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Abstract

Unsupervised Domain Adaptation (UDA) aims to gen-

eralize the knowledge learned from a well-labeled source

domain to an unlabled target domain. Recently, adver-

sarial domain adaptation with two distinct classifiers (bi-

classifier) has been introduced into UDA which is effec-

tive to align distributions between different domains. Pre-

vious bi-classifier adversarial learning methods only focus

on the similarity between the outputs of two distinct classi-

fiers. However, the similarity of the outputs cannot guaran-

tee the accuracy of target samples, i.e., traget samples may

match to wrong categories even if the discrepancy between

two classifiers is small. To challenge this issue, in this pa-

per, we propose a cross-domain gradient discrepancy min-

imization (CGDM) method which explicitly minimizes the

discrepancy of gradients generated by source samples and

target samples. Specifically, the gradient gives a cue for the

semantic information of target samples so it can be used

as a good supervision to improve the accuracy of target

samples. In order to compute the gradient signal of tar-

get smaples, we further obtain target pseudo labels through

a clustering-based self-supervised learning. Extensive ex-

periments on three widely used UDA datasets show that our

method surpasses many previous state-of-the-arts.

1. Introduction

Conventional deep learning methods suffer from the

challenge of heavy dependency on large-scale labeled data,

which is extremely expensive in many real-world scenar-

ios such as medical image analysis. To avoid expensive

data annotation, unsupervised domain adaptation (UDA)

[30, 19, 18] attempts to transfer a model trained on labeled

data collected in the source domain to a similar target do-

main with unlabled data. To mitigate the domain shift, one

popular paradigm in UDA is to reduce the distribution di-

vergence between domains by minimizing a specific metric

[24, 27, 42]. Another widely used paradigm aims to learn

*Jingjing Li is the corresponding author.

Match to the wrong class

Source Target Decision boundary

Ambiguous target samples

Figure 1. Illustration of the issue in previous bi-classifier adver-

sarial learning. Previous methods only consider the discrepancy

between classifiers and neglect the accuracy of the target samples.

domain-invariant feature representations by leveraging the

idea of adversarial learning [9], which has achieved remark-

able success in the field of UDA recently.

Existing adversarial domain adaptation methods can be

implemented in two ways. One way is to apply an extra do-

main discriminator to distinguish whether a sample comes

from the source or the target domain. At the same time, a

feature extractor is used to fool the domain discriminator

by learning undistinguishable features from input samples

[10, 9, 25]. However, these domain adversarial methods ne-

glect the category information of target samples, which may

result in deterioration of the feature discriminability [5].

Another adversarial paradigm proposes a within-network

adversarial strategy with two classifiers [36, 14]. Through

the minimax game between the classifiers and the generator

on the cross-classifier outputs discrepancy, the target sam-

ples outside the support of the source domain can be de-

tected by the decision boundaries effectively, thus the fea-

ture alignment could be established while the discriminabil-

ity is also preserved.

Although bi-classifier adversarial learning has shown

promising performance, methods with this paradigm only

focus on the similarity between two distinct classifiers

through a discrepancy metric such as ℓ1 distance [36]

and slide wasserstein distance [14]. Here we argue that

only considering the discrepancy between classifiers can-

not guarantee the accuracy and diversity of classification

on target samples, because it is possible that both classi-
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fiers get wrong results. As shown in Fig. 1, ambiguous

target samples may detected by wrong decision boundaries,

which inevitably results in an inaccurate class-wise distri-

bution alignment in subsequent adversarial procedure, al-

though the discrepancy metric, e.g., ℓ1 and wasserstein dis-

tance between the outputs of two classifiers is small. The

main reason is that previous bi-classifier adversarial meth-

ods lack the consideration of the accuracy on target samples.

In this paper, we aim to alleviate this issue. One straight-

forward idea is to label target samples by pseudo labels and

fine-tune the model with data of both domains, which has

been proven to be effctive in UDA [6]. However, directly

using hard pseudo labels for supervised learning would lead

to error diffusion and converge to the accuracy of pseudo la-

bels. Here we tackle this issue from another perspective, we

notice that the gradient discrepancy between source and tar-

get samples is related to the accuracy: assuming there is an

accurate classifier, the source data and the target data would

produce similar gradient signals for updating the classifier.

Our key idea is that we wish the loss of two domains to

be close to not only the final model but also to follow a

similar path to it throughout the optimization. Therefore,

we use the gradient signal as a surrogate supervision and

make it an proxy to the classification accuracy, yielding a

cross-domain gradient discrepancy minimization (CGDM)

method for UDA. CGDM employs the gradient discrep-

ancy between source and target samples as an extra supervi-

sion. Furthermore, considering that pseudo labels obtained

by the source-only classifier may be not accurate enough,

we leverage a clustering-based self-supervised method to

obtain more reliable pseudo labels for target samples. By

aligning gradient vectors, distributions of two domains can

be better aligned at the category-level. The main contribu-

tions of this work are summarized as follows:

• In order to solve the inaccurate alignment issue in pre-

vious bi-classifier adversarial learning, we propose a

novel method which explicitly minimizes the discrep-

ancy of gradient vectors produced by the source and

the target samples. Notably, we formulate the pro-

posed gradient discrepancy minimization as a general-

ized learning loss which can be easily applied to other

UDA paradigms.

• For computing the gradient of target samples, we em-

ploy a clustering-based strategy to obtain more reliable

pseudo labels. Then a self-supervised learning based

on pseudo labels is conducted to fine-tune the model

with both the source data and the target data in order

to reduce the number of ambiguous target samples.

• We reformulate the vanilla bi-classifier adversarial

framework with above two proposals and conduct ex-

tensive experiments on three open large-scale datasets.

The experimental results demonstrate the advantage of

our method.

2. Related Work

The research line of existing unsupervised domain adap-

tation can be roughly divided into three branches: sample

weighted adaptation, metric learning adaptation and adver-

sarial learning adaptation. Sample weighted adaptation

aims to reduce the discrepancy between domains by in-

ferring resampling weights of samples in a non-parameter

way [38, 41, 17, 20]. Metric learning methods try to mit-

igate the distribution gap directly by minimizing a discrep-

ancy metric. For instance, maximum mean discrepancy

(MMD) is a widely used criteria to measure the divergence

between different domains in previous work. Deep adap-

tation networks (DAN) [24] simultaneously minimize the

multi-kernel MMD between two domains and the accuracy

error on source samples, by which the distributions can

be aligned. Joint adaptation networks (JAN) [27] extends

DAN by aligning the joint distributions of multiple domain-

specific layers using the joint maximum mean discrepancy

(JMMD). Besides, some other variants of MMD are also

used for more appropriate divergence criteria [26, 21, 13].

In addition, central moment discrepancy (CMD) [42] and

maximum density divergence (MDD) [16] are another two

criterias to align feature distributions in hidden layers.

Adversarial learning methods learns domain-invariant

feature representations following an adversarial paradigm.

The adversarial learning of this paradigm can be realized

through two strategies. The first way is to employ an addi-

tional domain discriminator to distinguish domain-specific

features and a feature learner is then employed to learn

undistinguishable features to fool the discriminator [9, 37].

Later, some studies [25, 32, 44, 15] suggest to align con-

ditional distributions in feature space to achieve accurate

alignment at the category-level. Different from them, our

method falls into the second adversarial paradigm, which

uses two distinct task-specific classifiers to oppose the gen-

erator w.r.t. the prediction discrepancy of two classifiers.

This paradigm is first used in MCD [36]. SWD [14] further

improves the discrepancy metric in MCD by applying the

slide wasserstein discrepancy rather than simple ℓ1 distance.

Recently, CLAN [28] use cosine similarity of the classifier

parameters to measure the discrepancy for semantic seg-

mentation. However, accurate alignment in this paradigm

cannot be accessed by previous methods.

Pseudo label based methods. Some recent UDA meth-

ods use pseudo labeling technique to exploit semantic in-

formation of target samples. Zhang et al. in [43] directly

use pseudo labels as a regularization. Xie et al. [39] uti-

lize pseudo labels to estimate class centroids for the target

domain and match them to the ones in the source domain.

Long et al. [25] use pseudo labels predicted by the model to

achieve conditional distribution alignment. Zou et al. [45]

further propose a self-training framework that alternately

refines pseudo labels and performs model training. Re-
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Figure 2. An illustration of our framework. Both source samples and target samples are passed through the generator G and two classifiers

F1 and F2. Then the supervised loss is used to minimize the classification error on source samples. We use a self-supervised mechanism

to reduce the number of ambiguous target samples. The minimax process on the adversarial loss is used to detect target samples outside

the support of the source domain. The gradient discrepancy loss is further used to align distributions and improve the accuracy of target

samples.

cently, clustering-based pseudo labeling methods [2, 22, 13]

have shown their superiority and successfully applied to do-

main adaptation. CAN [13] solves the target pseudo la-

bels by performing k-means clustering in feature space for

contrastive learning. SHOT [22] leverages a weighted k-

means clustering strategy to obtain pseudo labels for self-

supervision in the source-free UDA. Our method follow this

strategy, instead of directly using pseudo labels for self-

training, we propose to minimize the cross-domain gradient

discrepancy based on pseudo labels to reinforce the vanilla

bi-classifier adversarial learning, which is illustrated in Fig.

2 and elaborated on in subsequent sections.

3. Method

In this section, we first revisit the UDA and the bi-

classifier adversarial setting. Then we introduce the cross-

domain gradient discrepancy minimization and the self-

supervised mechanism respectively. Finally, we report the

whole training schema of our CGDM.

3.1. UDA with Bi­Classifier Adversarial Learning

Suppose that we have the source data which consists

of ns labeled samples {xs
i}

ns

i=1 and corresponding labels

{ysi }
ns

i=1 drawn from the source distribution P (X s,Ys), as

well as the target data which consists of nt unlabled samples

{xt
i}

nt

i=1 drawn from the target distribution P (X t). UDA

aims to obtain a function F that can predict the category of

samples accurately with only source labels accessible and

can be applied well to the target domain.

The bi-classifier adversarial learning methods employ a

feature generator G which extracts discriminative deep fea-

tures of raw inputs, and two distinct task-specific classifiers

F1 and F2, which are fed with the output of the generator

then produce the prediction probability p1(y | x), p2(y | x)
respectively. Following MCD [36] and SWD [14], we first

revisit the standard three-step principle of bi-classifier ad-

versarial learning, which is used as our starting point:

Step 1. Learn G,F1 and F2 jointly by minimizing the

classification loss Lcls(·, ·) on the labeled source samples to

reduce the empirical risk over the source distribution, which

can be formulated as follows:

min
θg,θf1,θf2

Lcls (X
s,Ys) =

1

2ns

ns
∑

i=1

2
∑

n=1

Lce (Fn (G (xs
i )) , y

s
i )

(1)

whereLce(·, ·) denotes the standard cross entropy loss func-

tion, θg, θf1 and θf2 represent the parameters of G, F1 and

F2 respectively.

Step 2. Frozen the parameters of the generator G and

update classifiers F1 and F2 to maximize the divergence

between their probabilistic outputs on target samples while

preserving the classification accuracy on source samples:

min
θf1,θf2

Lcls (X
s,Ys)− Ldis

(

X t
)

(2)

where Ldis(·) denotes the function that measures the diver-

gence between the probabilistic outputs of two classifiers

and can be customized by specific algorithms like ℓ1 dis-

tance [35] and slide wasserstein distance [14].

Step 3. Frozen the parameters of two classifiers F1 and

F2, then update the generator G to minimize the divergence

between the probabilistic outputs of two classifiers:

min
θg
Ldis

(

X t
)

(3)

After repeating above steps several times, the model can

effectively detect target samples outside the support of the
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source domain by decision boundaries and align distribu-

tions of two domains to some extent.

3.2. Minimizing Cross­Domain Gradient Discrep­
ancy

As mentioned above, it is difficult to guarantee that the

model can classify the target sample with high accuracy if

only considering the discrepancy of two classifiers without

any other constraints. For instance, we have two predictions

[0.95, 0.03, 0.02] and [0.96, 0.02, 0.02] of a target sample,

one for each classifier. Although the discrepancy metric of

two classifiers is quite small, we can not guarantee it is a

good prediction because the vanilla bi-classifier adversarial

learning is accuracy-agnostic, the groudtruth label of this

sample may be [0,1,0] or [0,0,1]. Thus there is a strong

incentive to tackle this issue.

Based on the above motivation, we look at the problem

from another perspective: if we want to learn a classifier

through which all samples from both domains can be clas-

sified correctly, then the gradient vector produced by the

samples from the source and the target should be similar for

learning such a classifier. Therefore, we introduce the gra-

dient similarity metric between two domains. To this end,

we first denote the expected gradient over the source and

target examples by gs and gt respectively. The appropriate

gradient of source samples is formulated as follows,

gs =
1

2

2
∑

n=1

E
(xs

i
,ys

i
)∼(X s,Ys)

[

∇θfn
Lce (Fn (G (xs

i )) , y
s
i )
]

.

(4)

For computing the gradient produced by target samples, the

label information is required, however, this is exactly what

we want to obtain in the UDA problem. To tackle this awk-

ward situation, we assign pseudo labels to target samples,

denoted by Y∗. Since the pseudo labels may still incorrect,

to alleviate the noise of ambiguous target samples which

may have incorrect pseudo labels, we use the weighted clas-

sification loss based on the prediction entropy of each target

sample to compute the gradient. The gradient vector of the

target samples is formulated as follows,

gt =
1

2

2
∑

n=1

E
(xt

i
,y∗

i
)∼(X t,Y∗)

[

∇θfn
LW
ce

(

Fn

(

G
(

x
t
i

))

, y∗i
)]

.

(5)

Here LW
ce (·, ·) is the weighted cross entropy loss function

which is formulated as follows,

LW
ce

(

Fn

(

G
(

x
t
i

))

, y∗i
)

= wj(x
t
i)Lce

(

Fn

(

G
(

x
t
i

))

, y∗i
)

,

(6)

wj(x
t
i) = 1 + e−E(δ(Fn(G(xt

i),y
∗

i ))), (7)

where δ represents the softmax output and E(·) denotes the

standard information entropy. At present, we have obtained

the gradient vector of source samples and target samples

respectively. We minimize the discrepancy between these

two gradient vectors when updating the generator in step

3 through a gradient discrepancy loss LGD, here we use

cosine similarity to express the discrepancy,

LGD = 1−
gTs gt

‖gs‖2 ‖gt‖2
, (8)

by which the distributions of the source domain and the tar-

get domain are aligned while the semantic information of

samples is also considered.

3.3. Self­supervised Learning for Target Samples

In our method, pseudo labels of target samples are indis-

pensable to compute the gradient signal. Pseudo labeling

has gained popularity in domain adaptation in recent years.

Some previous studies [43, 6, 39] directly incorporate naive

pseudo labeling strategy into their methods. However, tar-

get pseudo labels that produced by the source model are still

unreliable owing to the domain shift. Inspired by DeepClus-

ter [2] and SHOT [22], in this paper, we use a weighted clus-

tering strategy to obtain more reliable pseudo labels. Here

we use softmax outputs of two classifiers to weight the sam-

ples for obtaining the centroid ck of the k-th class,

ck =

∑2
n=1

∑

x
t
i
∈X t δk (Fn (G (xt

i)))G (xt
i)

∑2
n=1

∑

x
t
i
∈X t δk (Fn (G (xt

i)))
, (9)

where δk means the corresponding k-th element of the soft-

max output δ. Then pseudo labels could be obtained by the

nearest centroid strategy, i.e.,

y∗i = argmin
k

d
(

G
(

x
t
i

)

, ck
)

, (10)

here d could be any specific distance metric function and

we use cosine distance in this paper.

In order to exploit unlabled samples, we reinforce the

step 1 with the self-supervised learning mechanism to in-

duce the model to learn a discriminative original target dis-

tribution and encourage each sample to lie around the cor-

rect decision boundary. The weighted classification loss

LW
cls(·, ·) for self-supervised learning can be formulated as

follows,

LW
cls

(

X t,Y∗
)

=
1

2nt

nt
∑

i=1

2
∑

n=1

LW
ce

(

Fn

(

G
(

x
t
i

))

, y∗i
)

,

(11)

Through the above self-supervised process, we make an

improvement on the discriminability of the target distribu-

tion in step 1 by fine-tuning the model with both source and

target data, so that the samples between two domains could

be aligned at category-level subsequently.
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3.4. Overall Objective and Optimization Procedure

In this work, we aim to tackle potential drawbacks of the

bi-classifier adversarial learning by using self-supervised

learning and minimizing the discrepancy of gradient signal

produced by the source and the target domain. To sum up,

by utilizing the self-supervised loss, the optimization objec-

tive of step 1 could be reformulated as follows,

min
θg,θf1,θf2

Lcls (X
s,Ys) + αLW

cls

(

X t,Y∗
)

, (12)

where α > 0 is the trade-off parameter and could be ad-

justed according to the validation set. Following MCD, we

use the ℓ1 distance to estimate the discrepancy between two

distinct classifiers in Step 2. In step 3, we add a constraint

on the gradient discrepancy between two domains, thus the

final optimization objective becomes

min
θg
Ldis

(

X t
)

+ βLGD (13)

where β > 0 denotes the trade-off hyper-parameter. After

this step, the target feature manifold will be closer to the

source one while the classification accuracy of target sam-

ples is also preserved. We repeat the above process until it

converges. The overall framework is shown in Fig. 2 and

the training procedure is summarized in Algorithm 1.

4. Theoretical Analysis

In this section, we explain our motivation by briefly an-

alyzing the relationship between our method and the theory

of domain adaptation [1], which gives the upper bound of

the expected error on the target domain as follows,

∀h ∈ H, RT (h) ≤ RS(h) +
1

2
dH∆H(S, T ) + λ, (14)

where H is the hypothesis class, RS(h) is the expected er-

ror on the source domain which can be minimized explic-

itly since we have ground-truth source labels. dH∆H(S, T )
stands for the the domain divergence, and λ is the error of

the ideal joint hypothesis, i.e., h∗ = argminh∈H RS(h) +
RT (h). MCD employs two distinct hypotheses to reduce

dH∆H(S, T ) and it treats λ as a negligible constant.

However, [4] shows there is an optimality gap between

the optimal source hypothesis and the optimal target hy-

pothesis in UDA, if two domains are misaligned at the

category-level, we can hardly find a joint hypothesis that si-

multaneously minimizes the source and target expected er-

rors, leading to a large λ. Hence, our motivation is to design

a model that preserves the low dH∆H(S, T ) in MCD and

alleviates the problem caused by incorrect category-level

alignment (i.e., minimizing λ). To this end, pseudo labels

are necessary. Instead of using pseudo labels predicted by

the source hypothesis as a direct supervision, which mea-

sures the loss of target samples w.r.t. the trained source hy-

pothesis rather than the expected loss of the joint hypothesis

Algorithm 1 Cross-Domain Gradient Discrepancy Mini-

mization for Unsupervised Domain Adaptation

Require: The set of labeled source samples {X s,Ys} and

the set of unlabled target samples {X t}, the initialized

generator G and classifiers F1 and F2, the maximal

epoch number N and the hyper-parameter α and β.

for epoch← 1 to N do

step 1: Obtain the set of pseudo target labels {Y∗}
through the Eq. (7) and Eq. (8). Then train G, F1

and F2 on both source and target samples:

min
θg,θf1,θf2

Lcls (X
s,Ys) + αLW

cls

(

X t,Y∗
)

,

step 2: Train F1 and F2 to maximize the divergence

between the outputs of two classifiers on target sam-

ples without label information, as well as preserve

the accuracy on source samples:

min
θf1,θf2

Lcls (X
s,Ys)− Ldis

(

X t
)

step 3: Train G to minimize the divergence between

the outputs of two classifiers with gradient similarity

constraint:

min
θg
Ldis

(

X t
)

+ βLGD

end for

trained on them, we resort to minimizing the gradient dis-

crepancy between domains. The insight of this trick is that

we expect learning procedures of two domains not only fi-

nally yield a shared hypothesis, but also follow a similar

optimization path. While this may restrict the optimization

dynamics for the joint hypothesis, we argue that it enables

a more fine-grained optimization and effective use of the

incomplete optimizer, thus enabling a more accurate joint

hypothesis and improving the accuracy of UDA.

5. Experiments

5.1. Dataset Description

DomainNet [33] is the lagest and most challenging

dataset to date for domain adaptation which contains about

600 thousand images distributed in 345 categories over 6

domains, including Clipart (clp), Infograph (inf), Painting

(pnt), Quickdraw (qdr), Real (rel) and Sketch (skt). We

adapt each domain to the other 5 domains.

VisDA-2017 [34] is a challenging large-scale dataset for

UDA, which focuses on the simulation-to-reality shift. It

consists of over 280K images across 12 categories. We use

the training set and the validation set as the source domain

and the target domain, respectively. The source domain

contains 152,397 synthetic images generated by rendering

3D models and the target domain includs 55,388 real im-
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Table 1. Accuracy(%) on DomainNet dataset for unsupervised domain adaptation (ResNet-50). We evaluate all pairwise transfers among

6 domains. The column-wise fields are applied as the source domain while the row-wise fields represent the target domain.
ResNet clp inf pnt qdr rel skt Avg. MCD clp inf pnt qdr rel skt Avg. BNM clp inf pnt qdr rel skt Avg.

clp - 14.2 29.6 9.5 43.8 34.3 26.3 clp - 15.4 25.5 3.3 44.6 31.2 24.0 clp - 12.1 33.1 6.2 50.8 40.2 28.5

inf 21.8 - 23.2 2.3 40.6 20.8 21.7 inf 24.1 - 24.0 1.6 35.2 19.7 20.9 inf 26.6 - 28.5 2.4 38.5 18.1 22.8

pnt 24.1 15.0 - 4.6 45.0 29.0 23.5 pnt 31.1 14.8 - 1.7 48.1 22.8 23.7 pnt 39.9 12.2 - 3.4 54.5 36.2 29.2

qdr 12.2 1.5 4.9 - 5.6 5.7 6.0 qdr 8.5 2.1 4.6 - 7.9 7.1 6.0 qdr 17.8 1.0 3.6 - 9.2 8.3 8.0

rel 32.1 17.0 36.7 3.6 - 26.2 23.1 rel 39.4 17.8 41.2 1.5 - 25.2 25.0 rel 48.6 13.2 49.7 3.6 - 33.9 29.8

skt 30.4 11.3 27.8 3.4 32.9 - 21.2 skt 37.3 12.6 27.2 4.1 34.5 - 23.1 skt 54.9 12.8 42.3 5.4 51.3 - 33.3

Avg. 24.1 11.8 24.4 4.7 33.6 23.2 20.3 Avg. 28.1 12.5 24.5 2.4 34.1 21.2 20.5 Avg. 37.6 10.3 31.4 4.2 40.9 27.3 25.3

CDAN clp inf pnt qdr rel skt Avg. SWD clp inf pnt qdr rel skt Avg. CGDM clp inf pnt qdr rel skt Avg.

clp - 13.5 28.3 9.3 43.8 30.2 25.0 clp - 14.7 31.9 10.1 45.3 36.5 27.7 clp - 16.9 35.3 10.8 53.5 36.9 30.7

inf 18.9 - 21.4 1.9 36.3 21.3 20.0 inf 22.9 - 24.2 2.5 33.2 21.3 20.0 inf 27.8 - 28.2 4.4 48.2 22.5 26.2

pnt 29.6 14.4 - 4.1 45.2 27.4 24.2 pnt 33.6 15.3 - 4.4 46.1 30.7 26.0 pnt 37.7 14.5 - 4.6 59.4 33.5 30.0

qdr 11.8 1.2 4.0 - 9.4 9.5 7.2 qdr 15.5 2.2 6.4 - 11.1 10.2 9.1 qdr 14.9 1.5 6.2 - 10.9 10.2 8.7

rel 36.4 18.3 40.9 3.4 - 24.6 24.7 rel 41.2 18.1 44.2 4.6 - 31.6 27.9 rel 49.4 20.8 47.2 4.8 - 38.2 32.0

skt 38.2 14.7 33.9 7.0 36.6 - 26.1 skt 44.2 15.2 37.3 10.3 44.7 - 30.3 skt 50.1 16.5 43.7 11.1 55.6 - 35.4

Avg. 27.0 12.4 25.7 5.1 34.3 22.6 21.2 Avg. 31.5 13.1 28.8 6.4 36.1 26.1 23.6 Avg. 36.0 14.0 32.1 7.1 45.5 28.3 27.2

ages cropped from the Microsoft COCO dataset [23].

ImageCLEF 1 is a standard dataset for ImageCLEF

2014 domain adaptation challenge. It is established by se-

lecting 12 common categories shared by the following three

datasets: Caltech-256 (C), ImageNet ILSVRC2012 (I) and

PASCALVOC2012(P). There are 600 images in each do-

main and 50 for each category, whcih makes a good prop-

erty for experiments.

5.2. Implementation Details

We choose PyTorch [31] framework for implementing

our models. NIVIDIA GeForce RTX 2080 Ti GPU is used

as our hardware platform. Following MCD, we add the

class balance loss in addition to the aforementioned frame-

work to improve the diversity and accuracy in all experi-

ments during the training procedure, the weight of which is

fixed to 0.1 in this paper. For all experiments, we resize all

images to 224× 224× 3. The network architecture and the

hyper-parameters setting are demonstrated as follows.

Network Architecture. In our experiments, we realize

the generator G with the ResNet-50 (for DomainNet and

ImageCLEF) or ResNet-101 (for VisDA-2017) [12] pre-

trained on ImageNet [8] to extract features from raw im-

ages. Following [36, 14], the original fully connected (FC)

layer is replaced with a bottleneck layer of 256 units and a

three-layer FC network, which are employed as our classi-

fier F1 and F2, the unit number of the hidden layer is set

to 1000 in all experiments. A dropout layer is utilized be-

fore each FC layer and a batch normalization (BN) layer is

applied after that FC layer.

Hyper-parameters. We train the whole network in an

end-to-end fashion through back-propagation. Momentum

SGD algorithm is used to optimize the network parameters

with momentum 0.9 and weight decay ratio 5e−4. The clas-

sifiers are trained with learning rate 1e−3 for DomainNet

and ImageCLEF, 3e−4 for VisDA-2017 since it can easily

converge. The learning of the pre-trained ResNet backbone

is 10 times lower that of the classifiers. The batch size is set

to 32 and the trade-off parameters α and β are set to 0.1 and

0.01 respectively in all experiments. Note that we do not

1https://www.imageclef.org/2014/adaptation

use data augmentation such as the ten-crop ensemble used

in [25, 40] during the evaluation, for fair comparison, the

experimental results cited from previous works are also the

versions without data augmentation.

5.3. Results

Here we show the comparison between our CGDM

framework and other well-known UDA baselines, espe-

cially the methods that are most related to our work (e.g.

MCD and SWD), to verify that our formulation can signifi-

cantly boost the accuracy w.r.t. to these baselines. Note that

in our experiments, the classification results are obtained by

averaging the outputs of two distinct classifiers. The quan-

titative results are described as follows.

Results on DomainNet. In this experiment, we transfer

each domain to the other five domains, and the class-wise

average accuracy of each adaptation is recported in Table 1.

From Table 1, our CGDM evidently supresses other main-

stream domain adaptation methods in mean accuracy.

The results are obtained after 10 epochs. In particular,

both MCD and SWD perform significantly poorer than our

method with 6.7% and 3.6% lower mean accuracy. The low

accuracy of the source only model can infer that original

target samples are likely to be distributed in a mess fac-

ing such a challenging dataset with a large number of cat-

egories. Although the target samples outside the suport of

the source can be detected by the classifiers, they seem like

to be matched to wrong decision boundaries, resulting in

the wrong category-level alignment.

For other adversarial methods, they just forcibly align

distributions and neglect the inherent gap between the

source domain and the target domain, which may result in

negative transfer. Our method applies a clustering-based

self-supervised mechanism to improve the original accu-

racy of target samples, and the discrepancy between gra-

dients of two domains is minimized to induce the generator

to learn towards the direction of accurate classification for

both source domain and target domain samples. The results

on Table 1 suggest that our model can still achieve a more

accurate adaptation in the target domain when facing such

a large-scale dataset.
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Table 2. Accuracy(%) on VisDA-2017 dataset for unsupervised domain adaptation (ResNet-101).

Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet [12] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4

DAN [24] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.6

DANN [9] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MinEnt [11] 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0

MCD [36] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9

ADR [35] 87.8 79.5 83.7 65.3 92.3 61.8 88.9 73.2 87.8 60.0 85.5 32.3 74.8

SWD [14] 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

CDAN+E [25] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9

AFN [40] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

BNM [7] 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4

MSTN+DSBN [3] 94.7 86.7 76.0 72.0 95.2 75.1 87.9 81.3 91.1 68.9 88.3 45.5 80.2

CGDM (ours) 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3

(a) ResNet-50 (b) DANN (c) MCD (d) Ours

Figure 3. Visualization of features using t-SNE. We take C (red) → I (green) on ImageCLEF as an example.
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Figure 4. Training process. We take C → I on ImageCLEF as

an example. The left figure depicts the classification loss during

training. The right figure reports the accuracy of the target domain

during the training.
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Figure 5. Model analysis. The left figure shows the parameter sen-

sitivity of our model (We take the task C → I as an example).

While the right figure shows the ablation study on ImageCLEF.

The w/o is short for without, sup for self-supervised learning and

gdm for gradient discrepancy minimization, respectively.

Results on VisDA-2017. We obtain the results on

VisDA-2017 dataset after 10 epochs. The results in Table 2

illustrate our method can still outperform other popular ap-

proaches even if there is a large domain gap between syn-

thetic and real images. Specifically, our method performs

much better than the source only model in all categories

with the improvement up to 29.9% in terms of mean accu-

racy. For MCD and SWD which also apply the bi-classifier

adversarial learning paradigm, our method also signifi-

cantly supresses them with the improvement of 10.4% and

5.9% respectively. In general, our method achieves the best

in 5 categories: knife, person, plant, sktbrd and truck. In

more difficult categories such as knife, sktbrd and truck, our

method is much better than other existing methods, achiev-

ing 94.5%, 82.5% and 49.2% respectively. These excellent

results strongly demonstrate the advantage of our method in

improving the accuracy of the target domain.

Results on ImageCLEF. We access 6 types of adapta-

tion scenarios on ImageCLEF and Table 3 reports the ex-

perimental results. We stop the training process after 100

epochs. The experimental results of the comparative meth-

ods are cited from previous papers, sine some of them do

not reported the randomness on this dataset, so we do not

report their randomness too. Table 3 shows that our method

outperforms other popular baselines and achieves the best

average accuracy (89.5%). As for the difficult scenarios

(e.g. C → P), our method can obviously improve the ac-

curacy of the target domain, which shows the effectiveness

of our approach.

In addition, in scenarios that involve many categories

(DomainNet) or there is a large domain gap (VisDA-2017),

our model outperforms other methods by a large margin.

We can empirically conclude that the the consideration of

accuracy is particularly important in these scenarios.
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Table 3. Accuracy(%) on ImageCLEF dataset for unsupervised domain adaptation (ResNet-50).

Method (Source → Target) I → P P → I I → C C → I C → P P → C Avg

ResNet [12] 74.8±0.3 83.9±0.1 91.5±0.3 78.0±0.2 65.5±0.3 91.2±0.3 80.7

DAN [24] 74.5±0.4 82.2±0.2 92.8±0.2 86.3±0.4 69.2±0.4 89.80±0.4 82.5

RTN [26] 75.6 86.8 95.3 86.9 72.7 92.2 84.9

DANN [9] 75.0±0.6 86.0±0.3 96.2±0.4 87.0±0.5 74.3±0.5 91.5±0.6 85.0

MinEnt [11] 76.2 85.7 93.5 83.5 69.3 89.7 83.0

MCD [36] 77.3 89.2 92.7 88.2 71.0 92.3 85.1

CDAN+E [25] 77.7±0.3 90.7±0.2 97.7±0.3 91.3±0.3 74.2±0.2 94.3±0.3 87.7

AFN [40] 79.3±0.1 93.3±0.4 96.3±0.4 91.7±0.0 77.6±0.1 95.3±0.1 88.9

BNM [7] 77.2 91.2 96.2 91.7 75.7 96.7 88.1

CGDM (ours) 78.7±0.2 93.3±0.1 97.5±0.3 92.7±0.2 79.2±0.1 95.7±0.2 89.5

5.4. Model Analysis

In this section, we take a further step to analyze the prop-

erties of the model in terms of convergence, feature visual-

ization, parameter sensitivity and ablation study.

Feature Visualization. To further demonstrate the ef-

fectiveness of our model and have an intuitive understand-

ing, we visualize the feature distribution learned by the

model using t-SNE [29]. We take C → I on ImageCLEF

as an example. It shows that in all scenarios, the source

samples present a discriminative distribution. While in the

absence of domain adaptation, the target samples likely to

be disorganized, as shown in Fig. 3(a). Fig. 3(b) shows

that using the domain adversarial neural network, the dis-

tribution discrepancy between the source domain and the

target domain is reduced, while the discriminability of the

target domain is relatively poor. Fig. 3(c) shows that MCD

improves the discriminability of features. After using our

method, the distribution of target samples aligns well with

the source one at category-level. The result verifies the ef-

fectiveness and feasibility of our method.

Convergence. In order to verify the convergence ten-

dency of our method, we report the classification loss on

source samples in Fig. 4(a), this loss is obtained on the

classifier F1. Fig. 4(b) depicts the accuracy curve of target

samples during the training process. Here we take C → I

on ImageCLEF as an example. These figures show that our

method can markedly reduce the loss and improve the accu-

racy with the number of iterations increases, which proves

that the training process is smooth and convergent.

Sensitivity to Hyper-Parameter. We check the hyper-

parameter sensitivity of our model. Our framework involves

two hyper-parameters α and β, the gradient discrepancy

loss constitutes the main new methodological contribution

in this paper while the self-supervised loss is used as an

auxiliary loss, so we fix the α as 0.1 because we empiri-

cally find that it performs well in this value. Then we report

the accuracy of C → I by turning β form 0 to 5, which is

shown in Fig. 5(a). When β is between 0 and 1, there was

no obvious deterioration in accuracy, when β is larger than

1, the accuracy begins to decline since the weight of the gra-

dient discrepancy loss is larger than that of the supervised

learning loss on source samples. In general, our model is

not sensitive to parameters.

Ablation Study. Our framework is composed of a self-

supervised learning module and a gradient discrepancy min-

imization module. In order to test the effectiveness of

each module, we conduct experiments without the self-

supervised learning and the gradient discrepancy minimiza-

tion, respectively. Limited by space, we take the mean ac-

curacy on ImageCLEF as an example. As shown in Fig.

5(b), both two modules can significantly improve the accu-

racy compared to the vanilla bi-classifier adversarial learn-

ing, and the model performs better when they work together.

Conditional Gradient Discrepancy. We use two types

of gradient discrepancy in this paper. In addition to align

marginal gradients by regarding all samples in a batch as a

whole, we have tried to align gradients for source and tar-

get samples within the same category separately. However,

in our experiments, we could not see obvious improvement

using the latter version. It indicates that the overall gradient

of a batch is able to express the category information of the

domain, thus we use the former one for less computation.

6. Conclusion

In this paper, we investigate the inaccurate issue of the

conventional bi-classifier adversarial learning for domain

adaptation. To alleviate this issue, we propose a novel UDA

method which aims to minimize the gradient discrepancy

between two domains to achieve a better distribution align-

ment at category-level. In addition, self-supervised learning

is used to obtain more reliable pseudo labels of target sam-

ples. Extensive experimental results on large scale datasets

demonstrate the advantage of our method.
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