined sen-

tence Sr
i given Si in the paragraph and its aligned video seg-

ment Ei. Since the refined sentence is more event-specific,

we further input the refined sentences into G again to adjust

event boundaries as shown in Algorithm 1.

4. Experiment

In this section, we evaluate the proposed method on the

benchmark ActivityNet Captioning dataset [11]. It con-

tains 19,994 YouTube videos separated into three subsets

with 10,024, 4,926, and 5,044 videos for training, valida-

tion, and testing, respectively. The videos have an average

length of 120 seconds and have 3.65 temporally localised

events with corresponding descriptions on average. The av-

erage length of the descriptions is 13.48 words. We con-

sider two types of video feature extractor during our exper-

iments: 1) a C3D [28] network, which is mostly-used in

previous DVC methods; 2) a TSN-like network [37], where

a ResNet200 [8] is used to extract appearance feature and a

BN-Inception [9] is used to extract optical flow feature.

4.1. Evaluation

For evaluation, we use the evaluation tool provided by

the 2018 ActivityNet Captions Challenge, which measures

the capability to localise and describe events. Specifically,

Method
ActivityNet YouCook2

METEOR SODA METEOR

Masked-Transformer [43]∗ 4.98 4.02 3.18

SG 8.27 4.83 3.67

SG w/ refine caption 9.13 4.99 3.96

SGR 9.37 5.29 4.35

Table 2. Dense video captioning results (using TSN feature) on

two datasets in terms of the standard evaluation metric (METEOR)

and the story-oriented evaluation metric [6] (SODA).

we measure the METEOR [1], CIDEr [30] and BLEU [22]

scores of the dense video captions. Following the common

practice, we use METEOR as the primary metric for com-

parison. The scores of the metrics are summarised via their

averages based on IoU thresholds of 0.3, 0.5, 0.7, and 0.9

given event captions and the corresponding event segments.

4.2. Implementation Details

Following the original Transformer [29] implementation,

the number of layers in G, D1 and D2 are all set to 6. The

hidden size dm is 512, and the number of attention heads

is 8. The dimension of the 1-D convolutional layers in G is

set to 256. The α1 and α2 used for controlling the region

width when training the grounding stage are set to 0.1 and

0.3, respectively. The IoA threshold θ is set to 0.5. During

the first training step, the balancing coefficient λ is set to 1,

and the model is trained using AdamW [16] for 50 epochs

with a batch size of 16 and learning rate of 1e-4. The label

smoothing factor is set to 0.1 and the scheduled sampling

probability is set to 0 at the start of training and linearly in-

creased to 0.3 in the end. At the second training step, the

model is first trained with teacher forcing scheme for 20

epochs, and then switch to reinforcement learning for an-

other 50 epochs. The AdamW optimiser is also adopted at

this step and the batch size is kept as 16, while the learning

rate is reduced to 2e-5.

4.3. Comparisons with state of the arts

We first compare the proposed method with several state-

of-the-art DVC methods. Specifically, for the proposed

model, we report the performance of: 1) Sketch and Ground

(SG), i.e., without the refinement stages; 2) SG with the

caption refinement but without the second grounding stage;

3) SG with both caption and segment refinement, i.e., the

full SGR model. C3D video feature extractor is used for

fair comparisons. As shown in Table 1, the SG model

achieves the second-best METEOR score (7.79) among pre-

vious methods, showing the competitiveness of our basic

top-down DVC framework. Moreover, by refining the event

captions, the performance of our model improves signifi-

cantly to 8.85. After further adjusting the event segment

boundaries according to the refined event captions, the pro-
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Figure 4. Event localisation performances at four IoU threshold

(using C3D feature) on the ActivityNet Captioning validation set.

The results are reported in percentage.

posed SGR model outperforms the previous best model by

a clear margin on METEOR score1. These results quantita-

tively verify the effectiveness of the proposed method.

Moreover, we follow [43] and evaluate the performance

of our method with a more advanced TSN feature extrac-

tor on the ActivityNet Captioning dataset and an additional

YouCook2 [42] dataset. YouCook2 is relatively smaller

compared to ActivityNet Captioning, with 2,000 videos fo-

cusing on 89 cooking activities. We further compare mod-

els under a newly proposed evaluation metric (SODA [6]).

SODA is a story-oriented dense captioning metric that tries

to find temporally optimal matching between generated and

reference captions to capture the story structure of the dense

video captions. Since SODA is sensitive to the number of

dense captions per video, for fair comparison, we obtain the

baseline results by setting the total number of captions equal

to the number of ground-truth event captions, i.e., roughly

equal to the number of captions generated by our proposed

SGR. The results are shown in Table 2. From the table,

our proposed models consistently outperform the baseline

model [43] in all metrics. Besides, SGR introduces clear

gains over SG in all settings, which is identical to the ob-

servation we obtained from Table 1. These results show the

superiority of our top-down DVC framework.

We also evaluate the event localisation quality of our

model in terms of recall and precision at four IoU thresh-

olds. As shown in Figure 4, the proposed SGR model

achieves a better recall rate than the previous best method

SDVC and also obtain comparable performance with SDVC

in terms of precision rate. This shows that the top-down

SGR can localise the events in a video accurately without

proposing hundreds or even thousands of event proposals.

4.4. Performance on Video Sentence Localisation

We further evaluate the video sentence localisation per-

formance of our grounding module using ground-truth

1We tried to further repeat the refinement stage multiple times but the

improvements are minor. We guess this is because the grounding stage is

good enough, which can not further improve the captioning ability.
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Figure 5. Ablation studies (using TSN feature) on advantage func-

tions (a) and DPCA branches (b) in terms of METEOR score. “SG

+ CE” stands for the model refined by cross entropy loss. “SA” and

“PA” stand for the sentence-level and paragraph-level advantages,

respectively. “sen” and “seg” stand for the sentence and segment

branches, respectively.

Method Top1@0.5 Top1@0.7 Top5@0.5 Top5@0.7

SCDM [39] 36.75 19.86 64.99 41.53

SQAN [17] 41.51 23.07 - -

DRN [40] 42.49 22.25 71.85 45.96

Ours 57.63 36.02 75.71 60.25

Table 3. Video sentence localisation results (using C3D feature)

on ActivityNet Captioning validation set. Reported in percentage.

event captions. C3D feature is used to align with previous

methods [39, 17, 40]. The model performance is measured

by localisation accuracy, where an event caption is consid-

ered to be correctly localised only when the IoU score be-

tween one of its top-K predicted segments and the ground-

truth segment is higher than a threshold Θ. Denote this

measure as TopK@Θ. As mentioned in Section 3.4, com-

pared with the standard setting of video sentence localisa-

tion adopted in the compared baseline methods, i.e., only

the caption of the target event is available to the model, our

grounding module further leverages the context information

from the whole video paragraph when localising each in-

dividual event caption, which is beneficial since it enables

our grounding module to be aware of the relative order of

the events in the video. As shown in Table 3, our grounding

module indeed yields a significant performance improve-

ment over the baseline models, e.g., our model improves

the Top1@0.5 and Top1@0.7 performance over the state-

of-the-art model (DRN) by 15.1 and 13.8 percent, respec-

tively. This suggests that the grounding stage plays a reli-

able role in our dense video captioning framework.

4.5. Ablation Studies

In the ablation studies, we first evaluate the effective-

ness of the advantage functions introduced in Eq.(12) and

Eq.(13), respectively. When training the ablation model,

one of the advantage functions is removed during the re-
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Ground	truth:	A	girl	sits	on	a	beam	in	a	gym.	She	balances	on	the	beam,	then	flips	forward	and	backward	several	times.	She	then	dismounts	from	the	beam.

Ours-SG:	A	girl	jumps	onto	a	low	beam	in	a	gym. She	does	a	gymnastics	routine	on	the	beam,	flips,	and	flips	on	the	beam. She	dismounts	and	raises	her	arms	in	

the	air.

Ours-SGR:	A girl	is	sitting on	a	beam	in	a	gym. She	begins	spinning and	flipping	on	the	beam for several	times. She	then	jumps	off	the	beam	and	throws	her	

arms	into	the	air.

Ground	truth:	A	chef	is	seen	speaking	to	the	camera	behind	a	kitchen	counter	and	leads	into	him	cutting	up	lettuce	and	pouring	ingredients	out into	a	bowl.

The	man	presents	more	food	items	on	a	plate	as	well	as	a	bowl	sitting	next	to	it.

Ours-SG:	A	man	is	seen	speaking	to	the	camera	while	holding	up	a	food	board	and	leads	into	him	peeling	a	piece	of	food.	The	man	then	mixes	the	food	onto	a	

plate	and	ends	with	several	shots	of	the	food	and	presenting	it	onto	a	plate.

Ours-SGR:	A man	is	seen	speaking	to	the	camera	and	leads	into	him	cutting	up	lettuce into	pieces	into	a	bowl. He	then	mixes	the	food	in	the	bowl and	presents	

the	food	onto	a	plate	while	still	speaking to	the	camera.

Figure 6. Qualitative results on ActivityNet Captioning. The coloured bars represent different events. Coloured text indicates the relevant

description of the events. The lined words show the detailed information introduced by the caption refinement stage. Best viewed in colour.

inforcement learning phrase. The results are shown in Fig-

ure 5(a). Based on the experiments, removing any of the ad-

vantage functions causes 0.2-0.3 performance degradation,

while removing both of them (SG+CE) further drops the

performance by more than 0.4. This demonstrates the effec-

tiveness of the RL-training, and also shows the importance

of using hierarchical reward signals, which may alleviate

the credit assignment problem in reinforcement learning.

We also evaluate the importance of the proposed DPCA

module by removing one of its cross attention branches. As

shown in Figure 5(b), the final METEOR score drops signif-

icantly when removing any of the branches, especially the

segment branch. This result suggests that both the coarse

sentences and coarse segments are useful knowledge to the

refinement process.

4.6. Qualitative Results

Qualitative results of the proposed model including SG

and SGR are presented in Figure 6. From the results, the

SG model describes the video with coherent event descrip-

tions and also effectively localise the event segments. More-

over, the SGR model introduces more fine-grained informa-

tion into the captions than the SG model, and describes the

events with more details. As a result, the localisation accu-

racy of the event segments is improved accordingly.

5. Conclusion

In this paper, we propose a top-down dense video cap-

tioning framework termed “Sketch, Ground, and Refine”

(SGR), which first generates a video-level story and then

grounds the story to video segments for further refinement.

In this way, we avoid the ill-defined event proposal gen-

eration process and directly discover a sequence of story-

oriented events in the video, thus improving the coherency

and accuracy of the generated event captions. To facilitate

the event captions to contain more event-specific details,

we adopt a refinement stage to leverage the event-level in-

formation and introduce more fine-grained details into the

event captions. Based on the refined captions, the event seg-

ments can further be adjusted to be more accurate. In the

experiments, the proposed SGR model outperforms the pre-

vious state-of-the-art methods on both traditional and story-

oriented dense caption evaluations.
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