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Abstract

Deep neural networks have amply demonstrated their

prowess but estimating the reliability of their predictions re-

mains challenging. Deep Ensembles are widely considered

as being one of the best methods for generating uncertainty

estimates but are very expensive to train and evaluate.

MC-Dropout is another popular alternative, which is

less expensive, but also less reliable. Our central intuition

is that there is a continuous spectrum of ensemble-like mod-

els of which MC-Dropout and Deep Ensembles are extreme

examples. The first one uses effectively infinite number of

highly correlated models while the second one relies on a

finite number of independent models.

To combine the benefits of both, we introduce Masksem-

bles. Instead of randomly dropping parts of the network as

in MC-dropout, Masksemble relies on a fixed number of bi-

nary masks, which are parameterized in a way that allows

to change correlations between individual models. Namely,

by controlling the overlap between the masks and their size

one can choose the optimal configuration for the task at

hand. This leads to a simple and easy to implement method

with performance on par with Ensembles at a fraction of

the cost. We experimentally validate Masksembles on two

widely used datasets, CIFAR10 and ImageNet.

1. Introduction

The ability of deep neural networks to produce useful

predictions is now abundantly clear but assessing the relia-

bility of these predictions remains a challenge. Among all

the methods that can be used to this end, MC-Dropout [8]

and Deep Ensembles [21] have emerged as two of the most

popular ones. Both of those methods exploit the concept of

ensembles to produce uncertainty estimates. MC-Dropout

does so implicitly - by training a single stochastic network,

where randomness is achieved by dropping different subsets

of weights for each observed sample. At test time, one can

*This work was supported in part by the Swiss National Science Foun-

dation

obtain multiple predictions by running this network multi-

ple times, each time with a different weight configuration.

Deep Ensembles, on the other hand, build an explicit en-

semble of models, where each model is randomly initialized

and trained independently using stochastic gradient descent.

As importantly, both methods rely on the fact that the out-

puts of individual models are diverse, which is achieved by

introducing stochasticity into the training or testing process.

However, simply adding randomness does not always

lead to diverse predictions. In practice, MC-Dropout often

performs significantly worse than Deep Ensembles on un-

certainty estimation tasks [21, 28, 12]. We argue that this

can be attributed to the fact that each weight is dropped

randomly and independently from the others. For many

configurations of hyperparameters, in particular the dropout

rate, this results in similar weight configurations and, conse-

quently, less diverse predictions [6]. Deep Ensembles seem

to not share this weakness for reasons that are not yet fully

understood and usually produce significantly more reliable

uncertainty estimates. Unfortunately, this comes at a price,

both at training and inference time: Building an ensemble

requires training multiple models and using it means load-

ing all of them simultaneously in memory, typically a very

scarce resource.

In this work, we introduce Masksembles, an approach

to uncertainty estimation that tackles these challenges and

produces reliable uncertainty estimates on par with Deep

Ensembles at a significantly lower computational cost. The

main idea behind the method is simple - introduce a more

structured way to drop model parameters than that of MC-

Dropout.

Masksembles produces a fixed number of binary masks

which specify the network parameters to be dropped. The

properties of the masks effectively define the properties of

the final ensemble in terms of capacity and correlations.

During training, for each sample we randomly choose one

of the masks and drop the corresponding parts of the model

just like standard dropout. During inference, we run the

model multiple times, once per mask, to obtain a set of

predictions and, ultimately, an uncertainty estimate. Our

method has three key hyperparameters: the total number of
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masks, the average overlap between masks and the number

of ones and zeros in each mask. Intuitively, using a large

number of masks approximates MC-Dropout, while using

a set of non-overlapping, completely disjoint masks, yields

an Ensemble-like behavior. In other words, as illustrated in

Fig. 5 Masksembles defines a spectrum of model configu-

rations of which MC-Dropout and Deep Ensembles can be

seen as extreme cases. We evaluate our method on several

synthetic and real datasets and demonstrate that it outper-

forms MC-Dropout in terms of accuracy, calibration, and

out-of-distribution (OOD) detection performance. When

compared to Deep Ensembles, our method has similar per-

formance, but is more favorable in terms of training time

and memory requirements. Furthermore, Masksembles is

simple to implement and can serve as a drop-in replacement

for MC-Dropout in virtually any model. To summarize, the

main contributions of this work are as follows:

• We propose an easy to implement, drop-in replacement

method that performs better than MC-Dropout, at a

similar computational cost, and that matches Ensem-

bles at a fraction of the cost.

• We provide theoretical insight into two popular uncer-

tainty estimation methods - MC-Dropout and Ensem-

bles, by creating a continuum between the two.

• We provide a comprehensive evaluation of our method

on several public datasets. This validates our claims

and provides guidance for the choice of Masksemble

parameters in practical applications.

2. Related Work

MC-Dropout [8] and Deep Ensembles [21] have

emerged as two of the most prominent and practical uncer-

tainty estimation methods for deep neural networks [1, 28,

12]. In what follows we provide a short background in un-

certainty estimation, review the best-known methods, and

discuss potential alternatives.

2.1. Background

The goal of Uncertainty Estimation (UE) is to produce a

measure of confidence for model predictions. There are two

major types of uncertainty that can be modeled within the

Bayesian framework [5]. Aleatoric uncertainty, also known

as Data uncertainty [7], captures noise that arises from data

and therefore is irreducible, because it is directly caused

by the natural complexity of the data. Sensor noise, labels

noise and classes overlapping are among the most common

sources of aleatoric uncertainty. Epistemic uncertainty or

model uncertainty [7] accounts for uncertainty in the param-

eters of the model that we learned, that is, it represents our

ignorance about parameters of the data generation process.

This type of uncertainty is reducible and therefore, given

enough data, could be completely eliminated. In addition

to aforementioned types of uncertainty, there is also Dis-

tributional uncertainty. Also known as dataset shift [31],

this type of uncertainty is useful when there is a mismatch

between the training and testing data distributions, and a

model is confronted with unfamiliar samples.

For all the aforementioned types of uncertainty ideally

we want our model to output an additional signal indicat-

ing how reliable is its prediction for a particular sample.

More formally, given an input, we want our model to out-

put the actual prediction target as well as the correspond-

ing uncertainty measure. For regression tasks, the uncer-

tainty measure can be the variance or confidence intervals

around the prediction made by the network [29]. For classi-

fication tasks, popular uncertainty measures are the entropy

and max-probability [25, 22]. Ideally, the measure of un-

certainty should be high when the model is incapable of

producing accurate prediction for the given input and low

otherwise. Generally speaking, uncertainty can be either

learned from the data directly [22, 19], in particular for big

data regimes and aleatoric uncertainty, or could be acquired

from a diverse set of predictions [8, 22], which are obtained

from stochastic reguralization techniques or ensembles. In

this work, we focus on the latter family of methods.

2.2. Ensembles

Deep Ensembles [21] involve training an ensemble of

deep neural networks on the same data, by initializing each

network randomly. This approach is originally inspired by a

classical ensembling method, bagging [14]. An uncertainty

estimate is obtained by running all the elements in the en-

semble and aggregating their predictions. The major draw-

back of Deep Ensembles is the computational overhead: it

requires training multiple independent networks, and during

inference it is desirable to keep all these networks in mem-

ory. More generally, ensembling has been a popular way to

boost the performance of individual neural network models

[13, 20, 22, 30], with the quality improvements often being

associated with diverse predictions. In [6] authors provide

a comprehensive comparison of several popular ensemble

learning methods as well as several approximate Bayesian

inference techniques. Extensive experiments on vision tasks

suggest that simple ensembles have the lowest correlation

between individual models. This is an important advantage

of these methods, as ultimately this leads to highly diversi-

fied predictions on the samples which are very distinct from

those observed in training.

Snapshot-based methods take a slightly different ap-

proach towards creating an ensemble, and try to collect a

diverse set of weight configurations over the course of a sin-

gle training. Snapshot ensembles [18] build upon the idea

of using cyclical learning rates to ensure that the optimiza-

tion process can efficiently explore multiple local optima.
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Similarly, Fast Geometric Ensembling [9], uses a method

to identify low-error paths between local optima to obtain

a collection of diverse representations. Although these ap-

proaches partially tackle training time issues, they typically

perform worse than the standard ensembles [1] and con-

sume the same amount of memory. Furthermore, because of

the specifics of their training procedure, in particular shared

initialization with a pre-trained network, individual snap-

shots are not guaranteed to be decorrelated, which might

hurt the performance [1].

2.3. Dropout

Dropout [33] is an extremely popular and simple ap-

proach to stochastically regularizing deep neural networks.

During training, neurons are randomly dropped with fixed

probability, which effectively produces an approximation

of several slightly different model architectures and allows

a single model to mimic ensemble behavior. Originally

Dropout was used during training as a stochastic regulariza-

tion technique, but [8, 7] proposed using it during inference,

providing sound mathematical justification for ensembling

and Bayesian model averaging analogies. MC-Dropout is

extremely easy to use, and has zero memory overhead com-

pared to a single model, but shows consistently worse per-

formance compared to Deep Ensembles [28, 12]. In partic-

ular, different predictions made by several forward passes

with randomly generated masks seem to be overly corre-

lated and strongly underestimate the variance. In this pa-

per we postulate that the training procedure, which makes

any combination of the weights possible, will tend to cre-

ate uniformity between predictions. As opposed to Ensem-

ble techniques, MC-Dropout techniques do not let multiple

versions of the network actually be created, and the weights

are forced to converge jointly.

2.4. Other Methods

Although Bayesian inference provides a natural way to

assess uncertainty of model predictions, it is prohibitively

expensive to directly apply these techniques to deep neural

networks. A number of approximate inference techniques

were developed for Bayesian Neural Networks (BNN) [23,

26, 24] that try to alleviate these problems, to name a few:

Bayes by Backprop [2] uses Variational Inference to learn

a parametric distribution over model weights that approxi-

mates the true posterior, Laplace Approximation [32] tries

to find a Gaussian approximation to the posterior modes,

MC-Dropout [8] could be seen as an approximate Bayesian

procedure as well. Although these techniques are theoreti-

cally grounded, in practice Deep Ensembles often show sig-

nificantly better performance [28, 1], in terms of both accu-

racy and quality of the resulting uncertainty estimates.

3. Method

In this section, we introduce Masksembles, an approach

to uncertainty estimation that creates a continuum between

single networks, deep ensembles, and MC-Dropout. It

builds on the intuition that dropout-based methods can be

seen as stochastic variants of ensembles [22], albeit en-

sembles with an infinite cardinality. We will argue that

the main reason for MC-Dropout’s poor performance is the

high correlation between the ensemble elements that makes

the overall predictions insufficiently diverse. Masksembles

is designed to give control over the correlation between the

elements of an ensemble and, hence, achieve a satisfac-

tory compromise between reliable uncertainty estimation

and acceptable computational cost.

3.1. Masksembles as Structured Dropout

Both Ensembles and MC-Dropout are ensemble meth-

ods, that is, they produce multiple predictions for a given

input, and then use an aggregated measure such as variance

or entropy as an uncertainty estimator. Formally, consider a

dataset {xi, yi}i, where xi ∈ R
F are input features, and yi

are scalars or labels. For classification problems, we model

conditional distribution p(y|x;θ) as a mixture

p(y|x;θ) =
1

N

N∑

k=1

p(y|x;θk) ,

where θk are the weights of element k of the ensemble, and

N is the size of the ensemble.

For Deep Ensembles, individual models are independent

and do not share any weights, and hence each θk is a sepa-

rate set of weights, trained fully independently. By contrast,

for MC-Dropout there is a single shared θ, and individual

models are obtained as θk = b̃
t
k · θ, where b̃

t
k ∈ {0, 1}

|θ|

are random binary masks which are re-sampled for each it-

eration t. The elements of b̃tk follow Bernoulli distribution

parameterized by dropout probability p, and the parameters

corresponding to the same network activations are dropped

simultaneously. At inference time, a small number of pre-

dictions is produced by randomly sampling the masks. In

practice, for any reasonable choice of p, the masks b̃tk will

overlap significantly, which will tend to make predictions

p(y|x;θk) highly correlated, and thus could lead to under-

estimated uncertainty. Furthermore, because masks are re-

sampled at each training iteration, each network unit needs

to be able to form a coherent response with any other unit,

which creates a mixing effect and leads to uniformity be-

tween the predictions from different masks.

To tackle these issues, we propose using a finite set of

pre-defined binary masks, which are generated so that their

overlap can be controlled. They are then used to drop cor-

responding network activations so that the resulting models
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Figure 1. Masks generation algorithm. Here we use N = 4,

M = 2, S = 2.0 and 3.0. In the first case M · S = 4 and in the

second M·S = 6. First, we generate 4 masks with M·S zeros each.

Second, we randomly choose 2 positions for every of 4 masks and

fill them with ones. Finally, we drop features that are not used in

any mask. In the first case, the IoU is 0.44 and in the second 0.16.

are sufficiently decorrelated and do not suffer from the mix-

ing effect described above. In what follows, we describe

the algorithm for mask generation, explain the way we ap-

ply generated masks to models and discuss the trade-offs it

incurs.

3.2. Generating Masks

Generating masks with a controllable amount of overlap

is central to Masksembles. Let us first introduce the key

parameters of our mask generation process:

• N - number of masks.

• M - number of ones in each mask.

• S - scale that controls the amount of overlap given N

and M.

The masks generation algorithm is summarized below. It

starts by generating N vectors of all zeros of size M × S.

Then, in each of those vectors, it randomly sets M of these

elements to be 1 in each vector. As depicted by Fig. 1, it

then looks for positions that are all zero in the resulting vec-

tors. These correspond to features that will be dropped.

For S = 1.0, the algorithm then generates N masks of

size M that will contain only ones and therefore fully over-

lapping. Conversely, setting S to large positive values will

generate N masks that will have mostly zero values and

therefore very few overlapping one values.

3.3. Inserting Masksembles Layer into Networks

We start with the very simple case depicted by Fig. 2.

It shows a MLP with one hidden layer of size 3 and 2-

dimensional inputs and outputs. We insert Masksembles

1 1 1 0 1 01 1 1 0 00 11 0

Pointwise
multiplication

Trainable
weight 1 Active

feature 0 Dropped
feature 

Figure 2. Masksembles in a simple case. Example of Masksem-

bles MLP behavior for different values of S ∈ [1.0, 1.7, 2.3] (N

and M are fixed): xk - inputs, hk - activations, yk - outputs.

layer right after the hidden layer and increase its size to

M × S −D where D is the number of dropped features so

that the sizes of the masks and the size of the layer match.

Then at run-time we apply the mask values and ignore all

components of the hidden layer for which they are zero.

Fig. 2 features 3 different configurations obtained by fix-

ing both M and N — here, N is sufficiently large so that

D = 0 — and changing the value of S to 1.0, 1.7, and 2.3,

therefore increasing masks sizes and hidden size in range

[3, 5, 7].

Applying such modification to the model creates a larger

one that allows for multiple relatively uncorrelated predic-

tions. This process extends naturally to MLPs of any dimen-

sion. It also extends to convolutional architectures with-

out any significant modification. As in MC-dropout, we

can drop entire channels [34] instead of individual activa-

tions. In other words, treating the whole channel as a single

feature is equivalent to the fully-connected case discussed

above.

In general, this means that we may have to adapt the size

of network layers each time we change M, N, or S, which

can be cumbersome. Fortunately, keeping S ×M equal to

the original channels number, 3 in the MLP example, makes

it possible to apply Masksembles without any such change

of the network configutration.

3.4. Parameters and Model Transitions

The chosen parameters N, M and S define several key

model properties:

• Total model size: The total number of model parame-

ters. In the above MLP example, this quantity is equal

to 4 · (M× S−D) where D is the number of trimmed

features during the mask generation procedure. This

functional relationship is illustrated in Fig. 3.

• Model capacity: The number of activations that are

used during one forward pass of the model, which is

equal to M.

• Masks IoU average Intersection over Union (IoU)

between generated masks. We derive approximation
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for this quantity that appears to depend only on S :

IoU(S) = 1/(2S− 1) and therefore N,M do not influ-

ence it, as show in Fig. 3.
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Figure 3. Influence of the parameters. (Left) Relative Total

model size as a function of S and N, with M being fixed. We

refer to size of single model (S = 1,N = 1) as 1x. (Right) IoU

of the generated masks as a function of S. Note that it does not

depend on neither N nor M.

In fact, Deep Ensembles and MC-Dropout can be both

seen as extreme cases and Masksembles can transition

smoothly from one to the other (Fig. 5).

Ensembles: When S goes to infinity, Masks IoU goes to

zero and Masksembles start behaving like Ensembles that

uses non-overlapping masks.

Dropout: As N increases, each individual mask config-

uration becomes less and less likely to be picked during

training. In the limit where N goes to infinity, we reproduce

the situation where each mask is seen only once, which is

equivalent to MC-Dropout. In this case, the dropout rate

would be 1− 1
S

.

Transition: In Fig. 4, we use a simple classification prob-

lem to illustrate the span of behaviors Masksembles can

cover. Specifically, we show that by reducing mask overlap,

that is, decreasing the correlation between binary masks,

yields progressively more diverse predictions on out-of-

training examples and generates more ensemble-like behav-

ior.

3.5. Implementation details

The only extra computation performed in Masksembles

over single network is cheap tensor-to-mask multiplica-

tion and therefore comparing to convolutional and fully-

connected layers this product induces negligible computa-

tional overhead. Furthermore, we rely on similar optimiza-

tions as in [35] to make our implementation more efficient.

4. Experiments

In this section, we first introduce the evaluation met-

rics which we use to quantitatively compare Masksembles

against MC-Dropout and Ensembles. We then compare our
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Figure 4. Single Model to Ensembles transition via Masksem-

bles. The task is to classify the red vs blue data points drawn in the

range x ∈ [−5, 5] from two sinusoidal functions with added Gaus-

sian noise. The background color depicts the entropy assigned by

different models to individual points on the grid, low in blue and

high in yellow. (a) Single model, (b) - (e) Masksembles models

with N = 4, M = 100, S = [1.1, 2.0, 3.0, 10.0], (f) - Ensembles

model. For a fair comparison with ensembles, we used a fixed

value for M = 100 when training Masksembles with different S,

so that each Masksembles-model has the same 100 hidden-units

capacity and the correlation between models decreases from (b)

to (e). For high mask-overlap values, Masksembles behaves al-

most like a Single Model but starts behaving more and more like

Ensembles as the overlap decreases.

Optimal	configuration

Ensembles
MC-Dropout

Single	Model

(Model	size	/	Capacity)

Figure 5. Ensembles to MC-Dropout transition. Green / Red

points denote extreme cases that correspond to these models,

whereas the Yellow point represents an optimal parameter choice

one could choose for a specific computational cost vs performance

trade-off. Here M is fixed while N and S vary.

method with the baselines on two broadly used benchmark

datasets CIFAR10 [20] and ImageNet [4].

Note that, we did not use any complex data augmenta-

tion schemes, such as AugMix [17], Mixup [37] or adver-

sarial training [10], in order to avoid entangling their ef-

fects with those of Masksembles. Ultimately, these tech-

niques are complementary to ours and could easily be used

together.
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4.1. Metrics

Given a classifier with parameters θ, let p(y|x;θ) be the

predicted probability for a sample represented by features

x to have a label y, and let pgt(y|x) denote the true condi-

tional distribution over the labels given the features. We use

several different metrics to analyze how close p(y|x;θ) is

to pgt(y|x) and to compare our method to others, in terms

of both accuracy and quality of uncertainty estimation.

Accuracy. For classification tasks, we use the standard

classification accuracy, i.e. the percentage of correctly clas-

sified samples on the test set.

Entropy (ENT). It is one of the most popular measures

used to quantify uncertainty [22, 25]. For classification

tasks it is defined as

−

Nc∑

c=1

p(y = c|x;θ) log p(y = c|x;θ)

where Nc is the number of classes.

Expected Calibration Error (ECE). ECE quantifies the

quality of uncertainty estimates specifically for in-domain

uncertainty. A model is considered well-calibrated if its

predicted distribution over labels p(y|x;θ) is close to the

true distribution pgt(y|x). As in [11], we define ECE to be

the average discrepancy between the predicted and real data

distribution:

Ex,y∼pgt
|p(y|x;θ)− pgt(y|x)| ,

which is a common metric for calibration evaluation.

Out-of-Distribution Detection (OOD ROC / PR). Do-

main shift occurs when the features in the training data do

not follow the same probability distribution as those in the

test distribution. Detecting out-of-distribution samples is an

important task and uncertainty estimation can be used for

this purpose under the assumption that our model returns

higher uncertainty estimates for such samples. To this end,

we use the uncertainty measure produced by our models as

a classification score that determines whether a sample is

in-domain or not. We then apply standard detection met-

rics, ROC and PR AUCs, to quantify the performance of

our model.

Model Size This corresponds to the Total model size de-

fined in Section 3.4. A major motivation for Masksembles

is to match the performance of Deep Ensembles while us-

ing a smaller model that requires significantly less memory.

We use total number of weights that parameterize our mod-

els as a proxy for that. In addition to the model size, we

also report the total GPU time used to train any particular

model.
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Figure 6. CIFAR-10 results on corrupted images. Masksembles

and MC-Dropout models with tuned (on validation set) dropout

rate parameter values, Ensemble of independently trained models

and Single model. All approaches, except Single, use 4 models

whose predictions are averaged.

4.2. CIFAR10

CIFAR10 is among the most popular benchmarks for un-

certainty estimation. The dataset is relatively small-scale,

and very large models tend to easily overfit the data. We

therefore picked the Wide-ResNet-16-4 [36] for our exper-

iments and used training procedures similar to the original

paper. Following [8], we place dropout layers before all

the convolutional and fully connected layers in the MC-

Dropout model. Masksembles layers are added in exactly

the same way.

Accuracy and ECE. One of the standard ways to as-

sess the robustness of a model is to evaluate the depen-

dency of its performance with respect to inputs perturba-

tions [16, 28]. In our experiments we investigate the be-

haviour of all the considered models under the influence of

domain-shifts induced by typical sources of noise.

Following [35, 28], we evaluate model accuracy and

ECE on a corrupted version of CIFAR10 [16]. Namely,

we consider 19 different ways to artificially corrupted the

images and 5 different levels of severity for each of those

corruptions.

We train all the models on the original uncorrupted CI-

FAR10 training set and test them both on the original im-

ages and their corrupted versions. In Table 1, we report

our results on the original uncorrupted images while and in

Fig. 6 the results on the noisy ones. Each box represents the

first and third quantiles of accuracy and ECE while the error

bars denote the minimum and maximum values. We tested

four different approaches, that is, a single network, MC-

Dropout, Ensembles, and our Masksembles. Unsurpris-

ingly, as the severity of the perturbations increases, using
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Figure 7. Spanning the space of behaviors. Models in the bottom

right corner are better. The color represents the relative size of

the model compared to a single model. The size of Masksembles

markers denote mask overlap between 1.0 and 0.2.

a single network is the least robust approach and degrades

fastest. Masksembles performs on par with Ensembles and

consistently outperforms MC-dropout, even though we ex-

tensively tuned MC-Dropout for the best possible perfor-

mance by doing a grid search on the dropout rate (which

turned out to be p ≈ 0.1).

In these experiments, Masksembles were trained with a

fixed number of N = 4 masks. We varied both S in the

range [1.0, 5.0] and M in the range [0.3C, 2.0C], where

C is the number of channels in the original model. Fig. 7

depicts the resulting range of behaviors. The 2D coordi-

nates of the markers depict their accuracy and ECE, their

colors the corresponding model size, and the size of the star

markers denotes the value of the mask-overlap. For compar-

ison purposes, we also display MC-dropout and Ensembles

results in a similar manner, simply replacing the star by a

square and a circle respectively. As can be seen, the opti-

mal Masksemble configuration depicted by the green star in

the lower right corner delivers performances that are simi-

lar to those of Ensembles for a model size that is almost half

the size. This is the one we also used to the experiments de-

picted by Fig. 6.

In Fig. 8, we chose the Masksembles parameters so that

the model size always remains the same: We fix number of

masks N = 4 and vary S and M so that the total model size

remains constant, which means that a lower mask overlap

results in a lower capacity for each individual model. This

procedure is important in practice because it enables us to

take large network, such as ResNet, and add Masksembles

layers as we would add Dropout layer without having to

change the rest of the architecture.

For this set of experiments we obtain a consistent im-

provement in calibration quality by reducing mask overlap

and achieve ensembles-like performance with S = 5.

OOD ROC and PR. For OOD task, we followed the

evaluation protocol of [3]. Namely, we trained our mod-

els on CIFAR10, and then used CIFAR10 test images as
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Figure 8. CIFAR10 ECE. ECE as a function of severity of image

corruptions. Each Masksembles curve corresponds to a different

S. In this experiment we force M×S to remain constant and equal

to the original Wide-ResNet channels number and we vary S in

the range [1., 1.1, 1.4, 2.0, 3.0]. Larger values of S correspond to

more ensembles-like behavior.
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Figure 9. Fixed capacity for CIFAR10. ECE, Accuracy and OOD

as functions of the scale parameter S with fixed M and N. The

colors represent different masks overlap values.

Single MC-D MaskE NaiveE

Accuracy 0.89 0.90 0.92 0.92

ECE 0.06 0.01 0.01 0.01

Size 1x 1x 2.3x 4x

Time 10m 12m 16m 40m

OOD ROC 0.91 0.92 0.94 0.94

OOD PR 0.94 0.95 0.96 0.96

Table 1. CIFAR10 results. Each model uses 4 samples during

inference and we used the uncorrupted versions of the images.

our in-distribution samples and images from the SVHN

dataset [27] (which belong to classes that are not in CI-

FAR10), as our out-of-distribution samples. We report our

OOD results in the two bottom rows of Table 1. Again, per-

formance of our method is similar to that of Ensembles at

a fraction of the computational cost, and significantly better

than that of a single network and MC-dropout.

Fixed Capacity Model. In order to provide clear ev-

idence for Single Model ←→ Ensembles transition of

Masksembles we perform fixed capacity experiments and

report the results in Fig. 9. Similarly to our previous exper-

iments we set N = 4 and vary the scale parameter in range

S ∈ [1.0, 4.0], while keeping parameter M fixed. These

results confirm that Masksembles are able to span the en-

tire spectrum of behaviours between different models: the
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Figure 10. ImageNet ECE. ECE as a function of severity of image

corruptions. Each Masksembles curve corresponds to a different

S. In this experiment we force M × S to be constant and equal to

original ResNet-50 channels number.

key metrics gradually improve as S is increased, and the

Masksembles’s behavior (solid line) clearly transitions from

Single Model to Ensembles behavior (dashed lines).

4.3. ImageNet

The ImageNet [4] is another dataset that is widely used

to assess the ability of neural networks to produce uncer-

tainty estimates. For this dataset, we rely on the well-known

ResNet-50 [15] architecture as a base model, using the setup

similar to that in [1]. Similarly to our CIFAR10 experi-

ments, for the MC-Dropout and Masksembles models, we

introduce dropout (masking) layers before every convolu-

tional layer starting from stage3 layers.

We followed exactly the same evaluation protocol as in

Section 4.2 and report our results on the original images in

Table 2 and on the corrupted ones in Fig. 11. In Table 2

and Fig. 10 we use the same procedure as for CIFAR10 to

select Masksembles parameters so that the total model size

remains fixed.

For this dataset, Masksembles demonstrate their best

performance for a choice of parameters correponding to a

Masks IoU of 0.5. Similarly to our results on CIFAR10,

the performance of Masksembles both in terms of accu-

racy and ECE are very close to those of Ensembles and

significantly better than those of MC-Dropout. Note that,

our method achieves this results with a training time and

memory consumption that is 4 (four) times smaller than that

of Ensembles, and nearly the same as that of a single net-

work. In terms of calibration quality on corrupted images,

we achieve Ensemble-like performance starting from S = 2
and up.

5. Conclusion

In this work, we introduced Masksembles, a new ap-

proach to uncertainty estimation in deep neural networks.

Instead of using a fixed number of independently trained

models as in Ensembles, or drawing a new set of ran-

dom binary masks at each training step as in MC-Dropout,

Single Masksembles NaiveE MC-DP

Acc. 0.71 0.72 0.71 0.70 0.74 0.69

ECE 0.07 0.03 0.02 0.02 0.02 0.03

IoU 1.0 0.7 0.3 0.2 - -

Time 50h 55h 60h 70h 200h 80h

Table 2. ImageNet results. Accuracy and ECE results for Single,

Masksembles models using masks overlapping values (0.7, 0.3,

0.2), Ensembles, and MC-Dropout. All the models have the same

size as the Single model, except for Ensembles which is 4x times

larger.
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Figure 11. ImageNet results on corrupted images. Masksem-

bles and MC-Dropout with tuned dropout rate parameter values,

Ensemble of independently trained models and Single model. All

approaches, except Single, include 4 models, their predictions are

averaged.

Masksembles predefines a pool of binary masks with a con-

trollable overlap and stochastically iterates through them.

By changing the parameters that control the mask gener-

atio process, we can span a range of behaviors between

those of MC-Dropout and Ensembles. This allows us to

identify model configurations that provide a useful trade-

off between the high-quality uncertainty estimates of Deep

Ensembles at a high computational cost, and the lower per-

formance of MC-Dropout at a lower computational cost. In

fact, our experiments demonstrate that we can achieve the

performance on par with that of Deep Ensembles at a frac-

tion of the cost. Because Masksembles is easy to imple-

ment, we believe that it can serve as a drop-in replacement

for MC-Dropout. In future work, we will explore ways to

accelerate Masksembles by exploiting the structure of the

masks, and apply our method to tasks that require a scalable

uncertainty estimation method, in particular reinforcement

learning and Bayesian optimization.
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