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Abstract

Deep learning approaches are nowadays ubiquitously

used to tackle computer vision tasks such as semantic seg-

mentation, requiring large datasets and substantial com-

putational power. Continual learning for semantic seg-

mentation (CSS) is an emerging trend that consists in up-

dating an old model by sequentially adding new classes.

However, continual learning methods are usually prone to

catastrophic forgetting. This issue is further aggravated

in CSS where, at each step, old classes from previous it-

erations are collapsed into the background. In this pa-

per, we propose Local POD, a multi-scale pooling distil-

lation scheme that preserves long- and short-range spa-

tial relationships at feature level. Furthermore, we de-

sign an entropy-based pseudo-labelling of the background

w.r.t. classes predicted by the old model to deal with back-

ground shift and avoid catastrophic forgetting of the old

classes. Our approach, called PLOP, significantly outper-

forms state-of-the-art methods in existing CSS scenarios, as

well as in newly proposed challenging benchmarks1.

1. Introduction

Semantic segmentation is a fundamental problem of

computer vision, that aims at assigning a label to each pixel

of an image. In recent years, the introduction of Convo-

lutional Neural Networks (CNNs) has addressed semantic

segmentation in a traditional framework, where all classes

are known beforehand and learned at once [61, 73, 11].

This setup, however, is quite limited for practical applica-

tions. In a more realistic scenario, the model should be able

to continuously learn new classes without retraining from

scratch. This setup, referred here as Continual Semantic

Segmentation (CSS), has emerged very recently for medi-

cal applications [51, 52] before being proposed for general

segmentation datasets [49, 7].

Deep learning approaches that deal with CSS face two

main challenges. The first one, inherited from continual

1Code is available at

https://github.com/arthurdouillard/CVPR2021_PLOP
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Figure 1: Our two-part strategy aims at learning a segmen-

tation network in a continual learning framework, where

old class pixels are collapsed into the background at cur-

rent stage. We generate pseudo labels from old predictions

(blue) to deal with the background shift, and retain short-

and long-range spatial dependencies by Local POD distilla-

tion (red) to prevent catastrophic forgetting.

learning, is called catastrophic forgetting [55, 21, 62], and

points to the fact that neural networks tend to completely

and abruptly forget previously learned knowledge when

learning new information [35]. Catastrophic forgetting

presents a real challenge for continual learning applications

based on deep learning methods, especially when storing

previously seen data is not allowed for privacy reasons.

The second issue, CSS specific, is the semantic shift of

the background class. In a traditional semantic segmenta-

tion setup, the background contains pixels that don’t belong

to any other class. However, in CSS, the background con-

tains pixels that don’t belong to any of the current classes.

Thus, for a specific learning step, the background can con-

tain both future classes, not yet seen by the model, as well

as old classes. Thus, if nothing is done to distinguish pixels

belonging to the real background class from old class pix-
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els, this background shift phenomenon risks exacerbating

the catastrophic forgetting even further [7].

In this paper, we propose a deep learning strategy to ad-

dress these two challenges in CSS. Instead of reusing old

images, our approach, called PLOP , standing for Pseudo-

label and LOcal POD leverages the old model in two man-

ners, as illustrated on Fig. 1. First, we propose a feature-

based multi-scale distillation scheme to alleviate catas-

trophic forgetting. Second, we employ a confidence-based

pseudo-labeling strategy to retrieve old class pixels within

the background. For instance, if a current ground truth mask

only distinguish pixels from class sofa and background,

our approach allows to assign old classes to background

pixels, e.g. classes person, dog or background (the

semantic class).

We thoroughly validate PLOP on several datasets, show-

casing significant performance improvements compared to

the state-of-the-art methods in existing CSS scenarios. Fur-

thermore, we propose several novel scenarios to further

quantify the performances of CSS methods when it comes

to long term learning, class presentation order and domain

shift. Last but not least, we show that PLOP largely outper-

forms every CSS approach in these scenarios. To sum it up,

our contributions are three-folds:

• We propose a multi-scale spatial distillation loss to

better retain knowledge through the continual learning

steps, by preserving long- and short-range spatial rela-

tionships, avoiding catastrophic forgetting.
• We introduce a confidence-based pseudo-labeling

strategy to identify old classes for the current back-

ground pixels and deal with background shift.
• We show that PLOP significantly outperforms state-of-

the-art approaches in existing scenarios and datasets

for CSS, as well as in several newly proposed chal-

lenging benchmarks.

2. Related Work

CSS is a relatively new field where only a few recent

papers addressed this specific problem. We thus start this

section with a brief overview of the recent advances in se-

mantic segmentation as well as continual learning and fol-

low with a more in-depth discussion of existing approaches

to CSS.

Semantic Segmentation methods based on Fully Convolu-

tional Networks (FCN) [46, 59] have achieved impressive

results on several segmentation benchmarks [18, 14, 77, 5].

These methods improve the segmentation accuracy by in-

corporating more spatial information or exploiting contex-

tual information specifically. Atrous convolution [12, 48]

and encoder-decoder architecture [57, 50, 2] are the most

common methods for retaining spatial information. Exam-

ples of recent works exploiting contextual information in-

clude attention mechanisms [69, 76, 22, 30, 68, 61, 73], and

fixed-scale aggregation [75, 12, 11, 72]. More recently,

Strip Pooling [28] consists in pooling along the width or

height dimensions similarly to POD [17] as a complement

to a spatial pyramid pooling [25] to capture both global and

local statistics.

Continual Learning models generally face the challenge

of catastrophic forgetting of the old classes [55, 62, 21].

Several solutions exist to address this problem: for in-

stance, rehearsal learning consists in keeping a limited

amount of training data from old classes either as raw im-

ages [55, 54, 6, 10], compressed features [24, 33], or gen-

erated training data [34, 60, 43]. Other works focus on

adaptive architectures that can extend themselves to inte-

grate new classes [67, 40] or dynamically re-arrange co-

existing sub-networks [20] each specialized in one specific

task [19, 23, 32], or to explicitly correct the classifier drift

[66, 74, 3, 4] that happens with continually changing class

distributions. Last but not least, distillation-based meth-

ods aim at constraining the model as it changes, either di-

rectly on the weights [37, 1, 8, 71], the gradients [47, 9],

the output probabilities [42, 54, 6, 7], intermediary fea-

tures [29, 16, 78, 17], or combinations thereof.

Continual Semantic segmentation: Despite enormous

progress in the two aforementioned areas respectively, seg-

mentation algorithms are mostly used in an offline setting,

while continual learning methods generally focus on im-

age classification. Recent works extend existing continual

learning methods [42, 29] for medical applications [51, 52]

and general semantic segmentation [49]. The latter consid-

ers that the previously learned categories are properly an-

notated in the images of the new dataset. This is an un-

realistic assumption that fails to consider the background

shift: pixels labeled as background at the current step are se-

mantically ambiguous, in that they can contain pixels from

old classes (including the real semantic background class,

which is generally deciphered first) as well as pixels from

future classes. To the best of our knowledge, Cermelli et

al. [7] are the first to address this background shift problem

along with catastrophic forgetting. To do so, they apply two

loss terms at the output level. First, they use a knowledge

distillation loss to reduce forgetting. However, only con-

straining the output of the network with a distillation term

is not enough to preserve the knowledge of the old classes,

leading to too much plasticity and, ultimately, catastrophic

forgetting. Second, they propose to modify the traditional

cross-entropy loss for background pixels to propagate only

the sum probability of old classes throughout the continual

learning steps. We argue that this constraint is not strong

enough to preserve a high discriminative power w.r.t. the

old classes when learning new classes under background

shift. On the contrary, in what follows, we introduce our

PLOP framework and show how it enables learning without

forgetting for CSS.
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3. PLOP Segmentation Learning Framework

3.1. Continual semantic segmentation framework

CSS aims at learning a model in t = 1 . . . T steps. For

each step, we present a dataset Dt that consists in a set

of pairs (It, St), where It denotes an input image of size

W × H and St the corresponding ground truth segmen-

tation mask. The latter only contains the labels of current

classes Ct, and all other labels (e.g. old classes C1:t−1 or fu-

ture classes Ct+1:T ) are collapsed into the background class

cbg. However, the model at step t shall be able to predict all

the classes seen over time C1:t. Consequently, we identify

two major pitfalls in CSS: the first one, catastrophic forget-

ting [55, 21], suggests that the network will completely for-

get the old classes C1:t−1 when learning Ct. Furthermore,

catastrophic forgetting is aggravated by the second pitfall,

the background shift: at step t, the pixels labeled as back-

ground are indeed ambiguous, as they may contain either

old (including the real background class, predicted in C1) or

future classes. Fig. 2 (top row) illustrates background shift.

Classically, a deep model at step t can be written as

the composition of a feature extractor f t(·) and a classi-

fier gt(·). Features can be extracted at any layer l of the

former f t
l (·) , l ∈ {1, ...L}. We denote Ŝt = gt ◦ f t(I)

the output predicted segmentation mask and Θt the set of

learnable parameters for the current network at step t.

3.2. Multiscale local distillation with Local POD

A common solution to alleviate catastrophic forgetting

in continual learning consists of using a distillation loss be-

tween the predictions of the old and current models [42].

This distillation loss should constitute a suitable trade-off

between too much rigidity (i.e. enforcing too strong con-

straints, resulting in not being able to learn new classes) and

too much plasticity (i.e. enforcing loose constraints, which

leads to catastrophic forgetting of the old classes).

Among existing distillation schemes based on interme-

diate features [17, 70, 56, 16, 78, 29], POD [17] consists in

matching global statistics at different feature levels between

the old and current models. Let x denote an embedding ten-

sor of size H × W × C. Extracting a POD embedding Φ
consists in concatenating the H×C width-pooled slices and

the W × C height-pooled slices of x:

Φ(x) =

[

1

W

W∑

w=1

x[:, w, :]

∥
∥
∥
∥

1

H

H∑

h=1

x[h, :, :]

]

∈ R(H+W )×C ,

(1)

where [· ‖ ·] denotes concatenation over the channel axis.

In our case, this embedding is computed at several layers,

for both the old and current model. Then the POD loss con-

sists in minimizing the L2 distance between the two sets of

embeddings over the current network parameters Θt:
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Figure 2: Background shift example in ground truth masks

(top row). At step 2 background pixels contain old

(person) and future classes (bottle). The model’s tar-

get (middle row) is the union of the ground-truth and the

pseudo-labels (with transparent filtered uncertain pixels)

generated by the previous model. The latter helps the cur-

rent model predictions (bottom row) to retain information

of the old classes (table).

Lpod(Θ
t) =

1

L

L∑

l=1

∥
∥Φ(f t

l (I))− Φ(f t−1
l (I))

∥
∥
2
. (2)

Due to its ability to constraint spatial statistics instead of

raw pixel values, this approach yields state-of-the-art results

in the context of continual learning for classification. In the

frame of CSS, another interest arises: its ability to model

long-range dependencies across a whole axis (horizontal or

vertical). However, while spatial information is discarded

by global pooling in classification, semantic segmentation

requires a higher degree of spatial precision. Therefore,

modeling statistics across the whole width or height leads

to blurring local statistics important for smaller objects.

Hence, a suitable distillation scheme for CSS shall retain

both long-range and short-range spatial relationships. Thus,

inspired from the multi-scale literature [38, 25], we propose

a novel Local POD feature distillation scheme, that consists

in computing width and height-pooled slices on multiple re-

gions extracted at different scales {1/2s}s=0...S , as shown

on Fig. 3. For an embedding tensor x of size H ×W × C,

and at scale 1/2s, the Local POD embedding Ψs(x) at scale

s is computed as the concatenation of s2 POD embeddings:

Ψs(x) =
[
Φ(xs

0,0)‖ . . . ‖Φ(x
s
s−1,s−1)

]
∈ R(H+W )×C ,

(3)

where ∀i = 0 . . . s−1, ∀j = 0 . . . s−1, xs
i,j = x[iH/s :

(i+1)H/s, jW/s : (j+1)W/s, :] is a sub-region of the em-

bedding tensor x of size W/s×H/s. We then concatenate

(along channel axis) the Local POD embeddings Ψs(x) of

each scale s to form the final embedding:
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Figure 3: Illustration of local POD. An embedding of size

W ×H ×C is pooled at S scales with POD with a spatial-

pyramid scheme. Here applying local POD with S = 2
and scales 1 and 1/2 respectively produces 1, and 4 POD

embeddings making S × C × (H +W ) dimensions total.

Ψ(x) =
[
Ψ1(x)‖ . . . ‖ΨS(x)

]
∈ R(H+W )×C×S . (4)

We provide in the supplementary materials the complete

algorithm of Local POD embedding extraction. We com-

pute Local POD embeddings for several layers of both old

and current models. The final Local POD loss is:

LLocalPod(Θ
t) =

1

L

L∑

l=1

∥
∥Ψ(f t

l (I))−Ψ(f t−1
l (I))

∥
∥
2
. (5)

Note that while the first scale of Local POD (1/20) is

equivalent to POD and models long-range dependencies,

which are important for segmentation [64, 31, 53, 28], the

subsequent scales (s = 1/21, 1/22 . . . ) enforce short-range

dependencies. This constrains the old and current models to

have similar statistics over more local regions. Thus, Local

POD allows retaining both long-range and short-range spa-

tial relationships, thus alleviating catastrophic forgetting.

3.3. Solving background shift with pseudolabeling

As described above, the pixels labelled as background

at step t can belong to either old (including the semantic

background class) or future classes. Thus, treating them as

background would result in aggravating catastrophic forget-

ting. Rather, we address background shift with a pseudo-

labeling strategy for background pixels. Pseudo-labeling

[39] is commonly used in domain adaptation for semantic

segmentation [63, 41, 79, 58], where a model is trained on

the union of real labels of a source dataset and pseudo la-

bels assigned to an unlabeled target dataset. In our case,

we use predictions of the old model for background pixels

as clues regarding their real class, most notably if they be-

long to any of the old classes, as illustrated on Fig. 2 (mid-

dle row). Formally, let Ct = card(Ct) − 1 the cardinality

of the current classes excluding the background class. Let

Ŝt ∈ RW,H,1+C1+···+Ct

denote the predictions of the cur-

rent model (which include the real background class, all the

old classes as well as the current ones). We define S̃t ∈
RW,H,1+C1+···+Ct

the target as step t, computed using the

one-hot ground-truth segmentation map St ∈ RW,H,1+Ct

at step t as well as pseudo-labels extracted using the old

model predictions Ŝt−1 ∈ RW,H,1+C1+···+Ct−1

as follows:

S̃t (w, h, c) =















1 if St(w, h, cbg) = 0 and c = argmax
c′∈Ct

St(w, h, c′)

1 if St(w, h, cbg) = 1 and c =argmax
c′∈C1:t−1

Ŝt−1(w, h, c′)

0 otherwise

(6)

In other words, in the case of non-background pixels we

copy the ground truth label. Otherwise, we use the class

predicted by the old model gt−1(f t−1(·)). This pseudo-

label strategy allows to assign each pixel labelled as back-

ground his real semantic label if this pixel belongs to any

of the old classes. However pseudo-labeling all background

pixels can be unproductive, e.g. on uncertain pixels where

the old model is likely to fail. Therefore we only retain

pseudo-labels where the old model is “confident” enough.

Eq. 6 can be modified to take into account this uncertainty:

S̃
t
(w, h, c)=



















1if St(w, h, cbg)=0 and c=argmax
c′∈Ct

St(w, h, c′)

1if St(w, h, cbg)=1 and c=argmax
c′∈C1:t−1

Ŝt−1(w, h, c′) and u<τc

0 otherwise ,

(7)

where u represents the uncertainty of pixel (w, h) and

τc is a class-specific threshold. Thus, we discard all the

pixels for which the old model is uncertain (u ≥ τc) in Eq. 7

and decrement the normalization factor WH by one. We

use entropy as the uncertainty measurement u. Specifically,

before learning task t, we compute the median entropy for

the old model over all pixels of Dt predicted as c for all the

previous classes c ∈ C1:t−1, which provides in thresholds

τc ∈ C1:t−1, as proposed in [58]. The cross-entropy loss

with pseudo-labeling of the old classes can be written as:

Lpseudo(Θ
t) = −

ν

WH

W,H
∑

w,h

∑

c∈Ct

S̃ (w, h, c) log Ŝt (w, h, c) ,

(8)

where ν is the ratio of accepted old classes pixels over

the total number of such pixels. This ponderation allows

to adaptively weight the importance of the pseudo-labeling

within the total loss. We call PLOP (standing for Pseudo-

labeling and LOcal Pod) the proposed approach, that uses

both Local POD to avoid catastrophic forgetting, and our

uncertainty-based pseudo-labeling to address background

shift. To sum it up, the total loss in PLOP is:

L(Θt) = Lpseudo(Θ
t)

︸ ︷︷ ︸

classification

+λLlocalPod(Θ
t)

︸ ︷︷ ︸

distillation

, (9)

with λ an hyperparameter.
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Table 1: Continual Semantic Segmentation results on Pascal-VOC 2012 in Mean IoU (%). †: results excerpted from [7].

Other results comes from re-implementation.

19-1 (2 tasks) 15-5 (2 tasks) 15-1 (6 tasks)

Method 0-19 20 all avg 0-15 16-20 all avg 0-15 16-20 all avg

EWC† [37] 26.90 14.00 26.30 24.30 35.50 27.10 0.30 4.30 1.30

LwF-MC† [54] 64.40 13.30 61.90 58.10 35.00 52.30 6.40 8.40 6.90

ILT† [49] 67.10 12.30 64.40 66.30 40.60 59.90 4.90 7.80 5.70

ILT [49] 67.75 10.88 65.05 71.23 67.08 39.23 60.45 70.37 8.75 7.99 8.56 40.16

MiB† [7] 70.20 22.10 67.80 75.50 49.40 69.00 35.10 13.50 29.70

MiB [7] 71.43 23.59 69.15 73.28 76.37 49.97 70.08 75.12 34.22 13.50 29.29 54.19

PLOP 75.35 37.35 73.54 75.47 75.73 51.71 70.09 75.19 65.12 21.11 54.64 67.21

Table 2: Continual Semantic Segmentation results on ADE20k in Mean IoU (%).

100-50 (2 tasks) 50-50 (3 tasks) 100-10 (6 tasks)

Method 0-100 101-150 all avg 0-50 51-150 all avg 0-100 101-150 all avg

ILT [49] 18.29 14.40 17.00 29.42 3.53 12.85 9.70 30.12 0.11 3.06 1.09 12.56

MiB [7] 40.52 17.17 32.79 37.31 45.57 21.01 29.31 38.98 38.21 11.12 29.24 35.12

PLOP 41.87 14.89 32.94 37.39 48.83 20.99 30.40 39.42 40.48 13.61 31.59 36.64

4. Experiments

4.1. Datasets, Protocols, and Baselines

To ensure fair comparisons with state-of-the-art ap-

proaches, we follow the experimental setup of [7] for

datasets, protocol, metrics, and baseline implementations.

Datasets: we evaluate PLOP on 3 segmentation datasets:

Pascal-VOC 2012 [18] (20 classes), ADE20k [77] (150

classes) and CityScapes [14] (19 classes from 21 different

cities). Full details are in the supplementary materials.

CSS protocols: [7] describes two different CSS settings:

Disjoint and Overlapped. In both, only the current classes

are labeled vs. a background class Ct. However, in the

former, images of task t only contain pixels C1:t−1 ∪ Ct

(old and current), while, in the latter, pixels can belong to

any classes C1:t−1∪Ct∪Ct+1:T (old, current, and future).

Thus, the Overlapped setting is the most challenging and

realistic, as in a real setting there isn’t any oracle method

to exclude future classes from the background. Therefore,

in our experiments, we focus on Overlapped CSS but more

results for Disjoint CSS can be found in the supplementary

materials. While the training images are only labeled for the

current classes, the testing images are labeled for all seen

classes. We evaluate several CSS protocols for each dataset,

e.g. on VOC 19-1, 15-5, and 15-1 respectively consists in

learning 19 then 1 class (T = 2 steps), 15 then 5 classes

(2 steps), and 15 classes followed by five times 1 class (6
steps). The last setting is the most challenging due to its

higher number of steps. Similarly, on ADE 100-50 means

100 followed by 50 classes (2 steps), 100-10 means 100

followed by 5 times 10 classes (6 steps), and so on.

Metrics: we compare the different models using tradi-

tional mean Intersection over Union (mIoU). Specifically,

we compute mIoU after the last step T for the initial classes

C1, for the incremented classes C2:T , and for all classes

C1:T (all). These metrics respectively reflect the robustness

to catastrophic forgetting (the model rigidity), the capacity

to learn new classes (plasticity), as well as its overall perfor-

mance (trade-of between both). We also introduce a novel

avg metric (short for average), which measures the average

of mIoU scores measured step after step, integrating perfor-

mance over the whole continual learning process.

Baselines: We benchmark our model against the latest state-

of-the-arts CSS methods ILT [49] and MiB [7]. We also

evaluate general continual models based on weight con-

straints (EWC [37]) and knowledge distillation (LwF-MC

[54]). More baselines are available in the supplementary

materials. All models, ours included, don’t use rehearsal

learning [55, 54, 10] where a limited quantity of previous

tasks data can be rehearsed. Finally, we also compare with

a reference model learned in a traditional semantic segmen-

tation setting (“Joint model” without continual learning),

which may constitute an upper bound for CSS methods.

Implementation Details: As in [7], we use a Deeplab-

V3 [13] architecture with a ResNet-101 [26] backbone pre-

trained on ImageNet [15] for all experiments. Full details

are provided in the supplementary materials.

4.2. Quantitative Evaluation

First, we compare PLOP with state-of-the-art methods.

Pascal VOC 2012: Table 1 shows quantitative experiments

on VOC 19-1, 15-5, and 15-1. PLOP outperforms its clos-
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Table 3: Mean IoU on Pascal-VOC 2012 10-1.

VOC 10-1 (11 tasks)

Method 0-10 11-20 all avg

ILT [49] 7.15 3.67 5.50 25.71

MiB [7] 12.25 13.09 12.65 42.67

PLOP 44.03 15.51 30.45 52.32

Table 4: Mean IoU on ADE20k 100-5.

ADE 100-5 (11 tasks)

Method 0-100 101-150 all avg

ILT [49] 0.08 1.31 0.49 7.83

MiB [7] 36.01 5.66 25.96 32.69

PLOP 39.11 7.81 28.75 35.25

est contender, MiB [7] on all evaluated settings by a sig-

nificant margin. On 19-1, the forgetting of old classes (1-

19) is reduced by 4.39 percentage points ( p.p) while per-

formance on new classes is greatly improved (+13.76 p.p).

On 15-5, our model is on par with our re-implementation

of MiB, and surpasses the original paper scores [7] by 1

p.p. On the most challenging 15-1 setting, general con-

tinual models (EWC and LwF-MC) and ILT all have very

low mIoU. While MiB shows significant improvements,

PLOP still outperforms it by a wide margin: +86% on all

classes, +90% on old classes, and +56% on new classes.

Also, the joint model mIoU is 77.40%, thus PLOP narrows

the gap compared to state-of-the-art approaches on every

CSS scenario. The average mIoU is also improved by

+24% compared to MiB, indicating that each CSS step ben-

efits from the improvements related to our method. This is

echoed by Fig. 4, which shows that while mIoU for both ILT

and MiB deteriorates after only a handful of steps, PLOP ’s

mIoU remains very high throughout, indicating improved

resilience to catastrophic forgetting and background shift.

ADE20k: Table 2 shows experiments on ADE 100-50,

100-10, and 50-50. This dataset is notoriously hard, as the

joint model baseline mIoU is only 38.90%. ILT has poor

performance in all three scenarios. PLOP shows compara-

ble performance with MiB on the short setting 100-50 (only

2 tasks), improves by 1.09 p.p on the medium setting 50-50

(3 tasks), and significantly outperforms MiB with a wider

margin of 2.35 p.p on the long setting 100-10 (6 tasks). In

addition to being better on all settings, PLOP showcased

an increased performance gain on longer CSS (e.g. 100-

10) scenarios, due to increased robustness to catastrophic

forgetting and background shift. To further validate this ro-

bustness, we propose harder novel CSS scenarios.

Figure 4: mIoU evolution on Pascal-VOC 2012 15-1. While

MiB’s mIoU quickly deteriorates, PLOP’s mIoU remains

high, due to improved resilience to catastrophic forgetting.

Figure 5: Boxplots of the mIoU of initial classes (1-15),

new (16-20), all, and average for 20 random class orderings.

PLOP is significantly better and more stable than MiB.

4.3. New Protocols and Evaluation

Longer Continual Learning: We argue that CSS exper-

iments should push towards more steps [65, 45, 17, 6] to

quantify the robustness of approaches w.r.t. catastrophic

forgetting and background shift. We introduce two novel

and much more challenging settings with 11 tasks, almost

twice as many as the previous longest setting. We report

results for VOC 10-1 in Table 3 (10 classes followed by 10

times 1 class) and ADE 100-5 in Table 4 (100 classes fol-

lowed by 10 times 5 classes). The second previous State-of-

the-Art method, ILT, has a very low mIoU (< 6 on VOC 10-

1 and practically null on ADE 100-5). Furthermore, the gap

between PLOP and MiB is even wider compared with previ-

ous benchmarks (e.g. ×3.6 mIoU on VOC for mIoU of base

classes 1-10), which confirms the superiority of PLOP when

dealing with long continual processes.

Stability w.r.t. class ordering: We already showed that ex-

isting continual learning methods may be prone to insta-

bility. It has already been shown in related contexts [36]

that class ordering can have a large impact on performance.

However, in real-world settings, the optimal class order can

never be known beforehand: thus, the performance of an

ideal CSS method should be as class order-invariant as pos-

sible. In all experiments done so far, this class order has

4045



Table 5: Final mIoU for Continual-domain Cityscapes.

Method 11-5 (3 tasks) 11-1 (11 tasks) 1-1 (21 tasks)

ILT [49] 59.14 57.75 30.11

MiB [7] 61.51 60.02 42.15

PLOP 63.51 62.05 45.24

been kept constant, as defined in [7]. We report results in

Fig. 5 under the form of boxplots obtained by applying 20

random permutations of the class order on VOC 15-1. We

report in Fig. 5 (from left to right) the mIoU for the old,

new classes, all classes, and average over CSS steps. In all

cases, PLOP surpasses MiB in term of avg mIoU. Further-

more, the standard deviation (e.g. 10% vs 5% on all) is

always significantly lower, showing the excellent stability

of PLOP compared with existing approaches.

Domain Shift: The previous experimental setups mainly

assess the capacity of CSS methods to integrate new classes,

i.e. to deal with catastrophic forgetting and background

shift at a semantic level. However, a domain shift can also

happen in CSS scenarios. Thus, we propose a novel bench-

mark on Cityscapes to quantify robustness to domain shift,

in which all 19 classes will be known from the start and,

instead of adding new classes, each step brings a novel do-

main (e.g. a new city), similarly to the NI setting of [44]

for image classification. Table 5 compares the performance

of ILT, MiB, and PLOP on CityScapes 11-5, 11-1, and 1-

1, making 3, 11 and 21 steps of 11 + 2 times 5 cities, 11

+ 10 times 1 city, and 1 + 20 times 1 city respectively.

PLOP performs better by a significant margin in every such

scenario compared with ILT and MiB which, in this setting,

is equivalent to a simple cross-entropy plus basic knowl-

edge distillation [27]. Our Local POD, however, retains bet-

ter domain-related information by modeling long and short-

range dependencies at different representation levels.

4.4. Model Introspection

We compare several distillation and classification losses

on VOC 15-1 to stress the importance of the components

of PLOP and report results in Table 6. All comparisons are

evaluated on a val set made with 20% of the train set, there-

fore results are slightly different from the main experiments.

Distillation comparisons: Table 6a compares different dis-

tillation losses when combined with our pseudo-labeling

loss. As such, UNKD introduced in [7] performs better

than the Knowledge Distillation (KD) of [27], but not at

every step (as indicated by the avg. value), which indicates

instability during the training process. POD, proposed in

[17], improves the results on the old classes, but not on the

new classes (16-20). In fact, due to too much plasticity,

POD model likely overfits and predicts nothing but the new

classes, hence a lower mIoU. Finally, Local POD leads to

Table 6: Comparison studies on Pascal-VOC 2012 15-1 on

a validation subset of 20% of the training set.

(a) Pseudo loss (Eq. 8) with different distillation losses.

Distillation loss 0-15 16-20 all avg

Knowledge Distillation 29.72 4.42 23.69 49.18

UNKD 34.85 5.26 27.80 46.39

POD 43.94 4.82 34.62 53.35

Local POD (Eq. 5) 63.06 17.92 52.31 65.71

(b) Local POD loss (Eq. 5) with different classification losses.

Classification loss 0-15 16-20 all avg

CE only on new 12.95 2.54 10.47 47.02

CE 33.80 4.67 26.87 50.79

UNCE 48.46 4.82 38.62 53.19

Pseudo (Eq. 8) 63.06 17.92 52.31 65.71

Pseudo-Oracle 63.69 23.35 54.09 66.05

superior performance (+20 p.p) w.r.t. all metrics, due to its

integration of both long and short-range dependencies. This

final row represents our full PLOP strategy.

Classification comparisons: Table 6b compares different

classification losses when combined with our Local POD

distillation loss. Cross-Entropy (CE) variants perform

poorly, especially on new classes. UNCE, introduced

in [7], improves by merging the background with old

classes, however, it still struggles to correctly model the

new classes, whereas our pseudo-labeling propagates more

finely information of the old classes, while learning to

predict the new ones, dramatically enhancing the perfor-

mance in both cases. This penultimate row represents our

full PLOP strategy. Also notice that the performance for

pseudo-labeling is very close to Pseudo-Oracle (where the

incorrect pseudo-labels are removed), which may constitute

a performance ceiling of our uncertainty measure. A com-

parison between these two results illustrates the relevance

of our entropy-based uncertainty estimate.

Vizualisation: Fig. 6 shows the predictions for both MiB

and PLOP on VOC 15-1 across time. At first, both mod-

els output equivalent predictions. However, MiB quickly

forgets the previous classes and becomes biased towards

new classes. On the other hand, PLOP predictions are

much more stable on old classes while learning new classes,

thanks to Local POD alleviating catastrophic forgetting by

spatially constraining representations, and pseudo-labeling

dealing with background shift. Fig. 7 more closely high-

lights this phenomenon: at first, the ground-truth only con-

tains the class person. At step 5, the class train is

introduced. As a result, MiB overfits on train and for-

gets person. PLOP, instead, manages to avoid forget-

ting person and predicts decent segmentation for both

classes.
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Figure 6: Visualization of MiB and PLOP predictions across time in VOC 15-1 for two test images. MiB quickly forgets the

initial 15 classes (row 1: person and table, row 3: bird) in favor of new classes (plant, sheep, sofa, train) and

is biased towards new classes. PLOP, however, barely suffers from catastrophic forgetting (rows 2+4).
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Figure 7: Visualization of MiB and PLOP predictions

across time in VOC 15-1 on a test set image. At steps 1-

4 only class person has been seen. At step 5, the class

train is introduced, causing dramatic background shift.

While MiB overfits on the new class and forget the old class,

PLOP is able to predict both classes correctly.

5. Conclusion

In this paper, we paved the way for future research on

Continual Semantic Segmentation, which is an emerging

domain in computer vision. We highlighted two main chal-

lenges in Continual Semantic Segmentation (CSS), namely

catastrophic forgetting and background shift. To deal with

the former, we proposed Local POD, a multi-scale pooling

distillation scheme that allows preserving long and short-

range spatial relationships between pixels, leading to a suit-

able trade-off between rigidity and plasticity for CSS and,

ultimately, alleviating catastrophic forgetting. The pro-

posed method is general enough to be used in other related

distillation settings, where preserving spatial information is

a concern. In addition, we introduced a new strategy to

address the background shift based on an efficient pseudo-

labeling method. We validate our PLOP framework, on sev-

eral existing CSS scenarios involving multiple datasets. In

addition, we propose novel experimental scenarios to as-

sess the performance of future CSS approaches in terms of

long term learning capacity and stability. We showed that

PLOP performs significantly better than all existing base-

lines in every such CSS benchmark.
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