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Abstract

The key to a successful cascade architecture for precise

instance segmentation is to fully leverage the relationship

between bounding box detection and mask segmentation

across multiple stages. Although modern instance seg-

mentation cascades achieve leading performance, they

mainly make use of a unidirectional relationship, i.e., mask

segmentation can benefit from iteratively refined bounding

box detection. In this paper, we investigate an alternative

direction, i.e., how to take the advantage of precise mask

segmentation for bounding box detection in a cascade

architecture. We propose a Deeply Shape-guided Cascade

(DSC) for instance segmentation, which iteratively imposes

the shape guidances extracted from mask prediction at

previous stage on bounding box detection at current stage.

It forms a bi-directional relationship between the two

tasks by introducing three key components: (1) Initial

shape guidance: A mask-supervised Region Proposal

Network (mPRN) with the ability to generate class-agnostic

masks; (2) Explicit shape guidance: A mask-guided region-

of-interest (RoI) feature extractor, which employs mask

segmentation at previous stage to focus feature extraction

at current stage within a region aligned well with the shape

of the instance-of-interest rather than a rectangular RoI;

(3) Implicit shape guidance: A feature fusion operation

which feeds intermediate mask features at previous stage

to the bounding box head at current stage. Experimental

results show that DSC outperforms the state-of-the-art

instance segmentation cascade, Hybrid Task Cascade

(HTC), by a large margin and achieves 51.8 box AP and

45.5 mask AP on COCO test-dev. The code is released

at: https://github.com/hding2455/DSC.

1. Introduction

Instance segmentation [1, 43, 44, 21, 14], an increasingly

active research topic in recent years, is a combination of the

elements from two classical computer vision tasks - object

detection [19, 20, 46, 35, 45, 17, 31, 60] and semantic seg-
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Figure 1: Instance segmentation on huddled instances.

mentation [37, 12, 61, 59, 38, 22]. It is challenging since

it requires not only classifying and localizing all the object

instances correctly in an image, but also providing a precise

segmentation mask for each instance at the same time.

To achieve precise instance segmentation, building a

cascaded architecture [5] with multi-stage refinement is a

promising strategy. As pointed out in [9], the key to a suc-

cessful cascade architecture for precise instance segmen-

tation is to fully leverage the relationship between bound-

ing box detection and mask segmentation across multiple

stages. Surprisingly, we find that leading instance segmen-

tation cascades [6, 9], although achieving state-of-the-art

performances, mainly make use of a unidirectional relation-

ship, i.e., mask segmentation can benefit from iteratively

refined bounding box detection. In this paper, we investi-

gate the opposite direction, i.e., how to take the advantage

of precise mask segmentation for bounding box detection.

Our aim is to establish a bi-directional relationship between

bounding box detection and mask segmentation in a cas-

cade architecture to boost the instance segmentation perfor-

mance.

Towards this end, we propose a Deeply Shape-guided

Cascade (DSC) for instance segmentation, which iteratively

imposes the shape guidances extracted from mask predic-

tion at previous stage on bounding box detection at cur-

rent stage. DSC plugs the intuitions of Deeply Supervised

Nets (DSN) [26, 54], i.e., 1) enforcing early supervision

for intermediate stages and 2) fusing features across multi-

ple stages benefits representation learning, into an instance

segmentation cascade. This leads to three key components

for shape guidance learning: (1) Initial shape guidance: A

mask-supervised Region Proposal Network (mPRN) with
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the ability to generate class-agnostic masks; (2) Explicit

shape guidance: A mask-guided region-of-interest (RoI)

feature extractor, based upon the segmented mask at pre-

vious stage, focuses on extracting features within a region

aligned with the shape of the instance-of-interest rather than

a rectangular RoI at current stage; (3) Implicit shape guid-

ance: A feature fusion operation which feeds intermedi-

ate mask features at previous stage to the bounding box

head at current stage. The shape guidances, either explic-

itly or implicitly learned from mask-level supervision, are

more informative than box-level supervision, and thus are

able to help generate more precise bounding boxes. Then,

these bounding boxes can lead to more accurate segmented

masks. This forms a positive feedback loop between bound-

ing box detection and mask segmentation across multiple

stages in the cascade, facilitating achieving precise instance

segmentation.

DSC is easy to implement and can be trained end-to

end. Without bells and whistles, on average, it consistently

outperforms the state-of-the-art instance segmentation cas-

cade, HTC [9], with different backbones by 2.1 box AP

and 1.5 mask AP on COCO 2017 val and 1.9 box AP

and 1.4 mask AP on COCO 2017 test-dev, thanks to

the positive feedback loop between mask prediction and

bounding box detection. It is worth mentioning that DSC

is good at segmenting huddled instances, i.e., instances that

are crowded together as shown in Fig.1, benefited from the

shape guidances. We carefully select a subset of COCO

2017 val which contains a high portion of huddle in-

stances. DSC achieves significant improvements compared

with other methods on this subset.

To sum up, our main contribution is the proposal of a

new cascade architecture for precise instance segmentation.

It explores a different direction to leverage the relationship

between bounding box detection and mask segmentation,

forming a positive feedback loop between the two tasks by

introducing shape guidances into bounding box detection. It

achieves consistent and substantial improvements over the

state-of-the-art instance segmentation cascade, Hybrid Task

Cascade (HTC) [9], on the COCO dataset.

2. Related Work

2.1. Non­cascade Instance Segmentation

Since instance segmentation combines object detection

and semantic segmentation, existing methods for this task

can be roughly categorized into two types: segmentation-

based and detection-based.

2.1.1 Segmentation-based Methods

Segmentation-based methods usually adopt a two-step

paradigm - “segment then identify”, i.e., first perform se-

mantic segmentation to obtain a per-pixel category-level

segmentation map for an image, and then identify each ob-

ject instance therefrom. Liang et al. [30] proposed to iden-

tify object instances from the segmentation map by spectral

clustering. Kirillov et al. [25] partitioned instances from

the segmentation map with the help of a learned instance-

ware edge map under a MultiCut formulation. Arnab and

Torr [2] made use of the cues from the output of an ob-

ject detector to identify instances from the segmentation

map. Zhang et al. [58] predicted instance labels for local

patches and merged similar predictions via a Markov Ran-

dom Field (MRF). They then improved this method by us-

ing a densely connected MRF instead, which exploits fast

inference [57]. Wu et al. [52] proposed a Hough-like Trans-

form to bridge category-level and instance level segmenta-

tion, while Bai and Urtasun [3] achieved this by Watershed

Transform. There are also some other methods that form in-

stances from a segmentation map by learning an embedding

to group similar pixels [40, 22, 39]. Liu et al. [33] broke the

grouping problem into a series of sub-grouping problems

and addressed sequentially.

2.1.2 Detection-based Methods

Detection-based methods first generate candidate bound-

ing boxes, then segment the instance mask from each of

them. Depending on how to generate the candidate bound-

ing boxes, detection-based methods can be categorized into

two classes: anchor-free and anchor-based.

Anchor-free methods. The early work of anchor-free

methods directly used dense sliding-windows as the can-

didate bounding boxes, such as DeepMask [43], Sharp-

Mask [44] and InstanceFCN [16], which applied convo-

lutional neural networks to predicting object masks in a

dense sliding-window manner. Recent anchor-free meth-

ods design more sophisticated to generate mask propos-

als. YOLACT [4] first learned a dictionary of mask pro-

totypes and then predicted per-instance coefficients to lin-

early combine prototypes to produce an instance mask. Ex-

tremeNet [62] used keypoint detection to predict extreme

points, which provide an octagonal approximation for an

instance mask. PolarMask [53] built a polar representation

for each instance mask and formulated instance segmenta-

tion as instance center classification and dense distance re-

gression in a polar coordinate. TensorMask [13] revisited

the paradigm of dense sliding window instance segmenta-

tion and represented masks by structured 4D tensors over a

spatial domain. SOLO [48] and its upgraded version [51]

covert instance segmentation into a classification problem

by assigning categories to all pixels inside an instance ac-

cording to its position and scale. Deep Snake [42] and

PolyTransform [29] predicted position offsets w.r.t. the ver-

tices of the polygonal contour of the mask. CondInst [47]

estimated the mask head by conditional convolution ker-

nels [55] to make discriminative mask predictions and elim-

inate feature alignment. These anchor-free methods mainly

focus on real-time performance, and the high precision of

the results is not their first priority.
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Anchor-based methods. Anchor-based methods take an-

chors as references to predict region proposals as the candi-

date bounding boxes, and then segment each instance mask

using the box as a guide [28, 11]. This paradigm is known

as “detect then segment”, which is currently the dominant

paradigm. Mask-RCNN is a representative instantiation

of this paradigm, which extended the well-known anchor-

based object detector, Faster R-CNN [46], with a mask seg-

mentation branch. Follow-up works, i.e., the variants of

Mask-RCNN, improved it by enhancing feature pyramid

with accurate localization signals existed in low-level lay-

ers [34], re-scoring the confidence of a predicted mask to

calibrate the misalignment between the mask score and its

localization accuracy [24, 15], or using a more sophisticated

bounding box regression method [7].

2.2. Cascade Instance Segmentation

Cascade architectures emerge recently along with the in-

creasing demand for precise object detection. CRAFT [56]

built a cascade structure for both Region Proposal Net-

work [46] and Fast R-CNN [20] to get higher quality pro-

posals and detection results. CC-Net [41] excluded easy

negative samples at early stages in a cascade. Li et al. [27]

introduced a CNN cascade that operates at multiple resolu-

tions for face detection.

As far as we know, there are only two cascade archi-

tectures for instance segmentation, i.e., Cascade Mask R-

CNN [6] and Hybrid Task Cascade (HTC) [9]. As pointed

out in [9], it is nontrivial to integrate the idea of cascade into

instance segmentation. For example, a simple combination

of Cascade R-CNN [5] and Mask R-CNN [23], i.e., Cascade

Mask R-CNN [6], which iteratively feeds the refined bound-

ing boxes at current stage into next one as high-quality RoIs,

only leads to limited gain. HTC [9] improves Cascade Mask

R-CNN by connecting the mask heads at multiple stages

through mask information flow.

Both HTC and Cascade Mask R-CNN deliver the mes-

sage that the mask prediction branch can benefit from the

updated bounding box regression. Our method, DSC, shows

an orthogonal direction: the object detection branch, i.e.,

object classification and bounding box regression, can also

take advantage of the mask predictions, leading to a positive

feedback loop between bounding box detection and mask

segmentation.

3. Methodology

In this section, we first introduce the overall framework

of Deeply Shape-guided Cascade (DSC) for instance seg-

mentation, then elaborate on the three newly introduced

key components: the mask-supervised Region Proposal

Network (mRPN), the mask-guided ROI feature extractor

(shape-guided RoIAlign), and the feature fusion operation.

They impose initial, explicit, and implicit shape guidances,

respectively, on bounding box detection in the cascade.

3.1. Overall Framework

The overall framework of DSC is shown in Fig. 2. It fol-

lows the cascade paradigm [6, 9], i.e., first generating a set

of instance proposals by a Region Proposal Network (RPN),

then iteratively refining the bounding boxes of the proposals

and segmenting masks from them by a sequence of box and

mask heads. DSC has three new key components:

• We replace the RPN with the mask-supervised RPN

(mRPN), which is guided by both the box supervision

Bg and the mask supervision Mg . Given the feature

map F produced by a CNN backbone as the input, the

mRPN produces not only a set of RoIs B0 but also

class-agnostic mask probability maps M0 correspond-

ing to these RoIs. In addition, it also outputs a set of in-

termediate mask feature maps F0. Let B0 ∈ B0 be an

RoI, then M
0 ∈ M0 and F

0 ∈ F0 are its correspond-

ing mask probability map and intermediate mask fea-

ture map, respectively. This component involves ini-

tial shape guidance, as the shape guidance is learned

from the mask supervision and imposed on the early

stage (proposal generation stage) of the cascade.

• For all the box heads in the cascade, we replace the

feature extractor, i.e., RoIAlign, with the mask-guided

ROI feature extractor, i.e., shape-guided RoIAlign.

Shape-guided RoIAlign employs the mask predictions

Mt−1 at stage t−1 to focus feature extraction at stage

t within a region aligned well with the shape of the

instance-of-interest. This component involves explicit

shape guidance, as the learned shape guidance (mask

prediction) is directly applied to feature extraction.

• We conduct a feature fusion operation to enhance the

input features of the box head at stage t by integrating

them with the intermediate mask feature maps F t−1 at

stage t − 1. This component involves implicit shape

guidance, as the intermediate mask features are indi-

rectly learned from the mask supervision.

The details of the three components will be described in the

following sub-sections.

3.2. Mask­supervised RPN

The detailed design of the mask-supervised RPN

(mPRN) is shown in Fig. 3. The mRPN consists of two

parts: The first part is the same as the RPN and the sec-

ond part is a class-agnostic mask generator supervised by

the mask supervision Mg , named Mask Proposal Network

(MPN). Let B0 be RoIs outputted by the first part, their fea-

ture maps F0
m are computed by a RoIAlign layer, which

serves as the input of the MPN to generate class-agnostic

mask probability maps M0 within B0. Both B0 and M0

are the outputs of the mPRN, and it also preserves interme-

diate feature maps F0 of the MPN for further feature fusion.
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Figure 2: The overall framework of Deeply Shape-guided Cascade (DSC) for instance segmentation. Please refer to the first

paragraph of Sec. 3.1 for the meanings of the notations.

Figure 3: The detail of mask-supervised RPN (mRPN). The supervision flow is omitted for illustration simplicity.

3.3. Shape­guided RoIAlign

Shape-guided RoIAlign (SgRoIAlign) computes feature

values under the guidance of the probability of being the

instance-of-interest at each location, e.g., a predicted mask

probability map M. Similar to RoIAlign, it first divides a

RoI B into H × W bins. Each bin is denoted by Rh,w =
{(x1

h, y
1
w), (x

2
h, y

2
w)}, where (x1

h, y
1
w), (x

2
h, y

2
w) are the con-

tinuous coordinates of the top-left and bottom-right points

of the bin at the hth row and wth column, respectively. N

sampling points at continuous location {(aiw,h, b
i
w,h)}

N
i=1

are located uniformly within this bin Rw,h for feature ex-

traction. Then, given the Hp × Wp mask probability map

M aligned with the RoI B, where each element m(j, k)
denotes the probability of being the instance-of-interest at

a discrete location (j, k), and a sampling point at location

(aih,w, b
i
h,w) on the feature map F, we can compute the cor-

responding location (cih,w, d
i
h,w) at probability map M by

equations:

cih,w = (aih,w − x1
1)×

Hp

H
, dih,w = (bih,w − y11)×

Wp

W
(1)

The feature value f(aih,w, b
i
h,w) at location (aih,w, b

i
h,w) on

the feature map F and the probability value m(cih,w, d
i
h,w)

at the corresponding location (cih,w, d
i
h,w) on the mask

probability map M are computed by bi-linear interpolation.

Then, the feature representation fB,M(h,w) of a bin

Rh,w is obtained by averaging the multiplications between

feature values and probability values plus one at the same

sampling points:

fB,M(h,w) =

N∑

i=1

f(aih,w, b
i
h,w)× (1 +m(cih,w, d

i
h,w))

N
.

(2)

The intuition of Eq. 2 is two-fold. On one hand, we

want to decrease the impact of the context features and fo-

cus feature extraction within the predicted shape region. On

the other hand, we do not want to totally exclude the con-

text features, since they are also helpful for object recogni-

tion [36] and we cannot guarantee that the predicted shape

region is perfect. A diagram to illustrate shape-guided

RoIAlign is provided in the supplementary material.

Finally, we obtain the small feature map FB,M by re-

peating the above computation for each bin. We denote

this feature extraction procedure, shape-guided RoIAlign,

by a function FB,M = ❢s(B,M,F). Correspondingly,

the vanilla RoIAlign procedure can be denoted as function

FB = ❢(B,F). Note that in our cascade, as shown in Fig. 2,

shape-guided RoIAlign and RoIAlign are used to compute

the features for box heads and mask heads, respectively.

Thus, we rewrite Fb = FB,M and Fm = FB for notational

clearness.

3.4. Feature Fusion Operation

The intermediate mask features implicitly learned from

the more informative mask supervision at current stage can
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guide box prediction and mask prediction at next stage. We

feed an intermediate feature map F
t
−

into a 1 × 1 convo-

lutional layer, then fuse it with the box features F
t+1

b or

the mask features F
t+1
m by the element-wise summation.

This fusing operation is not trivial since the predicted boxes

(RoIs) are iteratively refined in the cascade, which results in

feature misalignment among stages.

To eliminate this misalignment issue, recomputing the

mask features for the updated RoIs of each stage is a solu-

tion, but computationally expensive. The total number of

convolutional operations to recompute the mask features is

a quadratic function of the total number of the stages.

We propose a simple yet effective strategy for adaptive

feature alignment. The basic idea is to reuse the intermedi-

ate features of previous stages based on two empirical facts.

(1) Extracting features on the enlarged regions of RoIs with

a fixed and relatively small enlargement ratio (≤ 2) does

not degrade the overall performance of the cascade. An en-

larged region of an RoI is a rectangular region that shares

the same center of the RoI, but the width and height are

enlarged by a scale factor r. (2) After bounding box re-

gression, most of RoIs are still in the enlarged regions, and

clipping those out-of-region RoIs into the enlarged regions

does not degrade the performance of the cascade.

We provide two studies on the cascade Mask R-CNN

model to demonstrate these two facts. For the first one we

enlarge RoIs for feature extraction with decreasing enlarge-

ment ratios 2
3

3 , 2
2

3 , 2
1

3 for stage 1, 2, 3 of the cascade Mask

R-CNN model respectively. This modified cascade Mask

R-CNN model achieves competitive performance regarding

both box AP (41.3 vs 41.2) and mask AP (36.0 vs 35.9)

comparing to the original version. For the second one we

choose different enlargement ratios 2
3

3 , 2
2

3 , 2
1

3 to generate

enlarged regions for RoIs and calculate the percentage of

stay-in-region RoIs, after bounding box regression. We find

98.3%, 89.16%, 64.9% of the RoIs are in the enlarged re-

gion after regression. We also clip all out-of-region RoIs

and ensure that they are within their corresponding enlarged

regions, and observe no AP drop by doing this.

The adaptive feature alignment strategy is designed

based on these two empirical facts. It consists of two vi-

tal steps: 1) RoI enlargement with decreasing enlargement

ratios for feature extraction from early to late stages in the

cascade; 2) RoI clipping to ensure the enlarged region of

each RoI for the following stage is still within the enlarged

region of this stage after bounding box regression. Then the

features extracted from the enlarged RoI can be reused at

next stage without recomputing. Fig. 4 illustrates this strat-

egy. B
t is an RoI at stage t in the cascade and B

t
e is its

enlarged region. Feature extraction at stage t is performed

on B
t
e and the intermediate mask features are retained. At

stage t+1, Bt is regressed to B
t+1, whose enlarged region

B
t+1
e is guaranteed to be within B

t
e by clipping. Then the

Figure 4: Illustration of the adaptive feature alignment strat-

egy. At stage t, feature extraction is performed on the yel-

low region B
t
e, which is an enlarged region of the original

RoI B
t. At stage t + 1, Bt is regressed to B

t+1. If the

enlarged region of Bt+1, i.e., the green region B
t+1
e , is still

within B
t
e, we keep B

t+1, as shown in the left figure; Other-

wise, we clip a part of Bt+1 (the shadow area) to ensure its

enlarged region is within B
t
e, as shown in the right figure.

mask features for stage t+ 1 can be directly obtained from

the retained intermediate mask features at stage t. We de-

note this adaptive feature alignment procedure as a function:

F
t+1
a− = ❛(Ft

−

,Bt
e,B

t+1
e ), where F

t
−

is the intermediate

mask feature map retained at stage t which is not aligned

with RoI Bt and the output Ft+1
a− is the aligned intermedi-

ate mask feature map.

This strategy allows us to extract aligned intermediate

features from the retained intermediate features of the pre-

vious stage without recomputing. Therefore, the number of

convolutional operations for computing the mask features

remains a linear function of the total number of the stages.

3.5. Cascade Pipeline

Now we give the formula to summarize the cascade

pipeline. At stage t, let ❜t and ♠
t denote the functions

of the box head and the mask head, respectively, then we

can write the DSC pipeline as:

F
t
m = ❢(Bt

e,F),

(Mt,Ft
−

) =♠
t(Ft

m ⊕w
t
m❛(F

t−1
−

,Bt−1
e ,Bt

e)),

F
t+1

b = ❢s(B
t
e,F,M

t),

B
t+1 = ❜

t(Bt,Ft+1

b ⊕w
t+1

b F
t
−

),

(3)

where ⊕ denotes the element-wise summation operator, and

w
t
m and w

t
b are the weights of the 1 × 1 convolutional lay-

ers for the box head and mask head at stage t, respectively,

to process the intermediate mask feature map F
t−1
−

. Note

that, stage 0 of the DSC is an mRPN, i.e., B0, M0 and F
0
−

are produced by the mRPN. Note that, the default resolution

of the intermediate mask feature maps is 14 × 14. We can

reduce the resolution to 7× 7 to speed up the cascade. This

fast version of DSC is denoted by F-DSC.

4. Experimental Result

All experiments are conducted on the COCO 2017

dataset [32], which contains about 118k images with cor-

responding annotations as the training set and 5k held-out

images with annotations as the validation set. The main
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metric used for evaluation is the standard COCO-style Av-

erage Precision (AP) averaged across IoU thresholds from

0.5 to 0.95 with 0.05 as the interval. Both box AP (APb)

and mask AP (APm) are evaluated. We also report AP50 and

AP75 (AP at IoU threshold = 0.5 and = 0.75). Our models

are trained on the 118k training set. Results on the held-out

5k validation set and the 20k test-dev set are reported.

4.1. Implementation Details

We use mmdetection [10] as the codebase. For fair com-

parison. The baselines, e.g., Cascade Mask R-CNN and

HTC, are also implemented by the same codebase.

During training, we sample RoIs once at the first stage

and keep the order of the RoIs for every stages to enable

using adaptive feature alignment strategy. We use SGD as

the optimizer with a weight decay of 0.0001 and a momen-

tum of 0.9. The long edge and short edge of each image are

resized to 1333 and 800, respectively, without changing the

aspect ratio. The scale factors (r) to enlarge RoI regions are

set to 2
3

3 , 2
2

3 , 2
1

3 for stage 1, 2, 3 respectively.

During inference, following HTC [9], at the last box

head, the predicted boxes with confidence scores lower than

0.001 are filtered out. Then, standard non-maximum sup-

pression (NMS) (IoU threshold = 0.5) is applied to remove

duplicated boxes.

4.2. Benchmarking Results

All the models are trained for 20 epochs with the learning

rate decays at 16th and 19th epochs. For large models that

cannot be fitted in the memory, we set the batch size to 8

and adjust the initial learning rate to 0.01.

COCO val: We conduct experiments on COCO val

to show the improvements of our DSC over HTC. The ex-

perimental results summarized in Table 1 show that DSC

achieves consistent and remarkable improvements (2.1 box

AP and 1.5 mask AP) over HTC with different backbones

e.g., ResNet (R) and ResNeXt (X). Note that, DSC always

achieves larger improvements under the more strict metric,

i.e., AP75, showing high precision of our predictions. Fig. 5

shows the qualitative comparisons between HTC and DSC,

taking X-101-32x4d FPN as the backbone.

COCO test-dev: We do a comprehensive compar-

ison with state-of-the-art instance segmentation methods

with strong network backbones on COCO test-dev. The

results are summarized in Table 2, which show that DSC

outperforms these state-of-the-art methods by a larger mar-

gin when using the same network backbones. Especially,

HTC with deformable convolution (DCN) [18] and multi-

scale training (ms train) is a very powerful cascade model

for instance segmentation, which already achieved very

high performance (50.8 box AP and 44.2 mask AP). Nev-

ertheless, our method, DSC, with the same backbone and

training strategy (DCN + ms train) still obtains a significant

improvement (1.0 box AP and 1.3 mask AP) and achieves

promising results (51.8 box AP and 45.5 mask AP) on

COCO test-dev.

4.3. Ablation Study

In this section, we conduct ablation studies on COCO

val to investigate the efficiency of our method, the con-

tribution of each component we introduced for the cascade

architecture. We use R-50 as the backbone and 1× learning

rate schedule for all ablation studies.

4.3.1 Precision vs Inference Time

There is always a trade-off between precision and inference

time for a method. Since our method has two versions,

DSC and a fast version F-DSC. It is necessary to discuss

this trade-off for them. HTC is taken as the baseline for

reference.

As the results shown in Tab. 3, comparing to DSC, F-

DSC achieves a comparable performance in terms of both

Box AP and Mask AP, i.e., only 0.3 Box AP and 0.1 Mask

AP drops, while it is much faster than DSC, i.e., reduc-

ing the inference time by 178ms. Comparing to HTC, F-

DSC achieves significant improvements in both Box AP and

Mask AP, i.e., 2.2 Box AP and 2.0 Mask AP improvements.

Moreover, the additional inference time (18 ms) is negli-

gible. Since F-DSC performs excellently in both precision

and inference time, we conduct the rest experiments based

on F-DSC.

4.3.2 Contribution of Each Cascade Component

We conduct an ablation study to verify the contribution

of each component we introduce for our cascade architec-

ture, including shape-guided RoIAlign, i.e., explicit shape

guidance (ExSG), the “+1” term in shape-guided RoIAlign

(Plus1), the feature fusion operation, i.e., implicit shape

guidance (ImSG), and the adaptive feature alignment (AFA)

strategy. We also compare a baseline which recomputes the

mask features for the updated RoIs of each stage (ReComp)

instead of using the AFA strategy. Since mRPN only pro-

vides the initial shape guidance for the first stage of our

cascade architecture, we exclude it from the ablation study.

Table 4 summarizes the result of ablation study. We ob-

serve that excluding either ExSG or ImSG from F-DSC

leads to performance degradation, showing that both ex-

plicit and implicit shape guidances provide positive feed-

back for the cascade architecture. we find that removing

the “+1” term from ExSG leads to a drop of 0.2 Box AP

and 0.2 Mask AP. Regarding that the improvement brought

by ExSG is 0.3 Box AP/0.4 Mask AP, the “+1” term is im-

portant. We also observe that, without the AFA strategy,

the performance has a noticeable drop (0.5 Box AP and 0.5

Mask AP). This result shows that the misaligned mask fea-

tures impose negative effect on the implicit shape guidance

and the adaptive feature alignment method is effective to

address this problem. Recomputing the mask features for

the updated RoIs of each stage can solve this misalignment
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Method Backbone APb AP50
b AP75

b APm AP50
m AP75

m

HTC R-50 FPN 43.3 62.2 47.1 38.3 59.3 41.4

DSC R-50 FPN 45.8(+2.5) 63.4 (+1.2) 49.8(+2.7) 40.2 (+1.9) 61.0(+1.7) 43.5(+2.1)

HTC R-101 FPN 44.8 63.3 48.8 39.6 61.0 42.8

DSC R-101 FPN 46.6(+1.8) 64.5 (+1.2) 50.8(+2.0) 40.7 (+1.1) 62.0 (+1.0) 44.1(+1.3)

HTC X-101-32x4d FPN 46.1 65.3 50.1 40.5 62.5 43.7

DSC X-101-32x4d FPN 48.0(+1.9) 65.9(+0.6) 52.2(+2.1) 42.0(+1.5) 63.7(+1.2) 45.6(+1.9)

Table 1: Comparison with HTC on COCO val.

Method Backbone Epoch APb AP50
b AP75

b APm AP50
m AP75

m

One-stage:

BlendMask (ms train) [8] R-50+FPN 36 - - - 37.0 58.9 39.7

SOLOv1 (ms train) [49] R-50+FPN 72 - - - 36.8 58.6 39.0

SOLOv2 (ms train) [50] R-50+FPN 72 - - - 38.8 59.9 41.7

CondInst (ms train) [47] R-50+FPN 36 - - - 38.8 60.4 41.5

Two-stage:

FCIS++ [28] R-101 - - - - 33.6 54.5 -

MaskLab+ [11] R-101(JET) - - - - 38.1 61.1 40.4

PANet [34] R-50+FPN 24 - - - 36.6 58.0 39.3

D2Det [7] R-101+FPN 24 - - - 40.2 61.5 43.7

Mask R-CNN [23] R-101+FPN 24 41.6 62.5 45.3 37.4 59.5 40.0

MS R-CNN [24] R-101+FPN 24 41.6 62.3 46.2 38.3 58.5 41.5

Cascade:

Cascade Mask R-CNN[6] R-50+FPN 20 42.8 61.6 46.5 37.0 58.6 39.9

HTC [9] R-50+FPN 20 43.6 62.6 47.4 38.5 60.1 41.7

DSC (ours) R-50+FPN 20 46.0 63.9 50.1 40.5 61.8 44.1

HTC [9] R-101+FPN 20 45.1 64.2 49.1 39.8 61.6 43.1

DSC(ours) R-101+FPN 20 46.7 64.7 50.9 40.9 62.5 44.5

HTC [9] X-101-32x4d+FPN 20 46.4 65.8 50.4 41.0 63.2 44.4

DSC(ours) X-101-32x4d+FPN 20 48.1 66.3 52.4 42.2 64.1 45.8

HTC (ms train) [9] X-101-64x4d+DCN+FPN 20 50.8 70.3 55.2 44.2 67.8 48.1

DSC (ms train) (ours) X-101-64x4d+DCN+FPN 20 51.8 70.5 56.7 45.5 68.4 49.7

Table 2: Comparison with state-of-the-art methods on COCO test-dev.

Methods APb APm Inference Time

HTC 42.3 37.4 238ms

DSC 44.8(+2.5) 39.5(+2.1) 434ms(+196ms)

F-DSC 44.5(+2.2) 39.4 (+2.0) 256ms(+18ms)

Table 3: Comparison among DSC, F-DSC and HTC

problem and further improves F-DSC by 0.4 Box AP and

0.4 Mask AP, but takes extra 101ms.

4.4. Quantitative Results on huddle Instances

Huddled Instance Data Collection. To validate the ad-

vantage of DSC on detecting and segmenting huddled in-

stances, we do comparisons between DSC and HTC on

subsets of COCO 2017 val with different proportions of

huddled instances. These subsets are collected according to

two controllable thresholds. The first one is an intersection-

over-union threshold TO, to determine whether an instance

is huddled, i.e., a huddled instance should have a large over-

Method APb APm

F-DSC 44.5 39.5

F-DSC - ExSG 44.2(-0.3) 39.1(-0.4)

F-DSC - ImSG 43.4(-1.1) 38.8(-0.7)

F-DSC - Plus1 44.3(-0.2) 39.3(-0.2)

F-DSC - AFA 44.0(-0.5) 39.0(-0.5)

F-DSC - AFA + ReComp 44.9(+0.4) 39.9(+0.4)

Table 4: Ablation study to verify the contribution of each

component we introduce for our cascade architecture. The

symbols “+” and “-” mean including and excluding a com-

ponent into and from F-DSC, respectively.

lap (> TO) with other instances; The second one is a pro-

portion threshold TP , to determine whether an image con-

tains a large proportion of huddled instances, i.e., the num-

ber of huddled instances over the number of all instances

in the image should be > TP . We collect the subsets by

varying TO and TP from 0.0 to 0.4 with an interval of 0.1.
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Figure 5: Qualitative comparison between DSC (top) and HTC (bottom) on COCO val. All selected images contain huddled

instances. HTC is unable to predict object boxes precisely (the left three) or to recognize objects correctly (the right three).

DSC successfully recognizes all the objects and segments them out.

Evaluation Metric The standard COCO-style evaluation

metric is mean Average Precision (AP) over classes. But, in

a subset, some classes may only have very a few instances

or even no instance, making the standard AP heavily un-

stable and biased. Therefore, we compute AP over all in-

stances, denoted by APoI, as the metric to evaluate the re-

sults on the subsets instead.

Results We use 1× schedule to train an F-DSC and an

HTC. The backbone is R-50 FPN. We report the improve-

ments in terms of box APoI and mask APoI of DSC over

HTC in Table 5. Note that, when TO = −1.0, the se-

lected subset is the original COCO 2017 val set, since

all instances are determined as huddled instances. F-DSC

outperforms HTC by 2.4 box APoI and 2.1 mask APoI re-

spectively on the original set. Note that, the improvements

in terms of APoI are similar to the improvements in terms

of AP reported in Table 1, which shows APoI is a reason-

able metric. With the increase of TO and TP , we observe

the improvements of DSG over HTC become larger, achiev-

ing 4.2 box APoI and 4.7 mask APoI on subsets with high

proportions of heavily overlapped instances. These results

evidence the advantage of DSC on detecting and segment-

ing huddled instances.

5. Limitation

We investigate the failure cases of our proposed method

to study the limitation of our method. Since our method is

shape-guided, it can be imagined that the final result qual-

ity of our method relies on informative initial mask predic-

tions. So, bad initial mask predictions might worsen final

results. To verify this hypothesis, we investigate the com-

parison between DSC and HTC case-by-case and find that

1) DSC performs worse on only a few cases (≈ 10%), 2)

the qualities of the initial mask predictions of these cases

are low (≈ 0.3 mask mean IoU). To address this limitation,

we can explore the direction of estimating mask IoUs, e.g.

TO

TP
0.0 0.1 0.2 0.3 0.4

-1.0 2.4 / 2.1 - - - -

0.0 2.5 / 2.0 2.5 / 2.0 2.6 / 2.2 2.7 / 2.4 2.5 / 2.4

0.1 2.5 / 2.0 2.4 / 2.1 2.6 / 2.3 2.8 / 2.5 2.8 / 2.8

0.2 2.5 / 2.1 2.5 / 2.2 2.7 / 2.6 2.9 / 2.9 3.0 / 3.3

0.3 2.4 / 2.0 2.6 / 2.4 3.0 / 2.9 3.7 / 3.6 3.6 / 3.9

0.4 2.5 / 2.1 2.9 / 2.6 3.2 / 3.2 3.8 / 3.9 4.2 / 4.7

Table 5: Improvements of F-DSC over HTC on subsets of

COCO 2017 val with different proportions of huddled in-

stances. In each table cell, we report the box APoI improve-

ment / the mask APoI improvement on the subset selected

by using the two thresholds TO and TP .

Mask Scoring, and re-weighting shape guidances according

to the estimated IoUs.

6. Conclusion

In this paper, we proposed Deeply Shape-guided Cas-

cade (DSC) for instance segmentation, which iteratively

makes use of the shape guidances extracted from mask seg-

mentation at previous stage to improve bounding box de-

tection at current stage. Then, the improved bounding box

detection results can lead to more precise mask segmenta-

tion at current stage. This forms a positive feedback loop

between bounding box detection and mask segmentation

across multiple stages in the cascade, establishing a bi-

directional relationship between the two tasks. Results on

the COCO benchmark showed that DSC outperforms the

state-of-the-art instance segmentation cascade, HTC, by a

large margin. Particularly, DSC achieved significant im-

provements over HTC on segmenting huddled instances.
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