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Abstract

Cross-domain object detection is challenging, because

object detection model is often vulnerable to data variance,

especially to the considerable domain shift between two

distinctive domains. In this paper, we propose a new Un-

biased Mean Teacher (UMT) model for cross-domain ob-

ject detection. We reveal that there often exists a consider-

able model bias for the simple mean teacher (MT) model

in cross-domain scenarios, and eliminate the model bias

with several simple yet highly effective strategies. In par-

ticular, for the teacher model, we propose a cross-domain

distillation method for MT to maximally exploit the exper-

tise of the teacher model. Moreover, for the student model,

we alleviate its bias by augmenting training samples with

pixel-level adaptation. Finally, for the teaching process, we

employ an out-of-distribution estimation strategy to select

samples that most fit the current model to further enhance

the cross-domain distillation process. By tackling the model

bias issue with these strategies, our UMT model achieves

mAPs of 44.1%, 58.1%, 41.7%, and 43.1% on bench-

mark datasets Clipart1k, Watercolor2k, Foggy Cityscapes,

and Cityscapes, respectively, which outperforms the exist-

ing state-of-the-art results in notable margins. Our imple-

mentation is available at https://github.com/kinredon/umt.

1. Introduction

In recent years, deep domain adaptation has gained in-

creasing attention in computer vision community, due to

that the supreme performances of deep models are normally

restricted only in the domain of training data. When those

trained models are applied to new environments, significant

performance drops have often been observed in many com-

puter vision tasks [5, 6, 11, 37, 54].

In this work, we are specifically interested in the cross-

domain object detection problem, because the strong de-

mands from real-world scenarios. For instance, in au-

tonomous driving, robust object detection is needed in dif-

*The corresponding author

ferent weathers and lighting conditions. Collecting annota-

tions for all conditions can be extremely costly, and there-

fore models that can adapt to new environments without la-

beled data are highly desirable.

Designing such domain adaptive detection models can

be challenging. Compared to the image classification task,

the output of object detection is richer and more complex,

consisting of both the class labels and the bounding box lo-

cations. The two outputs are intrinsically coupled, mak-

ing it more vulnerable towards data variance like scene

changes, weather conditions, camera diversity, etc. Vari-

ous approaches have been proposed to address these issues,

including instance and image-level adversarial training [6],

strong and weak adversarial training [37], graph-based con-

sistency [1], etc.

In this paper, we propose a new approach called Unbi-

ased Mean Teacher (UMT) for cross-domain object detec-

tion. We build our approach based on the Mean Teacher

(MT) model [46], which is originally proposed for semi-

supervised learning. By enforcing the consistency over per-

turbed unlabeled samples between the teacher and student

models via distillation, it naturally gains improved robust-

ness against data variance to some extent, and thus being

used as our starting point for cross-domain object detection.

However, solely using MT for cross-domain object de-

tection often fails to produce promising results (see Sec-

tion 4 for detailed experimental study). We conduct a fur-

ther experimental investigation into this issue and observe

that there exists an essential model bias issue for MT in

cross-domain scenarios. Specifically, in the presence of a

large domain gap, the MT model can be easily biased to-

wards the source domain, as the supervision is mainly from

the source domain.

To overcome such model bias occurred in the mean

teacher model for cross-domain object detection, we de-

sign the unbiased mean teacher model with three strategies.

Firstly, observing the biased teacher model often produces

more precise predictions for the source images, we design a

cross-domain distillation approach by using the source-like

target images translated with CycleGAN [55] as the input

for teacher model, and original target images as the input for
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student model. This significantly improves the effectiveness

of distillation and reduces the influence of the model bias.

Then, to further remedy the model bias of student model,

we use the target-like source images as additional labeled

data for training. Finally, for the teaching process, we also

employ an out-of-distribution estimation strategy to iden-

tify the target samples that most fit the current MT model to

enhance the cross-domain distillation process.

The contributions of this work mainly can be summa-

rized in three aspects: 1) A new observation: We reveal

the essential model bias issue in the MT model for cross-

domain object detection. 2) A new model: We propose a

new domain adaptation framework called Unbiased Mean

Teacher (UMT) for object detection, which addresses the

model bias with several simple yet effective strategies. 3)

A new benchmark: Our new UMT model achieves state-

of-the-art performances on multiple datasets, setting up a

new benchmark for cross-domain object detection research.

Our UMT model achieves mAPs of 44.1%, 58.1%, 41.7%,

and 43.1% on benchmark datasets Clipart1k, Watercolor2k,

Foggy Cityscapes, and Cityscapes, respectively.

2. Related Works

Unsupervised Domain Adaptation: Unsupervised do-

main adaptation methods are designed to adapt a model

from the labeled source domain to an unlabeled target do-

main. Many previous works aim to minimize the distance

metric such as maximum mean discrepancy(MMD) [3, 30,

31, 32, 45]. Alternatively, adversarial training with domain

classifier is also commonly used to learn domain-invariant

representation [10, 11, 39, 48]. More similar to our work,

French et al. proposed a model based on the Mean Teacher

model [46], and achieved state-of-the-art results on vari-

ous benchmarks. Their model includes student and teacher

models. The student model is trained using gradient descent

while the weights of the teacher network are an exponential

moving average of those of the student, and the inconsis-

tency in predictions between the two models is penalized to

encourage model robustness. The aforementioned domain

adaptation models have focused on the task image classi-

fication, while in this work we study a more challenging

object detection problem.

Object Detection: Powered by the strong representation

ability of deep convolution neuron network(CNN) mod-

els [16, 24, 43], object detection has made significant

progress in recent years. Many DCNN-based methods have

been proposed [2, 12, 13, 15, 35, 33, 29, 34, 41, 27, 49],

achieving remarkable performance in benchmarks such as

PASCAL VOC [8] and MSCOCO [28]. Among all works,

one of the most representative works is Faster RCNN [35],

which extracts regions of interest (RoIs) by a Region Pro-

posal Network (RPN), and then the prediction is made

based on the feature sampled from the RoI. In this work,

we test our model using Faster RCNN [35] as our base de-

tection network. But other detection networks should also

be possible.

Cross Domain Object Detection: Recently, many works

have been proposed to address the domain shift problem oc-

curred in object detection, using different techniques. Many

approaches utilize adversarial learning manner with a gra-

dient reverse layer to obtain domain-invariant feature, such

as DA-Faster [6], SCDA [56], SWDA [37], SPLAT [47],

MAF [17], MDAL [50], CRDA [51], CDN [44], HTCN [4],

etc. MTOR [1] performs Mean Teacher [46] to explore ob-

ject relation in region-level consistency, inter-graph consis-

tency and intra-graph consistency. Shan et al. [40] employs

generative adversarial network and cycle consistency for

image translation in the pixel space and minimizes domain

discrepancy in features. DM [23] yields various distinctive

shifted domains from source domain and employs multi-

domain-invariant representation learning to encourage fea-

tures to be indistinguishable among the domains. The label-

level adaptation [21, 22, 36] has also been used for the task

and produces improved detection performance. Our pro-

posed UMT achieves improvements in large margins over

the above methods.

3. The Unbiased Mean Teacher Model

In this section, we start from the Mean Teacher (MT)

model [46] and discuss how to re-purpose it for cross-

domain object detection. A simple MT model is firstly in-

troduced by applying MT to object detection with neces-

sary technical adjustment. Then, we give an analysis on the

model bias problem of MT model in the cross-domain ob-

ject detection task. Based on our analysis, we firstly address

the model bias in teacher model through a cross-domain dis-

tillation for MT to maximally exploit the expertise of the

teacher model and then propose to utilize the augmented

training samples with pixel-level adaptation to further alle-

viate the bias in the student model. For the teaching process,

we also employ an out-of-distribution detection strategy to

select samples that most fit the current model to enhance the

cross-domain distillation process.

3.1. The Mean Teacher Model

Mean Teacher (MT) [46] was initially proposed for semi-

supervised learning. It consists of two models with identi-

cal architecture, a student model and a teacher model. The

student model is trained using the labeled data as standard,

and the teacher model uses the exponential moving aver-

age (EMA) weights of the student model. Each sample pre-

diction of the teacher model can be seen as an ensemble of

the student model’s current and earlier versions, therefore

it is more robust and stable. By enforcing the consistency

of teacher and student models using a distillation loss based

on unlabeled samples, the student model is then guided to
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(c) Target sample (d) Source-like sample

Dog Dog

(a) Source sample (b) Target-like sample

Figure 1: Examples of translated images. (a) and (c) are re-

spectively a source example image from the PASCAL VOC

dataset [8], and a target example image from the Clipart1k

dataset [19]. (b) is the target-like image by translating the

source image (a) into the target style, and (d) is the source-

like image by translating the target image (c) into the source

style.

be more robust. The MT model has also been extended to

unsupervised domain adaptation by using the target domain

samples as the unlabeled data for distillation in [9].

During the distillation, a small perturbation is added to

the unlabeled data. By selecting samples with high prob-

abilities for prediction, the student model is encouraged to

reduce more variance on the unlabeled target samples, thus

further enhancing the model robustness. Therefore it is suit-

able to be applied to object detection, for addressing the

issue that object detection model is sensitive to data vari-

ance due to simultaneously predicting the tangled bounding

boxes and object classes.

However, since MT does not explicitly address the do-

main shift, when applying the MT model to the cross-

domain object detection task, the considerable domain shift

might cause the predictions from teacher model unreliable,

making the distillation less effective (see our investigation

in Section 3.3). The recent work [1] proposes to use the re-

gion graph to facilitate the distillation, however, it still does

not directly address the intrinsic model bias of MT.

3.2. A Simple MT Model for Object Detection

In the cross-domain object detection task, we have a set

of source images annotated with object bounding boxes and

their class labels, and a set of unlabeled target images. The

source and target domain samples are drawn from different

data distribution while their label space is the same. Its goal

is to learn a model that could achieve good performance for

the target domain.

Formally, let us denote a source image as Is, which is

annotated with multiple bounding boxes as well as their

class labels. We denote by B = {Bj |Mj=1
} as the set of

bounding box coordinates with each Bj = (x, y, w, h)
representing a bounding box. Accordingly, we denote by

C = {cj |Mj=1
} as the corresponding class labels, in which

each cj ∈ {0, 1, . . . , C} corresponds to Bj where 0 stands

for background, the others for object classes, and C is the

total number of classes. Then, the source domain can be

represented as Ds = {(Isi ,Bs
i , Cs

i )|Ns

i=1
}, where Ns is the

number of source images. Similarly, the target domain can

be defined as Dt = {Iti|Nt

i=1
} where Nt is the number of tar-

get images. Note that labels for the target domain are not

available.

Following the protocol of mean teacher, firstly, the la-

beled source samples are passed through the student model

for training. In particular, we employ Faster RCNN [35] as

our object detection backbone. Therefore the loss for train-

ing the student model with the labeled source samples can

be written as:

Ldet(Bs, Cs, Is) = Lrpn(Bs; Is) + Lroi(Bs, Cs; Is), (1)

where Lrpn is the loss for the Region Proposal Network

(RPN) module which is used for the candidate proposals

generation, and Lroi is the loss for the prediction branch

which performs bounding box regression and classification.

More details can be found in [35].

Meanwhile, the unlabeled target samples are augmented

with random cropping, padding and color jittering(i.e.

brightness, contrast, hue and saturation augmentations).

The augmented target samples are fed into teacher and stu-

dent models, respectively, and then we take the instance pre-

dictions with high probabilities of teacher model to guide

the student model via distillation. We denote the augmented

target samples as Ît for the student model, Ĩt for the teacher

model. The loss for distillation can be defined as:

Ldist(Ĩ
t, Ît) = Ldet(TB(Ĩt), TC(Ĩt), Ît), (2)

where TB(Ĩti) and TC(Ĩti) are the predicted bounding box

coordinates and object classes with high maximum category

score from the teacher model on the augmented image Ĩti,

and Ldet is the Faster RCNN loss defined in Eq. (1).

For obtaining TB(Ĩti) and TC(Ĩti), we firstly input Ĩti into

the teacher model to get a group of bounding boxes and

their class scores. Then, for each foreground category, we

sort all proposals by their scores on this category and take

Non-Maximum Suppression (NMS) to eliminate redundant

proposals. Finally, we select the bounding boxes with their
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Figure 2: Evaluation of teacher models in mean teacher

on target images and source-like images in different cross-

domain object detection scenarios. Mean Average Precision

(mAP) is used as the comparison metric. It can be observed

that the teacher model produces significantly better detec-

tion results on source-like images, which clearly indicates

the models are biased towards the source domain.

category score larger than a threshold T . Specifically, we

denote Bj , cj and pj are the bounding boxes coordinates,

category and maximum probability of the j-th instance pre-

dictions from the teacher model for an input image. The

selected instance predictions can be defined as follows:

(TB , TC) = {(Bj , cj)|pj > T, ∀j} . (3)

Finally, the overall loss of the mean teacher can be ob-

tained by putting together those two losses:

L = Ldet(Bs, Cs, Is) + λLdist(Ĩ
t, Ît), (4)

where λ is a trade-off parameter.

3.3. Investigating the Model Bias in Mean Teacher

Although mean teacher can improve the robustness of

predictions on the target domain, it is inevitable that learned

models will be biased towards the source domain, as the su-

pervision substantially comes from labeled source samples.

As a result, in the distillation process, the prediction on

the unlabeled target images produced by the teacher model

could be deficient. It will degrade the object detection per-

formance by a notable margin, especially for the unlabeled

target domain. This issue might be relatively minor in the

classification task. However, in object detection, minor bi-

ases in localization may cause a considerable difference in

feature pooling and class prediction, and thus leads to infe-

rior guidance to the student model.

To verify this, we experiment on the mean teacher mod-

els trained in the aforementioned way on several cross-

domain object detection datasets. In particular, we aim to

investigate whether the teacher model is biased to the source

domain, by comparing its performance on source and target

samples. To ensure a fair comparison, we use the unpaired

image-to-image translation by CycleGAN [55] to produce a

source-like image for each target image. An example of the

source-like image on PASCAL VOC→Clipart1k is shown

in Fig. 1(d). We then feed the target samples and the trans-

lated source-like samples into the teacher model, and eval-

uate their detection performance, respectively.

The average precisions (APs) of the teacher models for

two versions of samples on different datasets are plotted

in Fig. 2. We observe that the APs of teacher models on

source-like samples generally outperform their APs on tar-

get samples. This clearly confirms our analysis that the

teacher model is biased towards the source domain.

3.4. Healing the Model Bias in Mean Teacher

3.4.1 Healing the Teacher Model Bias

Motivated by the above observation, we propose to remold

the mean teacher model by pixel-level adaptation. Instead

of using only target samples for distillation, we perform a

cross-domain distillation by using paired images (It,Pt),
where Pt is the source-like version of the target image It.

As illustrated in Fig. 3, for each distillation iteration, we

feed the source-like image Pt to the teacher network, and

the target image It to the student network. In this way, the

teacher network is expected to produce more precise pre-

dictions, thus being able to provide better guidance to the

student network. Meanwhile, the student network is opti-

mized over the original target samples for the distillation

loss, which encourages its favor of target data. Thus, the

original distillation loss in Eq. (2) is modified as:

Ldist(P̃
t, Ît) = Ldet(TB(P̃t), TC(P̃t), Ît), (5)

where P̃t is augmented from Pt with small perturbations.

3.4.2 Healing the Student Model Bias

As the teacher model is a moving average of the student

model, the bias of teacher model essentially comes from the

student model. Therefore we also aim to reduce the model

bias from the side of student model. Towards this goal, we

translate the source images into target-like images. Then

the target-like images are used to train the student network,

in addition to the supervision from the original source sam-

ples. Similarly as in generating source-like images, we uti-

lize CycleGAN to obtain a target-like version image Ps for

each source image Is (an example of target-like images is

shown in Fig. 1(b)). As the image translation process does

not change the ground truth label (i.e., bounding boxes), we

use the same label information for target-like images. In

this way, the target-like images can encourage the student

model to be more favorable of the target domain data, and

thus to reduce the bias towards source data. The loss for
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Figure 3: An overview of our proposed Unbiased Mean Teacher. In each mini-batch, four types of images are used: source-

like images, target images, target-like images, and source images. The source images with annotations are used to optimize

the object detection loss of the student model under the supervision of interpolated ground truth in Eq. (8) (i.e., Source Det.

Loss); the source-like images and target images are respectively fed into the teacher and student network to perform the

cross-domain distillation (i.e., Distillation Loss); the target-like images are used as additional training samples to train the

student model (i.e., Target-like Det. Loss); The confidence branch adopt proposal feature and predict a confidence score with

the log penalty in Eq. (7) (i.e., Confidence Loss). These training routes are performed jointly in an end-to-end manner.

target-like images can be written as:

Ldet(Bs, Cs,Ps)=Lrpn(Bs;Ps) + Lroi(Bs, Cs;Ps), (6)

which has the same form with the loss in Eq. (1), only re-

placing Is with Ps.

3.4.3 Healing the Teaching Process

We have illustrated how to alleviate the model bias problem

of the teacher and student models by using source-like and

target-like images. However, one limitation is that these

strategies are static, and cannot be automatically adapted

during the training process. Specifically, with the source-

like and target-like images, the MT model is expected to be

gradually guided to fit the target domain, which means that

the source-like images might not be ultimately suitable for

the teacher model as the training process goes.

To this end, we further propose to dynamically adjust

the teaching process of the MT model by selecting the

most suitable samples for cross-domain distillation. In

particular, as discussed in the out-of-distribution detection

works [7, 18, 26, 25], the fitness of samples to a model

can be measured with their confidences predicted by the

model*. Therefore, we could employ the target sample con-

fidence scores to automatically select pairs that most fit the

current teacher model to enhance the teaching process of

the MT model during training.

In particular, as shown in Fig. 3, we utilize a side-branch

to predict the model confidence for each proposal as in-

spired by [7]. During the training process, on one hand,

we encourage the confidence score to be maximized for all

labeled training samples. Let us denote by τj as the confi-

dence score for the j-th proposal Bj , a log penalty is used

to train the confidence prediction branch:

Lτ =
∑

j

−log(τj). (7)

On the other hand, the confidence score is used to adjust

classification loss through interpolating between the model

prediction and the ground-truth label. Formally, we denote

pj = [p1j , . . . , p
C
j ]

⊤ as the predicted class probability for

Bj and yj as its one-hot representation of the category la-

bel. We give the hints through interpolating between the

*Note that the confidence here refers to the confidence of a sample be-

ing an in-distribution sample, which is different from the prediction confi-

dence (i.e., the maximum category probability) used in other works.
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model prediction pj and the category distribution yj . The

interpolation degree is indicated by the confidence score τj :

p′

j = τj · pj + (1− τj) · yj , (8)

in which τj is clipped in the range of [0, 1] if τj > 1.

During training, we replace the original one-hot target

category probability with the above soft label p′. Therefore,

Eq. (1) can be updated as follows:

Ldet(Bs,P, Is) = Lrpn(Bs; Is) + Lroi(Bs,P; Is), (9)

where P = {p′

j |Mj=1
}.

To enhance the teaching process, we utilize the confi-

dence branch to predict the confidence score for source-

like image P̃t in the teacher model. A high confidence

score indicates the source-like sample is more likely an in-

distribution sample for the current model, and is beneficial

to be used for the teaching process in the MT model. There-

fore, we updated Eq. (3) as follows:

(T̂B , T̂C) =
{

(Bj , cj)|
√
τj · pj > T, ∀j

}

, (10)

Accordingly, the cross domain distillation loss in Eq. (5) is

updated with the above defined (T̂B , T̂C) as follows:

L̂dist(P̃
t, Ît) = Ldet(T̂B(P̃t), T̂C(P̃t), Ît). (11)

3.4.4 Overall Model

We illustrate the overall architecture of our Unbiased Mean

Teacher in Fig. 3. The source-like and target-like data are

generated offline. Then the model is trained jointly by op-

timizing all losses in an end-to-end manner. The overall

training objective can be written as:

L =Ldet(Bs,P, Is) + Ldet(Bs, Cs,Ps)

+ λ · L̂dist(P̃
t, Ît) + γ · Lτ ,

(12)

where the loss terms are respectively the detection loss on

source samples defined in Eq. (9), the detection loss on

target-like samples defined in Eq. (6), the cross-domain dis-

tillation loss defined in Eq. (11), and the confidence loss

defined in Eq. (7), and λ and γ are the trade-off parameters.

4. Experiments

To validate the effectiveness of our approach, we com-

pare with state-of-the-art methods for cross-domain object

detection on benchmark datasets with three different types

of domain shifts, including 1) real images to artistic images,

2) normal weather to adverse weather, 3) synthetic images

to real images.

As a common practice, we adopt the protocol of unsuper-

vised cross-domain object detection in [6]. Full annotations

including the bounding boxes and the corresponding cate-

gory labels of objects are available for the source domain

training data, while the target domain only contains unla-

beled images. Moreover, we can access only the unlabeled

train set in the target domain, while the target domain test

set is strictly held out during the training phase.

Implementation Details: Following [6], we take the

Faster RCNN [35] model as the base object detection

model for our Unbiased Mean Teacher approach. The

ResNet-101 [16] or VGG16 [43] model pre-trained on Im-

ageNet [24] is used as the backbone for the Faster RCNN

model. Following the implementation of Faster RCNN with

ROI-alignment [53, 14], we rescale all images by setting the

shorter side of the image to 600 while keeping the image as-

pect ratios.

For the mean teacher and our model, unless otherwise

stated, we set the trade-off parameter λ = 0.01 and γ = 0.1
for all the experiments. We set the confidence threshold

T = 0.8 in all our experiments. We train the student net-

work with a learning rate of 0.001 for the first 50k iterations

and schedule linear decay for the learning rate of 0.0001 for

the next 30k iterations. Each batch consists of four image

samples: source, target, source-like, and target-like. The

weight smooth coefficient parameter α of the exponential

moving average for the teacher model is set to 0.99. Other

experimental hyper-parameters settings in our model follow

the setup in [35].

To understand the individual impact of the proposed

components, we include several special versions of our

UMT model for ablation study as follows: 1) UMTS is

the simple mean teacher model by optimizing the loss

in Eq. (4); 2) UMTSC is the mean teacher model with

our cross-domain distillation strategy as described in Sec-

tion 3.4.1; and 3) UMTSCA is the mean teacher model with

both our cross-domain distillation strategy in Section 3.4.1

and using the target-like images to augment the training set

for the student model as described in Section 3.4.2.

4.1. Real to Artistic Adaptation

Datasets: In this experiment, we test our model with do-

main shift between the real image domain and the artistic

image domain. Following [37, 42], we combine the PAS-

CAL VOC 2007 and PASCAL VOC 2012 datasets as the

source domain, and use the Clipart1k and Watercolor2k

datasets as target domains, respectively. The Clipart1k

dataset contains 1, 000 images from the same 20 classes

as the PASCAL VOC dataset, which is split equally into

a training set and a test set, containing 500 images each.

We use the training set as the unlabeled target domain sam-

ples for domain adaptation in the training phase, and the test

set is held out for evaluation. The Watercolor2k consists of

2, 000 images from 6 classes in common with the PASCAL

VOC dataset. Similarly, we use 1, 000 images as the target
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Table 1: The average precision (AP, in %) on all classes from different methods for cross-domain object detection on the

Clipart1k test set for PASCAL VOC→Clipart1k adaptation.

Method aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv MAP

Source Only 26.0 45.9 23.2 22.1 20.1 51.7 29.8 9.4 34.6 13.6 30.1 0.9 33.7 50.0 37.2 46.2 18.9 6.7 34.1 20.5 27.7

SCL [42] 44.7 50.0 33.6 27.4 42.2 55.6 38.3 19.2 37.9 69.0 30.1 26.3 34.4 67.3 61.0 47.9 21.4 26.3 50.1 47.3 41.5

SWDA [37] 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1

DM [23] 25.8 63.2 24.5 42.4 47.9 43.1 37.5 9.1 47.0 46.7 26.8 24.9 48.1 78.7 63.0 45.0 21.3 36.1 52.3 53.4 41.8

CRDA [51] 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3

HTCN [4] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3

UMTS 30.9 51.8 27.2 28.0 31.4 59.0 34.2 10.0 35.1 19.6 15.8 9.3 41.6 54.4 52.6 40.3 22.7 28.8 37.8 41.4 33.6

UMTSC 40.1 69.3 26.8 29.0 24.9 39.4 42.7 8.6 39.8 63.0 14.9 18.8 43.6 66.1 63.0 40.7 31.7 8.7 27.5 53.0 37.6

UMTSCA 39.5 60.0 30.5 39.7 37.5 56.0 42.7 11.1 49.6 59.5 21.0 29.2 49.5 71.9 66.4 48.0 21.2 13.5 38.8 50.4 41.8

UMT 39.6 59.1 32.4 35.0 45.1 61.9 48.4 7.5 46.0 67.6 21.4 29.5 48.2 75.9 70.5 56.7 25.9 28.9 39.4 43.6 44.1

Oracle 33.3 47.6 43.1 38.0 24.5 82.0 57.4 22.9 48.4 49.2 37.9 46.4 41.1 54.0 73.7 39.5 36.7 19.1 53.2 52.9 45.0

Table 2: The average precision (AP, in %) on all

classes from different methods for cross-domain object

detection on the Watercolor2k test set for PASCAL

VOC→Watercolor2k adaptation.

Method bike bird car cat dog person MAP

Source Only 74.3 49.0 35.2 33.9 25.3 60.6 46.4

SCL [42] 82.2 55.1 51.8 39.6 38.4 64.0 55.2

DM [23] - - - - - - 52.0

SWDA [37] 82.3 55.9 46.5 32.7 35.5 66.7 53.3

UMTS 76.2 53.4 46.2 39.3 34.9 71.5 53.6

UMTSC 79.7 49.5 50.1 45.5 30.6 69.8 54.2

UMTSCA 86.6 51.3 52.6 42.1 33.5 67.5 55.6

UMT 88.2 55.3 51.7 39.8 43.6 69.9 58.1

oracle 49.8 50.6 40.2 38.9 53.3 69.4 50.4

unlabeled training data for training models, and the remain-

ing 1, 000 images are held out for testing.

We include the results from state-of-the-art methods

DM [23] , SWDA [37], HTCN [4], CRDA [51] and

SCL [42] for comparison. Besides, we report the oracle

result by training a Faster RCNN model using the same

images with target domain but with the ground truth an-

notations, which can be viewed as a reference for the upper

bound adaptation performance. All methods are built on the

Faster RCNN model, where ImageNet pre-trained ResNet-

101 [16] is used as the backbone network.

Results: We report the average precision (AP) of each

class as well as the mean AP over all classes in Table 1

and Table 2 for object detection on the Clipart1k and Wa-

tercolor2k datasets, respectively.

We take the Clipart1k dataset as an example to explain

the experimental results. In particular, the simple MT model

UMTS obtains a mean AP of 33.6%, which outperforms the

result of 27.7% from the source only baseline. This proves

that the mean teacher model could help to improve the ro-

bustness of object detection model against data variance

considerably. However, the improvement is not as signif-

icant as other state-of-the-art methods like CRDA, HTCN,

and SCL, possibly due to the model bias problem as ana-

lyzed in Section 3.3. By using the cross-domain distilla-

tion the result is boosted to 37.6% (i.e., UMTSC), which is

further improved to 41.8% (i.e., UMTSCA) by additionally

using the target-like augmentation strategy. Note that the

result of UMTSC is already on par with the state-of-the-art

result on this dataset (i.e., DM), which clearly demonstrates

the effectiveness of our strategies for handling the model bi-

ases in mean teacher. By dynamically adjusting the teach-

ing process of the MT model by selecting the most suitable

samples for cross-domain distillation, our final UMT model

reaches 44.1%, which gives the new state-of-the-art perfor-

mance for cross-domain object detection on the Clipart1k

dataset. We have similar observations for the Watercolor2k

dataset.

4.2. Adaptation in Inverse Weather

Datasets: In this experiment, we follow the setting

in [6]. The training set of the Cityscapes dataset is used as

the source domain, and the Foggy Cityscapes dataset [38]

is used as the target domain. The Cityscapes dataset is col-

lected from the urban street scene captured in 50 cities.

The dataset contains 2, 975 images in the train set and

500 images in the validation set. The Foggy Cityscapes

is a synthetic foggy scene dataset rendered using the im-

ages and depth maps from Cityscapes, which therefore has

the same data split as the Cityscapes dataset, i.e. a train-

ing set of 2, 975 images a validation set of 500 images.

We take labeled Cityscapes train set images and unlabeled

Foggy Cityscapes train set images in our experiment, and

report the evaluated results on the validation set of Foggy

Cityscapes. Although there exists a one-to-one correspon-

dence between images in Cityscapes and Foggy Cityscapes

datasets, we do not leverage such information in unsuper-

vised domain adaptation.
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Table 3: The average precision (AP, in %) on all

classes from different methods for cross-domain object

detection on the validation set of Foggy Cityscapes for

Cityscapes→Foggy Cityscapes adaptation.

Method bus bicycle car mcycle person rider train truck MAP

Source Only 24.7 29.0 27.2 16.4 24.3 31.5 9.1 12.1 21.8

PF [40] - - - - - - - - 28.9

WD [52] 39.9 34.4 44.2 25.4 30.2 42.0 26.5 22.2 33.1

SCL [42] 41.8 36.2 44.8 33.6 31.6 44.0 40.7 30.4 37.9

DA-Faster [6] 35.3 27.1 40.5 20.0 25.0 31.0 20.2 22.1 27.6

SCDA [56] 39.0 33.6 48.5 28.0 33.5 38.0 23.3 26.5 33.8

DM [23] 38.4 32.2 44.3 28.4 30.8 40.5 34.5 27.2 34.6

MAF [17] 39.9 33.9 43.9 29.2 28.2 39.5 33.3 23.8 34.0

MTOR [1] 38.6 35.6 44.0 28.3 30.6 41.4 40.6 21.9 35.1

SWDA [37] 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3

CRDA [51] 45.1 34.6 49.2 30.3 32.9 43.8 36.4 27.2 37.4

HTCN [4] 47.4 37.1 47.9 32.3 33.2 47.5 40.9 31.6 39.8

iFAN [57] 45.5 33.0 48.5 22.8 32.6 40.0 31.7 27.9 35.3

CDN [44] 42.5 36.5 50.9 30.8 35.8 45.7 29.8 30.1 36.6

UMTS 30.1 31.3 36.1 22.4 27.9 38.2 20.2 21.5 28.5

UMTSC 43.4 38.0 50.6 33.7 33.4 45.9 36.4 31.9 39.2

UMTSCA 48.2 38.9 49.8 33.0 33.8 47.3 42.1 30.0 40.4

UMT 56.5 37.3 48.6 30.4 33.0 46.7 46.8 34.1 41.7

Oracle 50.0 36.2 49.7 34.7 33.2 45.9 37.4 35.6 40.3

Besides the baselines compared previously, we further

include DA-Faster [6], PF [40], SCDA [56], MAF [17],

WD [52], MTOR [1], iFAN [57] and CDN [44] for com-

parison. The setup for special cases of our UMT approach

and the oracle method is the same as those in the previous

experiments. All methods are built on Faster RCNN, where

the VGG16 [43] pre-trained on ImageNet [24] is used as the

backbone.

Results: Object detection in foggy scene images is ex-

tremely challenging due to low visibility. The current

best state-of-the-art result on this dataset is 39.8% from

the recent work HTCN [4]. However, the special case of

our UMTSC model which using mean teacher with cross-

domain distillation already approaches HTCN with a mean

AP of 39.2%. This again validates the effectiveness of the

cross-domain distillation strategy for improving the mean

teacher model for cross-domain object detection. By heal-

ing the student model bias and teaching process, our fi-

nal UMT model shows improved performance compared to

HTCN and reaches a mean AP of 41.7%. Interestingly, this

result exceeds the oracle result on this dataset, showing that

the clear weather images with high visibility are useful for

boosting the limitation of the object detection in the adverse

foggy weather with low visibility, without requiring any an-

notations on those low visibility images.

4.3. Synthetic­to­Real Adaptation

Datasets: Following [6], the SIM10K dataset [20] is

used as the source domain, and the Cityscapes dataset is

used as the target domain. The SIM10K dataset contains

10, 000 images of the computer-rendered driving scene

Table 4: The average precision (AP, in %) of different meth-

ods for cross-domain object detection on the validation set

of Cityscapes for SIM10K→Cityscapes adaptation.

Method AP on car

Source Only 34.3

WD [52] 40.6

SCL [42] 42.6

DA-Faster [6] 38.97

SCDA [56] 43.0

SWDA [37] 40.1

MAF [17] 41.1

HTCN [4] 42.5

UMTS 40.8

UMTSC 42.0

UMTSCA 42.6

UMT 43.1

Oracle 53.0

from the Grand Theft Auto (GTAV) game. The training set

of Cityscapes is used as target training samples, and the val-

idation set is used for evaluation. All methods are built on

Faster RCNN, where the VGG16 [43] pre-trained on Ima-

geNet [24] is used as the backbone.

Results: The AP on detecting cars for different ap-

proaches are reported in Table 4. Similarly, as in the previ-

ous experiments, we observe that our UMT approach grad-

ually improves the MT model by addressing its model bias

with different strategies. Our final model also achieves

the new state-of-the-art AP of 43.1% on this dataset using

VGG16 [43] as the backbone, which again demonstrates the

effectiveness of our proposed approach.

5. Conclusion

In this work, we provide a novel perspective to study

the cross-domain object detection problem by exploiting the

observation that a detection model can be easily biased to-

wards source images. For that, we present a new method,

named Unbiased Mean Teacher (UMT), by designing three

highly effective strategies to remedy the model bias. In

particular, we firstly introduce cross-domain distillation to

maximally exploit the expertise of the teacher model. Then,

we further augment the training samples for the student

model through pixel-level adaptation to reduce its model

bias. Lastly, we employ an out-of-distribution estimation

strategy to select samples that most fit the current model

to enhance the cross-domain distillation process. Extensive

experiments are conducted on multiple benchmark datasets,

and the results clearly show that our UMT surpasses the

existing state-of-the-art models by relatively large margins.
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