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Figure 1. We propose a style-codes controlled makeup transfer method that allows flexible makeup editing without the need for well-aligned

source-reference pair. (a) We control the shade of makeup by linear interpolation of two style-codes from the source and the reference

images. (b) Makeup removal can be achieved by simply swapping the source and the reference images. (c) We produce partial-transferred

results by integrating the style-codes of three reference images. (d) Robust results can be generated with large spatial misalignment.

Abstract

Transferring makeup from the misaligned reference im-

age is challenging. Previous methods overcome this barrier

by computing pixel-wise correspondences between two im-

ages, which is inaccurate and computational-expensive. In

this paper, we take a different perspective to break down

the makeup transfer problem into a two-step extraction-

assignment process. To this end, we propose a Style-based

Controllable GAN model that consists of three components,

each of which corresponds to target style-code encoding,

face identity features extraction, and makeup fusion, respec-

tively. In particular, a Part-specific Style Encoder encodes

the component-wise makeup style of the reference image

into a style-code in an intermediate latent space W . The

style-code discards spatial information and therefore is in-

variant to spatial misalignment. On the other hand, the

style-code embeds component-wise information, enabling

flexible partial makeup editing from multiple references.

This style-code, together with source identity features, is in-

tegrated into a Makeup Fusion Decoder equipped with mul-

tiple AdaIN layers to generate the final result. Our proposed

method demonstrates great flexibility on makeup transfer

by supporting makeup removal, shade-controllable makeup

transfer, and part-specific makeup transfer, even with large

spatial misalignment. Extensive experiments demonstrate
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†Corresponding author (hesfe@scut.edu.cn).

the superiority of our approach over state-of-the-art meth-

ods. Code is available at https://github.com/

makeuptransfer/SCGAN .

1. Introduction

Makeup is one of the best ways to make people attrac-

tive. However, applying makeup is time-consuming and

it even takes a much longer time to seek suitable makeup

for each individual. Thus, it is practical to automatically

transfer the makeup from reference images onto our own

faces. Deep learning approaches, especially GAN-based

models, have been widely exploited in makeup transfer

task [19, 1, 6, 2]. They mainly model the makeup trans-

fer and recovery processes as a closed-loop to combat the

problem of lacking paired data.

Notwithstanding the demonstrated success, these meth-

ods are constrained by the input condition, i.e., both the

source and reference images must be well-aligned frontal

faces. This is because enforcing cycle-consistency [29]

cannot guarantee correct spatial transformation. On the

other hand, their CycleGAN-based solutions [1, 19] lack

flexibility and controllability of makeup styles. A recent

work, PSGAN [13], is proposed to address these problems.

It computes the dense correspondence attention between

two images to consolidate component-to-component trans-

fer. However, apart from the large computational overhead

of pixel-wise correspondence, PSGAN suffers from two

main issues. First, the predicted pixel-to-region attention is

6549



ambiguous and thus leading to the color bleeding problem

around facial components (see results in Sec. 4). Second,

it is cumbersome to implement local transfer from multiple

references, as it requires computing dense correspondences

for every image and reconstructs a new attentive matrix in a

pixel-wise manner.

In this paper, we overcome the spatial misalignment bar-

rier from a completely different perspective. We aim to ex-

tract the spatially invariant 1D style-code from the reference

image and re-assign it to the source one. Our two-step prin-

ciple gets over the challenging pixel-wise matching, lead-

ing to a simple learning emphasis of makeup assignment.

To this end, we propose a new model, called Style-based

controllable GAN (SCGAN), that consists of two “extrac-

tion” and one “assignment” modules. Particularly, a Part-

specific Style Encoder (PSEnc) is designed to extract the

makeup style of each part (e.g., lip, skin, and eyes) from

one (or multiple) face(s) with the given face parsing maps.

The extracted style-code is encoded in a component-wise

manner, enabling flexible local manipulation in the down-

stream applications. On the other hand, inspired by Style-

GAN [15], the makeup style is mapped into an intermediate

style space instead of using the linearly projected vectors,

thus the extracted attributes are less entangled to different

factors of variation. Meanwhile, we propose a Face Iden-

tity Encoder (FIEnc) to extract the face identity features

from the source image. Then, a Makeup Fusion Decoder

(MFDec) is presented to progressively fuses the style-code

and the face identity features in different feature levels us-

ing AdaIN layers [11] and generates the final makeup trans-

fer results. Our proposed model demonstrates great flexi-

bility in makeup transfer, as shown in Fig. 1. Our model

achieves shade-controllable makeup transfer by linear com-

bining the style-codes from the source and the reference im-

ages (Fig. 1(a) and (b)). Partial transfer from different ref-

erence images can be easily achieved by integrating their

style-codes (Fig. 1(c)). More importantly, our proposed

model is invariant to pose variations (Fig. 1(d)). Extensive

experiments and comparisons demonstrate the superiority

of our proposed model comparing with the state-of-art ap-

proaches.

Our contributions are three-fold:

• We propose a fully automatic makeup transfer model

with the best flexibility comparing with existing ap-

proaches. Global/local makeup transfer and removal

with shade-control can be easily realized by editing the

style-codes without extra computational efforts.

• We break down the makeup transfer problem into a

two-step extraction-assignment process. A style-based

network PSEnc is proposed to map the makeup style

into a component-wise style-code. This design elimi-

nates the spatial misalignment problem.

• Our proposed model achieves state-of-the-art perfor-

mance even with large spatial misalignment between

the source and the reference images.

2. Related Work

Makeup transfer aims to transfer a specific makeup

style of one face to another. It has been studied for a

decade [7, 26, 21, 24, 18]. CycleGAN [29] is one of

the most inspiring approaches for makeup transfer, as it

is designed to perform image-to-image translation between

two unpaired images. However, it can not specify a ref-

erence image. PairedCycleGAN [1] further introduces an

asymmetric function to complete the task of makeup trans-

fer/removal and variants of cycle consistency losses to sup-

port makeup transfer using a specific makeup image. Beau-

tyGlow [2] leverages Glow framework [17] to disentangle

the latent features into makeup features and non-makeup

features, and then invert the recombined features to image

domain. BeautyGAN [19] introduces a dual input/output

GAN to complete makeup transfer and makeup removal si-

multaneously and a makeup loss to refine local details. Lo-

cal Adversarial Disentangling Network [6] utilizes multiple

overlapping local discriminators and asymmetric loss func-

tions to ensure local details consistency. Although the above

methods can perform makeup transfer in some senses, they

do not specifically handle the spatial misalignment problem

between the source image and the reference image.

PSGAN [13] proposes the first attempt to explicitly solve

the spatial misalignment problem by introducing an atten-

tion mechanism [25]. They build the pixel-wise correspon-

dences and achieve partial makeup transfer by leveraging

the face parsing masks and facial landmarks. However, as

discussed in Sec. 1, their method relies on the ambiguous

pixel-to-region attention. On the other hand, the computed

attentive matrix is computational-expensive while not flex-

ible for local transfer. On the contrary, the proposed style-

code design enables a large degree of flexibility and control-

lability. More importantly, our proposed method is invariant

to spatial variations of faces.

Style transfer can be regarded as a general form of

makeup transfer, and it has been a popular topic in re-

cent years. People tried to transfer a source image to

all kinds of styles, such as Van Gogh, pixel arts, car-

toon style, etc. Traditional style transfer can be classified

into following three categories: (1) Stroke-based render-

ing [9]; (2) Region-based techniques [23, 4]; (3) Example-

based rendering [10, 28]. With the development of the

neural network, CNN-based models have been exploded

rapidly [3, 11, 14]. However, these style transfer approaches

generally transfer the style from one domain to another.

They lack local-understanding and controllability, and thus

cannot suit face-specific makeup transfer applications.
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Figure 2. The overview of the proposed method (SCGAN). In (a), the reference image y is decomposed into three parts. Part-specific style

encoder extracts the features of each part and maps them into a disentangled style latent space W . Face identity encoder extracts the face

identity features of the source image x. Makeup Fusion Decoder fuses the style-code w with the face identity feature to generate final

result x̂. (b) shows the mapping module of PSEnc. (c) is the fusion block equipped with the AdaIN layer in MFDec.

3. Approach

3.1. Formulation

Let X = {xn|xn ∈ X}n=1,...,N and Y = {ym|ym ∈
Y }m=1,...,M denote the non-makeup image domain and the

makeup image domain, respectively. Given a source im-

age x and a reference image y, we aim to learn the map-

ping function between two domains: x̂ = G(x, y) and

ŷ = G(y, x). x̂ is the transferred result with the makeup

style of y and the face identity of x.

Fig. 2 depicts the systematic design of our proposed

SCGAN. It consists of three network components, a Part-

specific Style Encoder (PSEnc), a Face Identity Encoder

(FIEnc), and a Makeup Fusion Decoder (MFDec). PSEnc

extracts the features of the reference image and maps them

into a 1D style-code w. We decompose the reference im-

age into three major components and feed them into PSEnc

one-by-one. FIEnc extracts the face identity features of the

source image. MFDec fuses the makeup style and the face

identity features and then generates a makeup transferred

result. The details of the network structure are demonstrated

in Sec. 3.2. The objective functions of the complete model

can be found in Sec. 3.3.

3.2. Network Structure

3.2.1 Part-specific Style Encoder

As a crucial part of our two-step pipeline, we first delve into

the extraction of reference makeup style. Although style-

codes can be obtained by simply averaging facial features

into a 1D vector (see Fig. 2(b)), the obtained codes fol-

low a similar probability density of training data, leading

to unavoidable entanglement between facial components.

We present two key strategies to handle this issue. First,

inspired by StyleGAN [15], we introduce a non-linear map-

ping network to embed the initial style-code into an inter-

mediate style latent space. By doing this, the generated

style-code is not restricted from training data distribution

and is therefore allowed to be disentangled. Second, to in-

troduce prior disentangled knowledge and further support

part-specific makeup transfer with greater controllability,

we decompose each reference face into three parts (lip, skin,

and eyes) by applying a face parser [27]

yi = y ⊙M i. (1)

We denote each component of the reference face as yi,

where i = {lip, skin, eyes}, M i is the corresponding mask

and ⊙ denotes the Hadamard product. Each input compo-
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nent yi is fed into a feature extractor with two downsam-

pling convolutional layers. After a mapping module (Fig. 2

(b)) with an average pooling layer and a 1×1 convolutional

layer, we map each component yi to a part-specific style-

code zi. We concatenate the codes of three components and

form a complete initial style-code z in Z latent space

z = zlip ⊗ zskin ⊗ zeyes, (2)

where ⊗ denotes the concatenation. Since we decompose

the input reference image into several semantic parts, our

proposed SCGAN supports composing arbitrary semantics

part from different reference images even with different

poses and face expressions

z = zlipa ⊗ zskinb ⊗ zeyesc , (3)

where a, b, c indicate three reference images ya, yb, yc re-

spectively.

To get rid of the training data distribution and inject non-

linearity, we feed the initial style-code z into a multi-layer

perceptron (MLP) with three fully connected layers to map

the style-code z into a code w in W latent space with better

feature disentanglement

w = MLP(z). (4)

3.2.2 Face Identity Encoder

FIEnc serves for face identity feature extraction. It consists

of two downsampling convolutional layers and three res-

blocks. FIEnc takes the input source image x and extract

the face identity features Fid

Fid = FIEnc(x). (5)

Note that, three resblocks in FIEnc are all common residual

blocks [8] without AdaIN layers.

3.2.3 Makeup Fusion Decoder

MFDec fuses the style-code w with the face identity fea-

tures Fid progressively and applies the makeup style from

reference image to the face of the source image. To be spe-

cific, it consists of three fusion blocks and two upsampling

convolutional layers. We introduce two AdaIN layers for

each fusion block (Fig. 2 (c)) in MFDec. The style-code

w is specialized by a learnable affine transform and then

passed into each fusion block. The j-th AdaIN layer is de-

fined as follows:

AdaIN(Fj , wj) = ws,j

Fj − µ(Fj)

σ(Fj)
+ wb,j , (6)

where ws,j and wb,j are the scaled and biased style using

corresponding scalar components, Fj denotes input feature

maps, µ(·) and σ(·) are the channel-wise mean and standard

deviation respectively. After two upsampling convolutional

layers, we can finally obtain the result x̂.

3.3. Full Objective

Since the makeup images and the non-makeup images

are unpaired, we trained the network in a cyclic manner.

Given the non-makeup domain X and the makeup domain

Y , our proposed SCGAN has to learn the mapping bidirec-

tionally (X → Y and Y → X) between these two domains.

So the complete training process is like a CycleGAN [29].

Adversarial loss. Adversarial loss is introduced to guide

SCGAN (generator) for more realistic results. We applied

two discriminator DX , DY to discriminate fake or real of

the images in X and Y , respectively. The structures of two

discriminators are the same as the Markovian discriminator

proposed by [12]. Adversarial loss [5] LGAN
G for generator

and LGAN
D for discriminators are defined as follows

LGAN
D = −Ex∼X [logDX(x)]− Ey∼Y [logDY (y)]

− Ex∼X,y∼Y [log((1−DX(G(y, x)))

× (1−DY (G(x, y))))],

(7)

LGAN
G = −Ex∼X,y∼Y [log(DX(G(y, x))×DY (G(x, y)))].

(8)

Global perceptual loss. Since the images are from the

two domains, pixel-level constraint is not available. To

guarantee the face identity between the input source im-

age and the output transferred image, we use a perceptual

loss [14] to maintain the global face identity. Lvgg
global is de-

fined as

Lvgg
global = ‖Fl(G(y, x))− Fl(y)‖2

+ ‖Fl(G(x, y))− Fl(x)‖2 ,
(9)

where Fl(·) denotes the features of l-th layer on the

VGG [22] model and ‖·‖
2

is the L2-Norm.

Local perceptual loss. Besides global perceptual loss,

local perceptual loss is introduced to further keep the non-

transferred parts unchanged, e.g., teeth, eyebrows, etc.

Lvgg
local is defined as

L
vgg
local =

I∑

i=1

‖Fl(G(y, x)⊙My,i)− Fl(y ⊙My,i)‖2

+

I∑

i=1

‖Fl(G(x, y)⊙Mx,i)− Fl(x⊙Mx,i)‖2 ,

(10)

where M denotes the mask of the specific part in I =
{teeth, hair, eyeballs, eyebrows}, i denotes the index of

I .

Cycle consistency loss. For unsupervised learning with

unpaired images, we use the cycle consistency loss [29],

which is defined as

Lcyc = ‖G(G(y, x), y)− y)‖
1

+ ‖G(G(x, y), x)− x)‖
1
,

(11)
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Reference Source DIA CycleGAN BeautyGAN BeautyGlow LADN PSGAN SCGAN

SourceReference DIA CycleGAN PairedCycleGAN BeautyGlow LADN PSGAN SCGAN

Figure 3. Qualitative comparisons with existing models without spatial misalignment. The highlighted areas are some unnatural or incorrect

transfer results.

where ‖·‖
1

denotes the L1-Norm.

Makeup loss. Makeup loss was proposed by Li et

al. [19] which utilizes Histogram Matching (HM) to provide

a transferred image as a pseudo ground truth. It consists of

local histogram matching on 3 different facial regions: skin,

lip, and eyes. Then the three transferred parts are integrated

as a pseudo ground truth. The makeup loss Lmakeup is de-

fined as

Lmakeup = ‖G(x, y)−HM(x, y)‖
2

+ ‖G(y, x)−HM(y, x)‖
2
,

(12)

where HM(·) denotes the histogram matching and the out-

put of HM(x, y) has the makeup style of y while preserv-

ing the identity of x.

Total loss. The total loss Ltotal of the complete network

is defined as

Ltotal = λGAN (LGAN
D + LGAN

G ) + λcycLcyc

+ λgL
vgg
global + λlL

vgg
local + λmakeupLmakeup,

(13)

where λGAN , λcyc, λg, λl, and λmakeup are the weights of

the loss terms respectively.

3.4. Implementation Details

Our SCGAN was trained and tested on Makeup Trans-

fer (MT) dataset [19] which contains 3834 female images.

There are 1115 non-makeup images and 2719 makeup im-

ages including variations in poses, races, and etc. We use

the same image split with Li et al. [19] that randomly se-

lected 100 non-makeup images and 250 makeup images for

testing. The rest of the images are used for training. In all

the experiments, images are resized to 256×256. We extract

features from Relu 4 1 layer of VGG16 [22] calculating

global perceptual loss and local perceptual loss. The opti-

mizer of the generator and two discriminators is Adam [16]

with β1 = 0.5 and β2 = 0.999 and a fixed learning rate of

0.0002. The batch size is set to 1.

Method
Property

Shade Part Misalign. Landmarks free

BGAN [19] X

PGAN [1]

BGlow [2] X X

LADN [6] X

PSGAN [13] X X X

SCGAN X X X X

Table 1. Properties of state-of-the-arts makeup transfer methods.

“Shade”: shade-controllable makeup transfer. “Part”: partial

transfer. “Misalign.”: robust transfer with even large spatial mis-

alignment between the source and the reference images. “Land-

marks free”: model does not need facial landmarks.

ReferenceSource BeautyGAN LADN PSGAN SCGAN

Figure 4. Qualitative comparisons with existing models with large

spatial misalignment.

4. Experiments

We compare our SCGAN with two general domain trans-

fer methods: CycleGAN [29] and DIA [20] as well as

five state-of-the-art makeup transfer methods: PairedCycle-

GAN [1], BeautyGAN [19], BeautyGlow [2], LADN [6]

and PSGAN [13]. More results can be found in the supple-

mentary materials.

Table 1 summarizes the properties of different makeup

transfer methods. Our SCGAN demonstrates the greatest

flexibility and controllability among all the models. It is
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Source Reference1 Reference2

Global makeup interpolate

Partial makeup interpolate

Figure 5. Shade control with two reference images by linear interpolation. The upper row applies a global transfer. The bottom row applies

a partial transfer which only transfer the lips style of two reference images.

Ref.1 Ref.2

Ref.3 Ref.4
Figure 6. Makeup transfer with four reference images by linear

interpolating four style-codes.

a landmark-free model which supports shade-controllable

transfer, part-specific transfer, robust transfer even with spa-

tial misalignment.

4.1. Qualitative Comparisons

In Fig. 3, we first show a qualitative comparison with

the baseline methods when there is no obvious spatial mis-

alignment between the reference and the source images. We

directly copied the results of BeautyGlow and PairedCycle-

GAN from their papers because they have not released the

code. For two domain transfer models, DIA fails to trans-

fer a correct color of the lip and the eyebrows. CycleGAN

simply performs domain transfer without any specific style

control from the reference image. It synthesizes generally

natural results, but it tends to be blurry and lost texture in-

formation. On the other hand, methods tailored for makeup

transfer also have some weaknesses. There are some severe

artifacts in the results of LADN. BeautyGAN and Beauty-

Glow perform well when there is no spatial misalignment

problem. PSGAN can also generate visually acceptable re-

sults but locally suffers from color bleeding problem (see

highlighted regions), which affects the aesthetic feeling of

the results. Meanwhile, PSGAN cannot guarantee a pre-

cise transfer while maintaining the source features, e.g., it

fails to transfer the correct lip color and lose the source re-

flection of the lip. In our model, style-codes design solves

the spatial misalignment problem and makes sure our model

can generate high quality results without the necessity of fa-

cial landmark. Local perceptual loss guarantees local cor-

rectness and preserves the local textures. Therefore, SC-

GAN synthesizes the most natural and semantically correct

makeup transfer results comparing with existing methods.

To test the robustness against spatial misalignment, we

compare our method with three makeup transfer models

which have the released code in Fig. 4. When spatial mis-

alignment occurs, LADN and BeautyGAN fail to tackle

such a challenge and are not able to provide visually ap-

propriate results. PSGAN produces fewer artifacts than the

previous two methods in some cases. However, unnatu-

ral shadows are attached to the faces due to the ambigu-

ous attentive matrix. Comparing with the best competitor

PSGAN, our SCGAN can generate the most natural results

thanks to the spatially invariant style-codes design, leading

to a much simpler makeup assignment task. Moreover, we

produce pixel-level accurate transfer for each specific part

between the source and the reference images, comparing

with all the competitors.

4.2. Controllable Makeup Transfer

In this section, we demonstrate the flexibility and con-

trollability of our method, including shade-controllable

transfer, part-specific transfer, and makeup removal.

4.2.1 Shade-controllable Transfer

Since we use a style-code w to represent the makeup style of

the image. It can easily control the shade by manipulating

the style-code. We extract the style-codes from the refer-

ence image and the source image. Then we apply a linear
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interpolation to control the shade (coefficient α ∈ [0, 1]).

w = (1− α)wref + αwsource. (14)

Fig. 1 (a) demonstrates the results from light to heavy. We

can find a gradual change of makeup style from the source

image to the reference image.

Meanwhile, SCGAN also supports fusing the styles from

multiple reference images with linear interpolation.

w = (1− α)wref1 + αwref2. (15)

The upper row of Fig. 5 shows the results with different

contributions of two reference images.

Fig. 6 demonstrates a more extreme case with four ref-

erence images. Results are shown in a “confusion matrix”

style. Even we fuse four style-codes from different refer-

ence images, the results are natural and the image quality

of the results is consistently high. If one style-code con-

tributes more, the makeup style of the result is closer to the

reference image of this style-code.

4.2.2 Part-specific Transfer

Since we decompose each reference image into three major

components (lip, eyes and skin), SCGAN can support part-

specific makeup transfer by simply choosing any specific

part from any reference image we want. Given a source im-

age x and three reference images y1, y2, and y3, if we want

the lip, eyes, and skin are from y1, y2, and y3 respectively,

we can achieve that by passing each specific part to PSEnc

as follows

z = z
lip
1

⊗ zskin
2

⊗ z
eyes
3

. (16)

Fig. 1 (c) demonstrates the result of the above scenario. We

can find that the result is now with the lip from “ref1”,

skin from “ref2”, and eyes from “ref3”. The bottom row

of Fig. 5 also shows a partial transfer on the lips of the

reference images. So wref1 and wref2 are extracted from

{ylip
1

, xskin, xeye} and {ylip
2

, xskin, xeye}.

4.2.3 Makeup Removal

Since our SCGAN learns a bi-directional mapping between

two domains in a cyclic manner, we can achieve makeup

removal by interchanging the roles of x ∈ X and y ∈ Y .

That is to let the non-makeup image x be the reference im-

age and the makeup image y be the source image. Fig. 1(b)

shows makeup removal results from heavy to light.

4.3. Spatial Invariance

Thanks to the style-code design, the transfer results are

invariant to spatial and rotational information. This is a

practical property for makeup transfer as it frees the users
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Figure 7. Results with different rotations of the source and the ref-

erence images.

from providing frontal sources/references, and it is an es-

sential factor for applying it in live streaming. To prove this

property, we manually introduce rotations to the source im-

age and the reference image and then compare our SCGAN

with the state-of-the-art method PSGAN in Fig. 7. PSGAN

performs well when the source image and the reference im-

age are with the same rotation. However, when the rotations

between them are different, color bleeding problem occurs

in the results of PSGAN because it fails to find the corre-

sponding parts of the source and the reference images. Our

SCGAN consistently performs visually appropriate results

even with different rotations. We further show the spatial

invariance property in video makeup transfer in the supple-

mentary materials.

4.4. User Study

We conducted three studies to quantitatively evaluate

the robustness and the visual quality of our SCGAN com-

paring with three makeup transfer methods, BeautyGAN,

LADN, and PSGAN. In total 30 participants joined these

user studies. In the first one, we randomly selected 15

pairs of makeup and non-makeup images which are well-

aligned. In the second study, 15 pairs of misaligned im-

ages were selected. In the last one, we aim to examine

the extreme scenarios of misalignment by selecting 15 pairs

of largely rotated photos. In all user studies, participants

were asked to select the result with the best visual qual-

ity and the most precise transfer. Fig. 8 demonstrates the

user studies results, and our SCGAN outperforms all state-

of-the-art methods. We believe it is because of our simpli-

fied extraction-assignment setting, which leads to accurate

transfers in arbitrary scenarios.

4.5. Ablation Study

Local perceptual loss. Besides conventional losses in

the existing methods, we introduce an additional local per-
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Figure 8. User study results (%). “Aligned” and “Misaligned” in-

dicate the input images are well-aligned or with different poses.

“Rotate” means that we randomly rotate the source image or the

reference image in “Misaligned” case at a degree ranging from

−45
◦
∼ 45

◦.

Source Reference w/o MLP ONE AdaIN SCGAN

Figure 9. Ablation study of network design. “One AdaIN“ denotes

we only adjust the makeup style of results in one fusion block. All

the results are acquired by partial transfer of lip.

ceptual loss to maintain the local consistency of the face

identity between the source image and the result. Fig. 10

shows the effectiveness of local perceptual loss. We can ob-

serve some artifacts and color bleeding on the mouths and

hair without local perceptual loss. In addition, the results

with local perceptual loss are much sharper with more local

details.

Network Design. Here we conduct an ablation study to

evaluate the effectiveness of the network design. We aim to

prove the importance of multilayer perceptron for disentan-

glement and the design of multiple AdaIN layers. To have

a better visualization, we only transfer the lip to the source

image and let the skin and eyes be the same with the source

image, i.e., the input is {ylipref , y
skin
source, y

eyes
source}.

Qualitative comparisons are demonstrated in Fig. 9.

Without MLP, the lip is entangled with skin and eyes be-

cause the initial latent space Z is not disentangled enough.

By introducing an MLP to map Z to W , we can get part-

specific transfer results with better disentanglement.

When only equipping with AdaIN layers in the first fu-

sion block in MFDec, the results show much lighter transfer

of the lip comparing with the reference images. Because the

SCGAN only adjusts the makeup style of the results in one

fusion block which is not well-refined. When emphasiz-

ing the style along the decoding process in all three fusion

blocks, we can get more emphasized and confident partial

makeup transfer results.

w/o local-per. SCGANSource Reference
Figure 10. Ablation study of local perceptual loss.

Source Reference Result
Figure 11. Limitation of our method. Although we can success-

fully transfer the base makeup, special effects cannot be correctly

assigned.

5. Conclusion, Limitation, and Future Work

In this paper, we propose a style-codes controlled model

to overcome the main challenge of spatial misalignment

in makeup transfer. Unlike the previous method relies

on a cumbersome and ambiguous dense correspondence

between source and reference, we propose an alternative

extraction-assignment solution for easing the transferring

difficulty. The proposed model demonstrates a great de-

gree of flexibility and controllability, which supports shade-

controllable transfer, part-specific transfer, and makeup re-

moval. It is invariant to spatial misalignment and rotation

thanks to the style-code design. These properties perfectly

match the makeup transfer application.

Although our method is flexible and accurate, a limita-

tion is that we cannot transfer the local pattern of the facial

region, as shown in Fig. 11. This may be addressed by mod-

eling faces in the 3D domain and we leave this problem for

future work.
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