
TransNAS-Bench-101: Improving transferability and Generalizability of

Cross-Task Neural Architecture Search

Yawen Duan1,*, Xin Chen1,∗, Hang Xu2, Zewei Chen2, Xiaodan Liang3,†, Tong Zhang4, Zhenguo Li2

1 The University of Hong Kong, 2 Huawei Noah’s Ark Lab, 3 Sun Yat-sen University,
4 The Hong Kong University of Science and Technology

Abstract

Recent breakthroughs of Neural Architecture Search

(NAS) extend the field’s research scope towards a broader

range of vision tasks and more diversified search spaces.

While existing NAS methods mostly design architectures on

a single task, algorithms that look beyond single-task search

are surging to pursue a more efficient and universal solution

across various tasks. Many of them leverage transfer learn-

ing and seek to preserve, reuse, and refine network design

knowledge to achieve higher efficiency in future tasks. How-

ever, the enormous computational cost and experiment com-

plexity of cross-task NAS are imposing barriers for valu-

able research in this direction. Existing NAS benchmarks

all focus on one type of vision task, i.e., classification. In

this work, we propose TransNAS-Bench-101, a benchmark

dataset containing network performance across seven tasks,

covering classification, regression, pixel-level prediction,

and self-supervised tasks. This diversity provides oppor-

tunities to transfer NAS methods among tasks and allows

for more complex transfer schemes to evolve. We explore

two fundamentally different types of search space: cell-level

search space and macro-level search space. With 7,352

backbones evaluated on seven tasks, 51,464 trained mod-

els with detailed training information are provided. With

TransNAS-Bench-101, we hope to encourage the advent of

exceptional NAS algorithms that raise cross-task search ef-

ficiency and generalizability to the next level. Our dataset

and code will be available at Mindspore1 and VEGA2.

1. Introduction

In recent years, networks found by Neural Architec-

ture Search (NAS) methods are surpassing human-designed

ones, setting state-of-the-art performance on various tasks

*Equal contribution. ({kmdaniel, cyn0531}@connect.hku.hk)
†Corresponding author. (xdliang328@gmail.com)
1https://download.mindspore.cn/dataset/TransNAS-Bench-101
2https://www.noahlab.com.hk/opensource/vega/page/doc.html?

path=datasets/transnasbench101

[25, 21]. Ultimately, NAS calls for algorithmic solutions

that can discover near-optimal models for any task within

any search space under moderate computational budgets.

To pursue this goal, recent research in NAS quickly ex-

panded its scope into broader vision domains such as object

detection [27] and semantic segmentation [5]. [24] seeks

to bridge the gap between sample-based and one-shot ap-

proaches. Besides searching for an optimal cell design in

earlier works [18], many recent works also investigate the

macro skeleton search of a network [29, 27].

Although many algorithms successfully shortened the

search time of NAS from months to hours [18, 9], some re-

search has shown their reliance on specific search spaces

and datasets [28]. There are also questions on these al-

gorithms’ efficiency when dealing with a large number of

tasks [6]. A rising direction of NAS research is thus look-

ing for solutions that acquire transferable knowledge and

generalize well across multiple tasks and search spaces

[20, 26, 23, 14, 10]. [6] explores meta-learning to trans-

fer network design knowledge from small tasks to larger

tasks, surpassing many efficient solutions based on pa-

rameter sharing. [3] proposes a highly memory-efficient

and effective transfer solution that does not require back-

propagation for adaptation. Central to these works’ inves-

tigations are two key considerations: the transferability of

an algorithm, namely how much information an algorithm

can effectively reuse, and generalizability, which evaluates

whether a solution can be applied to different settings (e.g.,

search spaces) and still performs well.

Meanwhile, NAS is prohibitively costly. The computa-

tional intensity of single-task NAS can be discouraging, not

to mention cross-task NAS experiments. To solve this com-

putation limitation, NAS-Bench-101 [30] and NAS-Bench-

201 [8] were proposed. These benchmarks have offered

great values for the NAS community, but we believe the

research scope of NAS can be further enlarged beyond clas-

sification problems and cell-based search spaces. To avoid

confusion, throughout this paper we use dataset to refer to

a set of original images, and task for pointing to certain vi-

sion domain. Hence, there can be multiple tasks for one

15251

@ 3rd Module

Cell-level Search Space

Cell

OP2

OP1

OP6

OP5

OP4

OP3

Operation (OP)

Candidates

• Zeroize

• Skip-connection

• 1x1 conv

• 3x3 conv

Image Searched

Backbone

Task-specific

Decoder

Stage 3

Downsampling

Doubling Channels

@ 2nd Module @ 4th Module

@ 4th Module

Stage 2Stage 1

Macro-level Search Space

Object Classification

Scene Classification

Room Layout

Jigsaw

AutoEncoder

Surface Normal

Semantic Segmentation

Various TasksTransfer-NAS Search Spaces

R
e

si
d

u
a

l
B

lo
ck

R
e

si
d

u
a

l
B

lo
ck

Module 1

R
e

si
d

u
a

l
B

lo
ck

R
e

si
d

u
a

l
B

lo
ck

Module 2

R
e

si
d

u
a

l
B

lo
ck

R
e

si
d

u
a

l
B

lo
ck

Module 3

R
e

si
d

u
a

l
B

lo
ck

R
e

si
d

u
a

l
B

lo
ck

Module 4

Figure 1: Our cell-level and macro-level search space in TransNAS-Bench-101. We design a cell-level search space that

treats each cell as a DAG and a macro-level search space that allows flexible macro skeleton network design.

dataset (e.g., COCO detection and segmentation).

The goal of finding universal solutions across tasks and

search spaces, the comparability problem, and the compu-

tational barriers of transferable NAS research lead to our

proposal of TransNAS-Bench-101, which studies networks

over seven distinct vision tasks: object classification, scene

classification, semantic segmentation, autoencoding, room

layout, surface normal, and jigsaw. Two types of search

spaces are provided: one is the macro skeleton search space

based on residual blocks, where the network depth and

block operations (e.g., where to raise the channel or down-

sample the resolution) are decided. Another one is the

widely-studied cell-based search space, where each cell can

be treated as a directed acyclic graph (DAG). The macro-

level and cell-level search space contains 3,256 and 4,096

networks, respectively. The 7,352 backbones are evalu-

ated on all seven tasks, and we provide detailed diagnos-

tic information such as task performance, inference time,

and FLOPs for all models. We also evaluated four trans-

fer schemes compatible with both search spaces to serve as

benchmarks for future research.

Our key contribution is a benchmark dataset with net-

works fully evaluated on seven tasks across two search

spaces. Generating the benchmark takes 193,760 GPU

hours, i.e., 22.12 years of computation on one NVIDIA

V100 GPU, but it significantly lowers the cost of further

research into cross-task neural architecture search. We also

highlight problems and provide suggestions for future NAS

research: (1) To extend NAS into different vision domains,

it is important to look beyond cell-based search spaces, as

we found that network macro structures can have bigger im-

pact on performance on certain tasks. (2) The extent to

which an algorithm surpasses random search is a crucial

performance indicator. (3) Investigations of evolutionary-

based transfer strategies, along with effective mechanisms

to tweak transferred architectures and policies, are two

promising directions for future research. With diversified

settings in TransNAS-Bench-101, we hope to encourage the

emergence of exceptional transferable NAS algorithms that

generalize well under various settings.

2. The TransNAS-Bench-101 dataset

2.1. Search Spaces and Architectures

To plug in different networks for various tasks, our

search space focuses on evolving the backbone, i.e., the

mutual component of all the tasks considered. We provide

two search spaces: a) A macro-level search space that de-

signs the macro skeleton of a network, which was previ-

ously studied towards NAS in object detection and seman-

tic segmentation; b) A cell-level search space following the

widely studied cell-based search space, which applies to

most weight-sharing NAS methods.

Macro-level Search Space. Most NAS methods follow

a fixed macro skeleton with a searched cell. However, the

macro-level structure of the backbone can be crucial for the

final performance. Early-stage feature maps in a backbone

have larger sizes as they capture texture details, whereas

feature maps at later stages are smaller and usually are more

discriminative [13]. The allocation of computations over

different stages is also vital for a backbone [15]. Therefore,

our search space contains networks with different depth (the

total number of blocks), locations to down-sample feature

maps, and locations to raise the channels. As is illustrated

in Figure 1, we group two residual blocks [11] into a mod-

ule, and the networks are stacked with 4 to 6 modules. The

module positions can be chosen to downsample the feature

map 1 to 4 times, and each time the spatial size will shrink

by a factor of 2. The network can double its channels 1 to

25252

• Home theater

• Entertainment

center

• Day bed

• Sofa

• Living Room

• Television

Room

Raw Image Room LayoutScene

Classification

Object

Classification

Jigsaw Puzzle Autoencoding Surface Normal Semantic Segm.

Figure 2: Vision tasks considered in our benchmarks. We carefully select those 7 tasks above to ensure both diversity and

similarity across tasks from Taskonomy [31].

3 times at chosen locations. This search space thus consists

of 3,256 unique architectures.

Cell-level Search Space. We follow NAS-Bench-201[8]

to design our cell-level search space. It consists of 4,096

densely connected DAGs, which enables the evaluation of

some weight-sharing NAS methods such as DARTS [18]

and ProxylessNAS [4]. As is shown in Figure 1, our cell-

level search space is obtained by assigning different op-

erations (as edges) transforming the feature map from the

source node to the target node. The predefined operation set

has L=4 representative operations: zeroize, skip connection,

1x1 convolution, and 3x3 convolution. The convolution in

our setting represents an operation sequence of ReLU, con-

volution, and batch normalization. Each DAG consists of 4

nodes and 6 edges, including basic residual block-like cell

designs. The macro-level skeleton is fixed, which contains

five modules with doubling channel and down-sampling

feature map operations at the 1st, 3rd, 5th modules.

Adding up the 3,256 and 4,096 networks from the

macro-level search space and the cell-level search space, we

have 7,352 unique architectures in total. All the architec-

tures in both search spaces are carefully trained and evalu-

ated across all the selected tasks.

2.2. Dataset

Unlike most NAS benchmarks that focus on classifica-

tion tasks only, TransNAS-Bench-101 encourages the eval-

uation of algorithms across different tasks. Considered that

Transferable NAS research is still in its infancy, we hope to

provide as many common grounds for transfer as possible.

This makes selecting proper datasets challenging since, ide-

ally, the datasets should share some commonalities while

covering a diversity of tasks. Thanks to the great previ-

ous work Taskonomy [31], which provides sufficient im-

ages with labels on different tasks (see Figure 2), we can

study algorithms without worrying that the datasets are by

nature too distinct for transfer. The original dataset consists

of 4.5M images of indoor scenes from about 600 buildings.

To control the computational budget, we randomly select 24

buildings containing a total of 120K images from the orig-

inal dataset and split the subset into 80K train / 20K val /

20K test set.

2.3. Vision Tasks

We carefully selected seven tasks that lie on the inter-

section of (1) covering all major task categories in Taskon-

omy’s task similarity tree [31], and (2) align with the

community’s general research interests (e.g., classification

tasks, or common and cheap pretrain tasks). As is shown

in Figure 2, the selected tasks include a) image classifica-

tion tasks: Object Classification and Scene Classification;

b) pixel-level prediction tasks: Surface Normal and Seman-

tic Segmentation; c) self-supervised task: Jigsaw Puzzle

and Autoencoding; d) point regression task: Room Layout.

Object Classification. Object classification is a 75-way

classification problem that recognize objects. Labels pro-

Table 1: Training hyperparameters and details of each task considered in this benchmark. All the architectures in the search

space have been fully trained. We provide multiple metrics for evaluation on the train/valid/test set. Each task requires a

backbone-decoder network structure with task-specific decoder and loss function. GAP denotes global average pooling. CE

denotes the cross entropy loss. All the tasks except Autoencoding and Surface Normal use a cosine annealing with a linear

warmup learning rate scheduler.

Tasks Decoder LR Optimizer Output dim. Loss Eval. Metrics

Object Class. GAP + Linear 0.1 SGD 75 Softmax+CE Loss, Acc

Scene Class. GAP + Linear 0.1 SGD 47 Softmax+CE Loss, Acc

Room Layout GAP + Linear 0.1 SGD 9 MSE loss Loss

Jigsaw GAP + Linear 0.1 SGD 1000 Softmax+CE Loss, Acc

Autoencoding 14 Conv & Deconv 0.0005 Adam 256x256 GAN loss+L1 Loss, SSIM

Surface Normal 14 Conv & Deconv 0.0001 Adam 256x256 GAN loss+L1 Loss, L1, SSIM

Sem. Segment. 8 Conv & Deconv 0.1 SGD 256x256 Softmax+CE Loss, Acc, mIoU

35253

Table 2: Comparisons of TransNAS-Bench-101 with previous benchmarks. Although TransNAS-Bench-101 has a smaller

search space, it contains more datasets, domains, and search space types.

Data- # Task # Search Space Search Space

sets Domains Size Type

NAS-Bench-101 1 1 510M Cell

NAS-Bench-201 3 1 15.6K Cell

TransNAS-Bench-101 1 7 7.3K Cell & Macro

vided by Taskonomy dataset [31] are activations generated

by a ResNet-152 model [11] pre-trained on ImageNet [7].

Scene Classification. Like object classification, scene

classification is a 47-way classification problem that pre-

dicts the room type in the image. Its labels come from a

ResNet-152 model pre-trained on MIT Places dataset [32].

Our selected dataset contains 47 classes out of the original

365 classes.

Room Layout. This task is to estimate and align a

3D bounding box defining the room layout. It requires a

network to semantic information, such as ”what constitutes

a room,” and includes scene geometry.

Jigsaw. We follow [19] to design the self-supervised

task Jigsaw. The input image is divided into nine patches

and shuffled according to one of 1,000 preset permutations.

The objective is to classify which permutation is used. This

task’s inclusion is inspired by a recent work [17] that ex-

plores neural architecture search without using labels.

Autoencoding. Autoencoding is a pixel-level prediction

task that encodes images into low-dimensional latent repre-

sentations then reconstructs the raw image. The training set-

tings follow Conditional Adversarial Nets in Pix2Pix [12].

Surface Normal. Like autoencoding, surface normal

is a pixel-wise prediction task that predicts surface normal

statistics. The network structure and training procedure is

the same as autoencoding.

Semantic Segmentation. Semantic Segmentation con-

ducts pixel-level prediction on the class of its components.

The labels provided by the Taskonomy dataset are gener-

ated through a network pre-trained on the MSCOCO [16]

dataset. Our selected subset contains 17 semantic classes.

2.4. Training Details

In TransNAS-Bench-101, the seven different tasks re-

quire different network structures and loss functions. To

train the networks on a given task, we define a de-

fault backbone-decoder network structure first, then iterate

through the search space and change its backbone architec-

ture. For pixel-level prediction tasks and autoencoding, the

decoders’ input channels and resolutions will change flexi-

bly but minimally according to different feature maps gen-

erated by the backbone. Since the original paper’s imple-

mentation is based on an early version of Tensorflow, we

reimplemented both the training and testing script with Py-

Torch for reproducibility.

We mostly follow the Taskonomy paper to set up the

hyper-parameters and training strategies shown in Table 1.

For all the tasks, the batch size is 128, and the input resolu-

tion is resized to 256× 256. We record multiple evaluation

metrics in each epoch for all the architectures, as is listed

in Table 1. Since we train every architecture in our search

space for all the 7 tasks (i.e., 7352 × 7 ≈ 5 × 104 arch),

the total computation cost is 193,760 GPU hours on V100

to generate the whole TransNAS-Bench-101. Users can use

our API to conveniently query each architecture’s informa-

tion across tasks without additional computation costs. In

Table 3: We show the basic statistics of the two search spaces, including average performance metric scores, average

model FLOPs, the average number of model parameters, and average training time. Note that here model denotes the whole

backbone-decoder model structure.

Tasks Cls. Object Cls. Scene Autoencoding Surf. Normal Sem. Segment. Room Layout Jigsaw

Metric Acc. Acc. SSIM SSIM mIoU L2 loss Acc.

Performance 39.71±5.92 45.23±12.15 0.46±0.10 0.52±0.06 19.95±5.52 -0.73±0.12 76.57±28.34

Cell FLOPs (×10
8) 2.44±1.44 2.44±1.44 4.90±1.44 4.90±1.44 5.19±1.44 2.44±1.44 1.38±0.81

level Model Params (×10
6) 1.17±0.71 1.17±0.71 3.97±0.71 3.97±0.71 2.27±0.71 1.17±0.71 2.19±0.71

Train Time (hr) 2.08±0.23 2.13±0.23 5.03±0.54 4.90±0.55 5.98±1.69 2.01±0.31 1.28±0.19

Performance 44.24±1.38 52.92±2.08 0.52±0.08 0.57±0.02 24.47±2.07 -0.65±0.03 93.43±2.18

Macro FLOPs (×10
8) 6.49±9.68 6.49±9.68 12.44±14.40 12.44±14.40 10.66±11.56 6.49±9.68 3.66±5.45

level Model Params (×10
6) 1.18±0.91 1.18±0.91 3.83±1.02 3.83±1.02 2.13±1.02 1.17±0.91 1.91±1.14

Train Time (hr) 2.57±2.35 2.56±2.25 7.07±3.91 7.10±4.02 7.04±2.99 2.59±2.25 1.13±0.56

45254

102 103 104

Feature Extractor MFLOPs
0

500

1000

1500

2000

2500

3000

Av
g

Ra
nk

in
g

ac
ro

ss
 7

 T
as

ks

101

3 × 100

4 × 100

6 × 100

Av
g

Tr
ai

n
Ti

m
e

(h
ou

rs
)

(a) Macro: FLOPs v. Rank

106 107

Feature Extractor Parameters
0

500

1000

1500

2000

2500

3000

Av
g

Ra
nk

in
g

ac
ro

ss
 7

 T
as

ks

101

3 × 100

4 × 100

6 × 100

Av
g

Tr
ai

n
Ti

m
e

(h
ou

rs
)

(b) Macro: Params v. Rank

101 102 103

Feature Extractor MFLOPs
0

500

1000

1500

2000

2500

3000

3500

Av
g

Ra
nk

in
g

ac
ro

ss
 7

 T
as

ks

3 × 100

4 × 100

5 × 100

6 × 100

Av
g

Tr
ai

n
Ti

m
e

(h
ou

rs
)

(c) Cell: FLOPs v. Rank

105 106 107

Feature Extractor Parameters
0

500

1000

1500

2000

2500

3000

3500

Av
g

Ra
nk

in
g

ac
ro

ss
 7

 T
as

ks

3 × 100

4 × 100

5 × 100

6 × 100

Av
g

Tr
ai

n
Ti

m
e

(h
ou

rs
)

(d) Cell: Params v. Rank

Figure 3: The architecture average performance ranking, FLOPs, parameters, and training time on both search spaces. (a)-(b)

display the overall landscape of the macro-level search space and (c)-(d) show the cell-level search space.

this way, researchers can significantly speed up their re-

search and focus solely on improving the algorithms with-

out tediously implementing and tuning different tasks.

2.5. Network Information in TransNAS­Bench API

We provide the train / validation / test performance infor-

mation of each network at every epoch. The benchmark also

contains each network’s inference time, FLOPs, the total

number of parameters, and time elapsed during each train-

ing epoch. Each model’s inference time is measured on one

Tesla V100 with one image of shape (3, 720, 1080). FLOPs

are computed with one image of shape (3, 224, 224).

3. Related Work

To foster reproducibility and fair comparisons among

algorithms, there are several existing NAS benchmarks.

NAS-Bench-101 is the earliest work, which contains 423k

unique architectures evaluated on the CIFAR-10 dataset.

The networks are designed with a cell-based structure,

where each cell is treated as a DAG.

As an extension of NAS-Bench-101, NAS-Bench-201

was proposed to accommodate the growing needs. It pro-

vides training information about 15k networks, forming a

complete search space. Similar to NAS-Bench-101, the net-

works are designed under a cell-based structure, but it could

support many more algorithms with detailed diagnostic in-

formation. With training results over three datasets pro-

vided, it first enabled transfer learning across tasks. Ten

benchmark algorithms are evaluated with extensive experi-

ments in addition to network information.

TransNAS-Bench-101’s commonalities with previous

benchmarks mainly lie in: (1) It offers detailed network

training information with all the networks in an entire

search space. (2) It also adopts the cell-based search space,

treating each cell as a DAG. However, TransNAS-Bench-

101 evaluates its networks across a much more diversified

set of tasks. It is also the first benchmark that provides a

thorough analysis of the macro skeleton search space.

4. Analysis of TransNAS-Bench-101

4.1. Overview of architectures

The architectures’ performance ranking, FLOPs, param-

eters, and training time are presented in Figure 3. We ob-

tain rankings of each architecture’s validation performance

on all 7 tasks first, then plot the average ranking. A higher

number means a better performance ranking.

CLS
_OB

J-V

CLS
_SC

E-V
JIGS

AW-
V

LAY
OUT

-V AE-V

NOR
MAL

-V

SEG
_SE

M-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.76 0.591 0.588 0.783 0.704 0.784

0.76 1 0.738 0.752 0.568 0.817 0.796

0.591 0.738 1 0.692 0.433 0.64 0.723

0.588 0.752 0.692 1 0.429 0.576 0.693

0.783 0.568 0.433 0.429 1 0.602 0.691

0.704 0.817 0.64 0.576 0.602 1 0.697

0.784 0.796 0.723 0.693 0.691 0.697 1
0.5

0.6

0.7

0.8

0.9

1.0

(a) Macro Correlation (all)

CLS
_OB

J-V

CLS
_SC

E-V
JIGS

AW-
V

LAY
OUT

-V AE-V

NOR
MAL

-V

SEG
_SE

M-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.331 0.196 -0.0339 0.528 0.37 0.467

0.331 1 0.486 0.463 0.00343 0.569 0.338

0.196 0.486 1 0.353 0.0545 0.39 0.408

-0.0339 0.463 0.353 1 -0.241 0.132 0.133

0.528 0.00343 0.0545 -0.241 1 0.281 0.506

0.37 0.569 0.39 0.132 0.281 1 0.337

0.467 0.338 0.408 0.133 0.506 0.337 1
0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b) Macro Correlation (top 50%)

CLS
_OB

J-V

CLS
_SC

E-V
JIGS

AW-
V

LAY
OUT

-V AE-V

NOR
MAL

-V

SEG
_SE

M-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.809 0.815 0.802 0.454 0.768 0.677

0.809 1 0.763 0.634 0.251 0.866 0.844

0.815 0.763 1 0.806 0.445 0.736 0.666

0.802 0.634 0.806 1 0.483 0.632 0.531

0.454 0.251 0.445 0.483 1 0.256 0.0961

0.768 0.866 0.736 0.632 0.256 1 0.806

0.677 0.844 0.666 0.531 0.0961 0.806 1
0.2

0.4

0.6

0.8

1.0

(c) Cell Correlation (all)

CLS
_OB

J-V

CLS
_SC

E-V
JIGS

AW-
V

LAY
OUT

-V AE-V

NOR
MAL

-V

SEG
_SE

M-V

CLS_OBJ-V

CLS_SCE-V

JIGSAW-V

LAYOUT-V

AE-V

NORMAL-V

SEG_SEM-V

1 0.217 0.0951 0.202 0.328 0.113 -0.118

0.217 1 0.007 -0.397 -0.241 0.55 0.531

0.0951 0.007 1 0.196 0.175 -0.0287 -0.132

0.202 -0.397 0.196 1 0.479 -0.319 -0.594

0.328 -0.241 0.175 0.479 1 -0.216 -0.544

0.113 0.55 -0.0287 -0.319 -0.216 1 0.384

-0.118 0.531 -0.132 -0.594 -0.544 0.384 1
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

(d) Cell Correlation (top 50%)

Figure 4: The Spearman rank correlations among tasks. (a), (c) show the correlation of all networks’ validation performance

scores across tasks on macro and cell search spaces, respectively. (b), (d) show the correlation of the top 50% networks on

macro and cell search spaces. Networks in the cell-level search space has higher correlations than the macro-level search

space. The correlations shrinks quickly if we sample top 50% of the networks.

55255

46 48 50 52 54 56 58
Scene Classification Accuracy

20

22

24

26

28

30

Se
m

an
tic

 S
eg

m
en

ta
tio

n
m

Io
U

(a)

0.75 0.70 0.65 0.60
Room Layout Negative MSE

0.3

0.4

0.5

0.6

0.7

Au
to

en
co

de
r S

SI
M

(b)

Figure 5: Tasks with the highest and lowest correlations on

the macro-level search space.

The pattern shows that a network with more FLOPs and

longer training time tends to perform better on the given

tasks within a reasonable range, but it does not include some

of the search space’s largest networks. Figure 3 also re-

veals some distinctive characteristics of both search spaces.

The macro-level search space has its networks more evenly

spread out in terms of FLOPs, whereas networks in the cell-

level search space are more concentrated at certain num-

bers. The macro-level search space’s network FLOPs vary

across a wider range from 108 to 1011, while the cell-level

search space’s architectures range across 108 to 1010, which

is a magnitude smaller. The FLOPs and parameter patterns

are similar in the cell-level search space, but the pattern

significantly changed when we investigate the macro-level

search space. It can take up to 12 hours to train a network

in the macro-level search space, which is twice the GPU

hour needed to train the most computationally demanding

network on the cell-level search space.

4.2. Correlations among tasks

We analyze cross-task correlations by calculating the

Spearman’s Rank Correlation coefficient among the tasks

and present the results in Figure 4. Although object classifi-

cation and scene classification are both classification tasks,

scene classification has higher correlations with surface nor-

mal and semantic segmentation tasks on both search spaces

than object classification. This phenomenon shows that

tasks within the same domain, even though they are based

on essentially the same images, might not necessarily be

closer in terms of architectural performance. We visualize

the network performance of tasks with the highest (0.817)

and lowest (0.429) correlations on the macro-level search

space in Figure 5.

The Autoencoding task has very distinctive behaviors

under the two search spaces. Similar to semantic segmenta-

tion and surface normal, it is an image translation task that

outputs 256x256 images. With networks in the macro-level

search space, the autoencoding task has moderate correla-

tions with semantic segmentation (0.691) and surface nor-

mal (0.602). However, under the cell-level search space,

it has almost no correlations with semantic segmentation

(0.0961), and very weak correlation with surface normal

(0.256). This considerable discrepancy shows that the se-

lection of search space can significantly impact specific

tasks. Some search spaces can dramatically lower the dif-

ficulty of NAS transfer, and some might have inherent dis-

advantages. It again highlights the importance of validat-

ing an algorithm’s performance on multiple search spaces

to obtain unbiased evaluations.

The correlations among tasks shrink quickly if we plot

the graphs with only the top 50% networks’ performance

information. Some tasks still have relatively strong corre-

lations, but others rapidly drop to below zero. This shows

that the direct transfer strategy of architectures might not

always yield good results, and robustly transferable algo-

rithms should be wary of it to avoid negative transfer.

5. Benchmark Algorithms

Because the field of transferable NAS is new and

nascent, there are only limited number of transferable archi-

tecture search algorithms. We implemented four baseline

algorithms using TransNAS-Bench-101 and provide imple-

mentation details and results in this section.

We evaluated 5 transfer schemes of different types: (1)

Random Search (RS) [2]; (2) Direct transfer of top archi-

tectures (DT); (3) Direct policy transfer of reinforcement

learning-based algorithm, e.g., Proximal Policy Optimiza-

tion (PPO) [22]; (4) Meta-learning based algorithm, e.g.,

CATCH [6]; (5) Evolutionary algorithms with transferred

population initialization, e.g., Regularized Evolutionary Al-

gorithm (REA) [21]. Each selected algorithm represents a

distinctive type of transfer scheme, and they are compatible

with both search spaces. The algorithms are tested using the

MindSpore tools [1].

Evaluation of Random Search and Direct Transfer.

Many NAS algorithms have attempted to use architectures

as the central component for transfer [33, 20], which in-

spired us to look into the efficiency of direct transfer of top

architectures found by RS. For both search spaces, we ran-

domly search 50 architectures in each trial. The architecture

with the highest validation accuracy will be selected as the

final searched result of this particular trial. In Table 4 we

include the results for direct transfer (DT). For each task,

we take the best architecture from the remaining 6 tasks,

and average their performance on the selected task. The re-

sults are significantly worse than all the search algorithms.

It shows that even if some NAS algorithm can be guaranteed

to find the optimal architecture on a source task, its direct

transfer performance on the target task can still suffer.

Evaluation of policy transfer. For both search spaces,

the NAS problem can be formulated as a sequential de-

cision problem, and the reinforcement learning algorithm

PPO aims to select each attribute choice to form a network.

We use a multi-layer perceptron (MLP) as the policy net-

65256

0 10 20 30 40 50
Trials

3100

3120

3140

3160

3180

3200

3220

3240

3260

Ne
tw

or
k

Ra
nk

in
g

RS
REA-tfs
REA-transfer
global_max

(a) Macro Search Space on Room Layout

0 10 20 30 40 50
Trials

3000

3050

3100

3150

3200

3250

Ne
tw

or
k

Ra
nk

in
g

RS
REA-tfs
REA-transfer
Global Max

(b) REA on Macro Search Space (Averaged)

0 10 20 30 40 50
Trials

3750

3800

3850

3900

3950

4000

4050

4100

Ne
tw

or
k

Ra
nk

in
g

RS
REA-tfs
REA-transfer
Global Max

(c) REA on Cell Search Space (Averaged)

Figure 6: Comparisons of the transfer and train-from-scratch (tfs) results of REA. REA-transfer has slight but stable im-

provements across all tasks. We ran each algorithm in 6(a) for 50 trials and each trial to search 50 networks. We pick the

model with the highest validation score in history as the search result of a trial. 6(a) shows sorted search results of on Room

Layout. Each curve in 6(b) and 6(c) averages the search results across all tasks.

0 10 20 30 40 50
Trials

3100
3120
3140
3160
3180
3200
3220
3240
3260

Ne
tw

or
k

Ra
nk

in
g

RS
PPO-tfs
PPO-transfer
CATCH-meta
global_max

(a) Macro Search Space on Object Class.

0 10 20 30 40 50
Trials

3100

3125

3150

3175

3200

3225

3250

3275

Ne
tw

or
k

Ra
nk

in
g

RS
PPO-tfs
PPO-transfer
CATCH-meta
Global Max

(b) RL on Macro Search Space (Averaged)

0 10 20 30 40 50
Trials

3800

3850

3900

3950

4000

4050

4100

Ne
tw

or
k

Ra
nk

in
g

RS
PPO-tfs
PPO-transfer
CATCH-meta
Global Max

(c) RL on Cell Search Space (Averaged)

Figure 7: Comparison of PPO and CATCH. CATCH largely improves PPO-transfer’s performance, and it works exceedingly

well on object classification. Similar to REA, We ran each algorithm in 7(a) for 50 trials and each trial to search 50 networks.

7(a) shows sorted search results on object classification. Each curve in 7(b) and 7(c) averages search results across all tasks.

work for PPO, and pre-train the policy for 50 epochs on a

less time-costly source task (Jigsaw in our case). The pre-

trained policy is then adapted to the target task to search for

another 50 epochs.

CATCH uses PPO as its controller to sample networks.

It also uses an MLP network evaluator to predict the net-

work performance and uses a context encoder to learn a

task-specific embedding to guide the search. CATCH incor-

porated meta reinforcement learning by first meta-training

the policy on low-cost tasks and then adapt the meta-trained

policy to a target task. We use jigsaw, object classifica-

tion, and scene classification tasks as its meta-training tasks.

CATCH adopts the same budget for pre-train and transfer,

and we repeat each trial 50 times. We plot the search results

on each target task and then take the average of the curves

across all tasks. The result is shown in Figure 7.

The direct transfer of PPO policies shows worse results

than its non-transfer version, a phenomenon commonly re-

ferred to as negative transfer. We conjecture that this is due

to PPO’s overfitting to the source task during the pre-train

phase. CATCH mediates it with two added components: An

encoder that provides task information that guides its pol-

icy and an evaluator that filters inferior candidates. From

our experiments, these added components do improve the

transfer results under certain circumstances. As Table 4 in-

dicates, it shows exceedingly good performance under cer-

tain settings such as object classification on the macro-level

search space, but it also struggles on some other tasks, such

as room layout on cell-level search space.

Evaluation of evolutionary algorithms with trans-

ferred population initialization. We reproduced REA in

our benchmark, and the result is presented in Figure 6. We

randomly initialize a population during the pre-train phase,

then set the pre-train budget, i.e., the total number of archi-

tecture to search during the pre-train phase, to be 50. After

training on the given budget on a source task, we take the

top 10 architectures in the pre-train history as the initializa-

tion of the population on the target task and search for 50

epochs. Although it does not have significant boosts on spe-

cific tasks like CATCH does, it maintains a relatively stable

performance improvement across all examined tasks, which

results in the slight surpass from its train-from-scratch ver-

sion when the curves are averaged.

Comparison across Transfer NAS Algorithms. The

75257

Table 4: Performance comparison of different transferable NAS methods. Room layout’s L2 loss is multiplied by a factor of

100 for better readability. The transferred versions of REA and PPO are pretrained on the least time-consuming task, Jigsaw.

The rightmost column reports the percentile of searched networks (Perc.) in the benchmark, averaged across all target tasks

(i.e. all tasks except Jigsaw).

Tasks Cls. Object Cls. Scene Autoencoding Surf. Normal Sem. Segment. Room Layout Jigsaw Perc.

Metric Acc. Acc. SSIM SSIM mIoU L2 loss Acc.

RS 45.16±0.4 54.41±0.3 55.94±0.8 56.85±0.6 25.21±0.4 61.48±0.8 94.47±0.3 97.91

REA-tfs 45.39±0.2 54.62±0.2 56.96±0.1 57.22±0.3 25.52±0.3 61.75±0.8 94.62±0.3 99.06

Cell REA-transfer 45.51±0.3 54.61±0.2 56.52±0.6 57.20±0.7 25.46±0.4 61.04±1.0 - 99.02

level PPO-tfs 45.19±0.3 54.37±0.2 55.83±0.7 56.90±0.6 25.24±0.3 61.38±0.7 94.46±0.3 98.07

PPO-transfer 44.81±0.6 54.15±0.5 55.7.0±1.5 56.60±0.7 24.89±0.5 62.01±1.0 - 94.94

CATCH 45.27±0.5 54.38±0.2 56.13±0.7 56.99±0.6 25.38±0.4 60.70±0.7 - 98.45

DT 42.03±4.96 49.80±8.59 51.20±3.32 55.03±2.68 22.45±3.24 66.98±2.25 88.95±9.13 77.17

Global Best 46.32 54.94 57.72 59.62 26.27 59.38 95.37 100

RS 46.85±0.3 56.5±0.4 70.06±3.1 60.70±0.9 28.37±0.5 59.35±1.0 96.78±0.2 98.18

REA-tfs 47.09±0.4 56.57±0.4 69.98±3.6 60.88±1.0 28.87±0.4 58.73±1.1 96.88±0.2 98.74

Macro REA-transfer 46.98±0.4 56.60±0.3 73.41±2.9 61.02±0.8 28.90±0.5 58.18±1.3 - 99.11

level PPO-tfs 46.84±0.4 56.48±0.3 70.92±3.2 60.82±0.8 28.31±0.5 58.84±1.1 96.76±0.2 98.33

PPO-transfer 46.76±0.5 56.47±0.4 70.54±2.9 60.80±1.3 28.31±0.6 59.17±0.8 - 97.79

CATCH 47.29±0.3 56.49±0.3 70.36±3.0 60.85±0.7 28.71±0.4 59.37±0.6 - 98.78

DT 45.48±1.02 54.96±1.80 59.35±8.99 58.60±1.56 26.21±1.91 62.07±1.43 95.37±1.55 83.59

Global Best 47.96 57.48 76.88 64.35 29.66 56.28 97.02 100

average performance of each algorithm is presented in Table

4. REA-transfer is the top performer among all evaluated

algorithms, finding networks on the 99.02 and 99.11 per-

centile on the cell-level and macro-level search spaces. The

experiments highlight that: (1) Direct transfer of architec-

tures performs significantly worse than random search; (2)

Direct policy transfer works better than direct architecture

transfer, whereas it often results in negative transfer; (3) It

is possible to improve the policy transfer’s robustness with

added mechanisms, such as CATCH’s encoder and evalu-

ator; (4) Maintaining consistent performance across tasks

and search spaces remains a challenge for NAS algorithms.

6. Discussions and Conclusion

Major challenges of transferable NAS research. After

working closely with the benchmark, we realize that (1) the

top networks can be very different across tasks. Therefore,

the transfer schemes should be able to respond quickly if the

task nature has significantly changed. However, effectively

detecting and responding to such changes can be difficult.

(2) transfer learning methods usually do not assume prior

knowledge about future tasks, but if the policy is specifi-

cally designed for NAS, it is possible to incorporate certain

NAS features to speed up learning. The major challenges lie

in effectively designing such a scheme to provide the most

relevant information.

Suggestions for future NAS research: (1) It is impor-

tant to study efficient NAS strategies that work beyond cell-

level search space, as some network attributes, such as the

macro skeleton, might have a larger impact on performance

for some tasks. (2) When transferring policies and architec-

tures, including some carefully designed mechanisms might

help tweak the transferred components toward directions fa-

vorable by the target task. (3) Evolutionary methods are not

typical strategies studied by the transfer learning commu-

nity, but its performance on the benchmark suggests that it

might worth further investigation. Similarly, there might be

other strategies outside of the pool of conventional transfer

methods that are promising for transferable NAS research.

In this paper, we present TransNAS-Bench-101, a bench-

mark for improving the transferability and generalizability

of NAS algorithms. We evaluate 7,352 neural networks

on 7 vision tasks, provide detailed analysis on the bench-

mark, then point out challenges and suggestions for future

research. It is difficult for algorithms to robustly maintain

its performance when the task nature has shifted, and exper-

iments show that there is still large room for improvement

in NAS methods’ generalizability. With this work, we hope

to make cross-task NAS research more accessible and en-

courage more exceptional algorithms that are both efficient

and flexible on multiple tasks and search spaces to evolve.

In the future, we will try to (1) enlarge our search spaces

and (2) evaluate all networks with more seeds. We wel-

come researchers to test their algorithms’ generalizability

on TransNAS-Bench-101, and we are happy to include their

results in future versions of our benchmark.

85258

References

[1] Mindspore. https://www.mindspore.cn/en. 6

[2] James Bergstra and Yoshua Bengio. Random search for

hyper-parameter optimization. The Journal of Machine

Learning Research, 13(1):281–305, 2012. 6

[3] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han.

Tiny transfer learning: Towards memory-efficient on-device

learning. arXiv preprint arXiv:2007.11622, 2020. 1

[4] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. In

ICLR, 2019. 3

[5] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George

Papandreou, Barret Zoph, Florian Schroff, Hartwig Adam,

and Jon Shlens. Searching for efficient multi-scale archi-

tectures for dense image prediction. In Advances in neural

information processing systems, pages 8699–8710, 2018. 1

[6] Xin Chen, Yawen Duan, Zewei Chen, Hang Xu, Zihao

Chen, Xiaodan Liang, Tong Zhang, and Zhenguo Li. Catch:

Context-based meta reinforcement learning for transferrable

architecture search. arXiv preprint arXiv:2007.09380, 2020.

1, 6

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee, 2009. 4

[8] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the

scope of reproducible neural architecture search. In Inter-

national Conference on Learning Representations, 2019. 1,

3

[9] Xuanyi Dong and Yi Yang. Searching for a robust neu-

ral architecture in four gpu hours. In Proceedings of the

IEEE Conference on computer vision and pattern recogni-

tion, pages 1761–1770, 2019. 1

[10] Yong Guo, Yaofo Chen, Yin Zheng, Peilin Zhao, Jian Chen,

Junzhou Huang, and Mingkui Tan. Breaking the curse

of space explosion: Towards efficient nas with curriculum

search. 1

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2, 4

[12] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A

Efros. Image-to-image translation with conditional adver-

sarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134,

2017. 4

[13] Zeming Li, Chao Peng, Gang Yu, Xiangyu Zhang, Yangdong

Deng, and Jian Sun. Detnet: A backbone network for object

detection. In ECCV, 2018. 2

[14] Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu

Lin, Peilin Zhao, Junzhou Huang, and Shenghua Gao. To-

wards fast adaptation of neural architectures with meta learn-

ing. In International Conference on Learning Representa-

tions, 2020. 1

[15] Feng Liang, Chen Lin, Ronghao Guo, Ming Sun, Wei Wu,

Junjie Yan, and Wanli Ouyang. Computation reallocation

for object detection. In ICLR. OpenReview.net, 2020. 2

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 4

[17] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan

Yuille, and Saining Xie. Are labels necessary for neural ar-

chitecture search? arXiv preprint arXiv:2003.12056, 2020.

4

[18] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In International Confer-

ence on Learning Representations, 2018. 1, 3

[19] Mehdi Noroozi and Paolo Favaro. Unsupervised learning

of visual representations by solving jigsaw puzzles. In

European Conference on Computer Vision, pages 69–84.

Springer, 2016. 4

[20] Ramakanth Pasunuru and Mohit Bansal. Continual

and multi-task architecture search. arXiv preprint

arXiv:1906.05226, 2019. 1, 6

[21] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 1, 6

[22] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal policy optimization algo-

rithms. arXiv preprint arXiv:1707.06347, 2017. 6

[23] Albert Shaw, Wei Wei, Weiyang Liu, Le Song, and Bo Dai.

Meta architecture search. In Advances in Neural Information

Processing Systems, pages 11227–11237, 2019. 1

[24] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and

Tong Zhang. Bridging the gap between sample-based and

one-shot neural architecture search with bonas. Advances in

Neural Information Processing Systems, 33, 2020. 1

[25] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International

Conference on Machine Learning, pages 6105–6114, 2019.

1

[26] Catherine Wong, Neil Houlsby, Yifeng Lu, and Andrea Ges-

mundo. Transfer learning with neural automl. In Advances in

Neural Information Processing Systems, pages 8356–8365,

2018. 1

[27] Hang Xu, Lewei Yao, Wei Zhang, Xiaodan Liang, and Zhen-

guo Li. Auto-fpn: Automatic network architecture adapta-

tion for object detection beyond classification. In Proceed-

ings of the IEEE International Conference on Computer Vi-

sion, pages 6649–6658, 2019. 1

[28] Antoine Yang, Pedro M Esperança, and Fabio M Carlucci.

Nas evaluation is frustratingly hard. In International Confer-

ence on Learning Representations, 2019. 1

[29] Lewei Yao, Hang Xu, Wei Zhang, Xiaodan Liang, and

Zhenguo Li. Sm-nas: Structural-to-modular neural ar-

chitecture search for object detection. arXiv preprint

arXiv:1911.09929, 2019. 1

[30] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,

Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards

reproducible neural architecture search. In International

Conference on Machine Learning, pages 7105–7114, 2019.

1

95259

[31] Amir R Zamir, Alexander Sax, William Shen, Leonidas J

Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy:

Disentangling task transfer learning. In CVPR, pages 3712–

3722, 2018. 3, 4

[32] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence, 2017. 4

[33] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018. 6

105260

