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Abstract

While recent pre-training tasks on 2D images have

proven very successful for transfer learning, pre-training

for 3D data remains challenging. In this work, we intro-

duce a general method for 3D self-supervised representa-

tion learning that 1) remains agnostic to the underlying

neural network architecture, and 2) specifically leverages

the geometric nature of 3D point cloud data. The pro-

posed task softly segments 3D points into a discrete number

of geometric partitions. A self-supervised loss is formed

under the interpretation that these soft partitions implic-

itly parameterize a latent Gaussian Mixture Model (GMM),

and that this generative model establishes a data likelihood

function. Our pretext task can therefore be viewed in terms

of an encoder-decoder paradigm that squeezes learned rep-

resentations through an implicitly defined parametric dis-

crete generative model bottleneck. We show that any ex-

isting neural network architecture designed for supervised

point cloud segmentation can be repurposed for the pro-

posed unsupervised pretext task. By maximizing data like-

lihood with respect to the soft partitions formed by the un-

supervised point-wise segmentation network, learned repre-

sentations are encouraged to contain compositionally rich

geometric information. In tests, we show that our method

naturally induces semantic separation in feature space, re-

sulting in state-of-the-art performance on downstream ap-

plications like model classification and semantic segmenta-

tion.

1. Introduction

There has been a growing emergence of increasingly ef-

fective self-supervised learning methods developed in the

form of unsupervised pretext tasks. Instead of human-

annotated supervision, the pretext task itself is designed

to create its own supervisory signal. For example, learn-

ing to predict or discriminate data augmentations that pre-

serve the semantics of the input have recently been shown to

yield rich latent representations for downstream tasks [18,

6, 34, 33, 14]. One of the longstanding goals of unsu-

pervised learning has been to improve transfer learning to

the point where unsupervised pre-training combined with

downstream supervision outperforms the traditional fully

supervised training pipeline. In recent years, we’ve seen

this come to fruition in several domains, with methods

like BERT [11] for NLP, and BYOL [18], SimCLR [6, 7],

CPC [34, 22], and others claiming top performance on im-

age classification benchmarks.

Compared to deep learning for NLP and 2D computer

vision, deep learning for 3D perception remains a relatively

nascent field and self-supervised 3D learning even more so.

One could argue there are several reasons for this, but the

most salient is perhaps the lack of a common representa-

tion: while NLP has word embeddings and 2D computer

vision has 2D images, 3D data enjoys no such universal

and obvious data structure. The basic representation for 3D

data is extremely fractured: for 3D content creation, trian-

gular meshes are the de facto standard, yet most 3D sen-

sors produce raw data in the form of 3D point clouds. Tra-

ditional 3D vision algorithms leverage structures like Oc-

trees [23] or Hashed Voxel Lists [32], but deep learning

approaches favor structures more amenable to differentia-

bility and/or efficient neural processing, like sparse voxel

networks [8, 44], implicit functions [30], graphs [27], or

point-based networks [36, 37, 46]. Thus, it is still an active

area of research to find the proper universal “3D backbone”

that can become as ubiquitous as ResNet [21] is for learning

representations of 2D images.

In terms of self-supervised learning on 3D data, the lack

of standardization of basic 3D data processing further mag-

nifies these issues since any technique designed for a partic-

ular architecture or data representation might have limited

long-term utility. Furthermore, though it is relatively easy

to obtain large amounts of unlabeled 3D data given the re-

cent proliferation of self-driving cars and cheap commodity

3D sensors [53, 25], it can be difficult and time-consuming

to produce accurate ground truth 3D annotations. Thus, it

could be argued that the relative need for strong performing

self-supervised methods for 3D data is much higher than in

the 2D regime.

In this work, our goal is to try to devise a self-supervised
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(a) Traditional Autoencoder Bottleneck (b) Proposed “Parametric” Bottleneck

Figure 1. In a traditional autoencoder paradigm, the input data P is passed through a latent bottleneck z from which the original input is

explicitly reconstructed. That is, P̂ = dφ(z) and z = eψ(P). The autoencoding task is then defined by a loss according to a predefined

distance measure between the input P and output point cloud P̂ (e.g. Chamfer Loss). In our proposed setup, the bottleneck layer has an

interpretable form as the constituent parameters Θ of a discrete generative model (GMM). Given any point-wise classification network

fψ , we design a fixed parameter-less function ξ such that Θ = ξ(P, fψ(P)). The PDF over 3D space is defined by g(·;Θ). Instead of

explicitly generating P̂ by iid sampling from the generative model g, we can use the negative log likelihood of the input P to directly

impose a loss.

3D representation learning method that 1) remains agnostic

to the specific choice of 3D representation or the underlying

neural network architecture, and 2) specifically leverages

the geometric nature of 3D point cloud data. To this end,

we propose a pre-training task that can be applied to any

off-the-shelf network architecture that outputs point-wise

classification scores (e.g. logits), which we connect to the

geometric nature of 3D point clouds by re-interpreting these

classification scores in the context of probabilistic geomet-

ric spatial partition assignments. Any network designed for

common point-wise classification tasks like semantic seg-

mentation [3, 2] or part segmentation [4] can be leveraged

without modification for our proposed 3D representation

learning task, regardless of whether the architecture’s un-

derlying representation uses voxels, SDFs, graphs, unstruc-

tured points, etc.

Unlike a traditional supervised semantic segmentation

paradigm, however, we have no supervision in the form of

per-point class labels for ground truth partition assignment.

Thus, if we wish to utilize segmentation networks to learn

representations in an unsupervised fashion, we need to cre-

ate something like “pseudo-labels” automatically from the

data itself that we can compare against during training in

order to develop a self-supervised loss function.

One way to solve this problem is by the so-called jigsaw

type approaches (e.g. [33, 41]) that coarsely discretize the

input space and create this pseudo-label directly from the

voxel-id that each particular point falls into. Then, the vox-

els are randomly permuted and the neural network’s task is

to classify the voxel-id of each point. Though these have

seen success in the 3D domain [41], the voxel-wise permu-

tation operation leads to a destruction of the point cloud’s

original overall global geometry, even when its global ge-

ometry is arguably the strongest semantic cue. The jigsaw

method therefore must rely on learning local (intra-voxel)

features in order to position points globally, such that the

global layout is only implicitly learned as a byproduct of

local feature learning.

Compared to jigsaw tasks that learn to reassemble pic-

tures or point clouds from a set of permuted disjoint parti-

tions/voxels, our proposed pretext task learns the partition-

ing function itself to softly assign point clouds into geomet-

rically coherent overlapping clusters. In doing so, we avoid

any augmentation of the data that might degrade its geo-

metric coherency and thus its semantic information. How-

ever, this leads to the question: what differentiates a “good”

partitioning from a “bad” partitioning? Here, we take in-

spiration from recent work on deep learning for point cloud

registration [52], where given two point clouds offset by

an unknown rotation and translation, a point cloud segmen-

tation network is used to implicitly infer a pair of latent

and transformation-equivariant Gaussian Mixture Models

(GMMs). In contrast to this work, however, we remove

the registration objective completely and instead adapt this

method to work only on a single point cloud without any

spatial transformation or data augmentation necessary. To

do this, we directly utilize the data likelihood of the implic-

itly defined GMM.

Given N points and J “pseudo-classes” and the N × J
matrix of logits S from an underlying point cloud segmen-

tation network, we propose dual interpretations of S:

1) S partitions 3D space: S defines a soft spatial partition-

ing in 3D space of the input data into J discrete partitions.

2) S predicts latent posteriors: S calculates the posterior

log probabilities of a set of latent binary variables that cor-

respond each point to one of J components of a latent gen-
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erative mixture model.

If we allow the latent model in the second interpreta-

tion to be implicitly defined through the first interpretation,

we can assert “goodness-of-fit” evaluations by calculating

the total data likelihood of the input point cloud with re-

spect to the spatial density defined by the mixture model.

In doing so, our self-supervision becomes the likelihood

of this discrete generative model with respect to the input.

One can view this proposed design as learning to proba-

bilistically autoencode through a parametric discrete gen-

erative model bottleneck (termed “parametric bottleneck”

elsewhere in this paper), where instead of a learned decoder,

as is normally the case when autoencoding, we directly uti-

lize the 3D PDF induced by the specific values of the bot-

tleneck layer. Refer to Figure 1 for a graphical depiction of

these differences. In summary, for a given point cloud, our

pretext task is to learn the parameters of a point-wise clas-

sification network such that its output S produces the most

likely spatial partitioning of these 3D points with respect to

the discrete generative model implicitly defined by S .

2. Related Work

Contrastive Approaches in 2D: Contrastive learning op-

erates under the idea that a well-structured latent space can

be trained in a metric learning sense by pushing together

learned representations derived from inputs that represent

the same semantic content and pushing away learned rep-

resentations from inputs that have different semantics [28,

34, 22, 18, 31]. In practice, this involves hand-designing a

set of data augmentations that do not degrade the semantic

content in the input data such that positive input data pairs

can be formed by repeatedly applying these augmentations

on the input (e.g., color distortion, blur, or rotation), and

negative pairs can be mined from the mini-batch [6, 7] or a

memory bank [20].

Contrastive Approaches in 3D: Recognizing the supe-

rior performance of contrastive learning approaches in 2D,

PointContrast [49] by Xie et al. was the first to systemat-

ically research the efficacy of the contrastive paradigm for

3D representation learning. Using FCGF [9] by Choy et al.

as their backbone, their data augmentation scheme consists

of taking different views of the same 3D scene (by taking

different frames of an RGBD video stream provided by the

ScanNet dataset [10]) and applying scaling, rotation, and

translation to the points within these views. Positive pairs

are constructed at the point level by corresponding points

between frames using nearest neighbor search.

In all these approaches, care must be made to hand-

design a set of data augmentations that don’t degrade the

semantics of the input, otherwise the ability to learn a fea-

ture space that captures input semantics while being invari-

ant to data augmentation will be lost. In 3D, it is some-

what less clear what constitutes a semantics-preserving data

augmentation given that a 3D point cloud is defined solely

by the locations of its constituent points, and so any distur-

bance of the original geometry (e.g. via cropping, scaling,

or view-based occlusions) could be construed to potentially

degrade its semantics. While contrastive approaches there-

fore need a carefully hand-designed set of transformations,

our proposed method needs no transformation set or data

augmentation procedure at all in order to learn useful repre-

sentations.

Transformation/Context Prediction in 2D: Another class

of methods devise pretext tasks to directly predict the con-

textual augmentation of transformation. In 2D images, such

approaches include Jigsaw puzzles [33], estimating rota-

tions [14], context prediction by relative paired patch ori-

entation prediction [12], and predicting transformations di-

rectly in a VAE-like context [38, 26].

Transformation/Context Prediction in 3D: Sauder and

Sievers [41] were the first to adapt the jigsaw puzzle pre-

text task for learning representations on 3D point clouds.

These approaches also interpret point-wise classifications

as the predictions of point-to-partition correspondence and

enjoy a similar benefit to our proposed approach in that any

point-wise classification network can be used as the back-

bone. However, unlike the jigsaw puzzle task, which uses

static and regular hard spatial partitions that are set a priori,

our pretext task learns the placement of these spatial par-

titions via self-training. Furthermore, the partitions in our

task can be arbitrarily shaped and are defined with soft prob-

abilistic boundaries. Lastly, we have no need for data aug-

mentation (e.g. by permuting space) since we these partition

predictions are used to implicitly define a latent generative

model and therefore spatial density from which data like-

lihood can be directly calculated. Other notable methods

in 3D include learning shared features between part-whole

hierarchies [39], a point cloud completion task [45], and ori-

entation/rotation estimation [35]. We compare our method

against these latter two techniques in Section 4.

3D Representation Learning by Learning Generative

Models: Our pretext task can be considered in the context

of learning a generative model for the given input data. Pre-

vious work on learning generative models for point cloud

data have also observed its potential for use as a general

purpose representation learning paradigm. Yuan et al. learn

generative models of latent isotropic GMMs for the pur-

pose of global point cloud registration [52]. Achlioptas

et al. design an autoencoding architecture for point clouds

and then train GANs [16] or mixture models to represent

the latent space distribution [1]. PointGrow [43] is an au-

toregressive model for point cloud generation that allows

inter-point correlations to be learned and modeled. Point-

flow [50] creates a two-level hierarchy of Continuous Nor-

malizing Flows [40, 17], where the first level encodes the

high-dimensional shape space and the second level, condi-
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tioned on the first, encodes the flow mapping a 3D Gaussian

into a uniform distribution of points over the surface mani-

fold of a 3D object. We compare against all these represen-

tations in Section 4.3.

3. Pretext Task

We derive the proposed pretext task from a simple in-

sight: A mathematical equivalence between a common com-

ponent of both supervised and unsupervised learning exists

that can be exploited to convert the former to the latter. This

common component is the softmax operation. In a typical

supervised application, when class labels are known, row-

wise softmax is how classification probabilities are calcu-

lated. In an unsupervised learning, this same operation is

performed when Bayes Rule is applied to calculate the pos-

terior of an underlying discrete latent variable of a genera-

tive model describing the joint data likelihood.

We exploit this mathematical equivalence to turn a super-

vised point-wise classification network (e.g. PointNet seg-

mentation network) into an unsupervised maximum likeli-

hood network that optimizes the parameters of a discrete

latent variable model (GMM). This softmax equivalence en-

ables our proposed unsupervised pre-training method.

3.1. Overview

To introduce our pretext task, we start with a neural net-

work fψ with parameters ψ that takes as input a point cloud

P consisting of a set of N 3D points pi = {xi, yi, zi} and

that can output N different point-wise classification score

vectors si for each pi over a set of J possible classes. Thus,

each score (logit) vector si = {sij}
J
j=1 is of size J with in-

dex j indicating the class. The total logit predictions can

be summarized by the score matrix S that has size N × J .

This output is common to many different architectures and

is the exact output of something like a semantic segmenta-

tion network in which each point in a point cloud is assigned

logits to one of J possible semantic categories (e.g., ground,

building, car, road, etc).

3.2. Probabilistic Spatial Partitioning

The first step is to reinterpret S , the N × J matrix of

logits that form the output of a point cloud segmentation

network, as a set of N joint log probabilities between the

points pi and a set of J latent binary correspondence vari-

ables ci = {cij}
J
j=1 where exactly one entry in each latent

correspondence vector ci is 1 and the rest are 0. One can

think of this binary correspondence vector as assigning each

point in P to one of J discrete spatial partitions. Mathemat-

ically we can write,

sij
def

= log p(pi, cij = 1) (1)

From this joint log likelihood interpretation, we can then

calculate the posterior over each binary correspondence cij .

Using Bayes Rule to calculate this posterior reduces to a

row-wise softmax operation over S ,

p(cij = 1|pi) =
p(pi|cij = 1)p(cij = 1)

p(pi)
(2)

=
exp (log p(pi, cij = 1))

∑J

j′=1
exp (log p(pi, cij′ = 1))

(3)

=
exp (sij)

∑J

j′=1
exp (sij′)

(4)

Thus, computing a row-wise softmax of the N × J ma-

trix S , as is commonly done to predict class probabilities in

a supervised paradigm, is exactly equivalent to computing

the posterior probabilities for a set of latent correspondence

variables that associate points to one of J spatial partitions.

As shorthand, we define γij
def

= p(cij = 1|pi) and theN×J

matrix of all γij as Γ
def

= {γij}
N,J
i,j . Note that if we had direct

supervision of the values for cij (e.g. through data augmen-

tation or generation of synthetic data), optimizing over the

log posterior would generalize to contrastive learning.

This softmax equivalence sets up the connection from

point-wise segmentation networks to probabilistic spatial

partitioning. Suppose we have a generative likelihood

model g : R3 −→ R characterized by a finite set of parame-

ters Θ. These Θ parametrically define a spatial probability

distribution over the entire 3D Euclidean domain R
3 such

that
∫∫∫

g(x, y, z;Θ) dx dy dz = 1. Given a point cloud

P = {pi}
N
i=1, if we interpret each individual point as being

an iid sample of g, this induces a factorized total probabil-

ity p(P) of the form p(P) =
∏N

i=1
g(pi;Θ). Further, we

choose g to be constructed as a convex combination of a

discrete set of J probability distributions, each with their

own individual set of parameters Θj . That is, we can define

Θ = {πj ,Θj}
J
j=1 where {πj}

J
j=1 are the convex weights

of each sub-component, making g a mixture model with J

sub-components.

3.3. Training as Latent Model Optimization

If we interpret the latent correspondence posterior

derivation from Equations 2-4 as the probabilistic associ-

ation of points to g’s J sub-components, we arrive at the

two different interpretations of S explained in Section 1:

1. S represents a soft assignment of each point in P to J

discrete spatial partitions.

2. S represents a probabilistic association prediction of

each point in P with g’s J mixture components.

We tie these two interpretations together by letting the spa-

tial partitions themselves determine the specific values of

g’s sub-component parameters Θj . If the form of each of

g’s J sub-components is a 3D Gaussian (i.e., g defines a
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Figure 2. Parametric Generative Model Bottleneck: Using an off-the-shelf point-wise classification network, fψ , we can construct the

parametric encoder denoted by eψ from the concatenation of fψ with ξ. The function ξ consists of a row-wise softmax that converts S into

the set of posterior predictions Γ and a parameter-less fixed function compute block m that computes Θ from P and Γ. The output Θ is

then used in conjunction with g to establish a dense PDF over 3D space. The learned representations z can be transferred to downstream

tasks and everything after fencψ can be discarded.

GMM), then each Θj is completely defined by its 3D mean

µj and 3 × 3 covariance matrix Σj . Using the soft assign-

ments of each point to J spatial partitions, we can calculate

the mean and covariance of the points in each of these J

partitions as follows,

πj =
1

N

N
∑

i=1

exp (sij)
∑J

j′=1
exp (sij′)

(5)

µj =
1

Nπj

N
∑

i=1

exp (sij)pi
∑J

j′=1
exp (sij′)

(6)

Σj =
1

Nπj

N
∑

i=1

exp (sij) (pi − µj)(pi − µj)
⊤

∑J

j′=1
exp (sij′)

(7)

Equation 5 calculates the relative proportion of points re-

siding in each given partition, and Equations 6 and 7 cal-

culated the softly weighted means and covariances of the

points assigned to these spatial partitions. Note that only

S and the original points P are required to calculate the

parameters πj , µj , and Σj for all j = 1..J . These calcu-

lated partition statistics directly form the parameter set of

g as Θ ←− {πj ,µj ,Σj}
J
j=1. For convenience, we define

the deterministic, differentiable, and parameter-less func-

tion ξ : R
N×3 × R

N×J −→ R
J×1
+ × R

J×3 × S
3, J×1

++ ,

such that ξ(P,S) = Θ and where S3
++ denotes the set of

symmetric positive definite matrices of dimension equal to

3. Our encoder eψ is therefore completely defined by the

parameters ψ of the point-wise classification network fψ

through the composition eψ
def

= ξ(P, fψ(P)).

The connection between S and g allows us to directly

calculate the negative log likelihood of an input point cloud

P under the assumption that g parameterized by Θ defines

a generative probability for all pi ∈ P as iid samples of g,

− log p(P;Θ) = −
N
∑

i=1

log g(pi;Θ) (8)

= −
N
∑

i=1

log

J
∑

j=1

p(pi, cij = 1;Θ) (9)

= −
N
∑

i=1

log

J
∑

j=1

πjN (pi;µj ,Σj) (10)

Finally, our proposed unsupervised pretext task can be sum-

marized mathematically as follows,

ψ∗ = argmin
ψ

EP∼D

[

−
N
∑

i=1

log g(pi; eψ(P))

]

(11)

The proposed unsupervised pre-training task is shown dia-

grammatically in Figure 2. In summary, the task is to learn

the parameters ψ of the point-wise classification network

fψ that minimize the expected negative log likelihood un-

der the interpretation that ξ(P, fψ(P)) defines an encoder

network eψ that subsequently determines the specific form

of a latent generative model g.

The training loss is formed by assuming that every pi ∈
P can be viewed as iid samples of the latent generative

model g having the PDF p(x, y, z;Θ). Given an empirical

data distribution D over point clouds P , such that P ∼ D,

a Monte Carlo optimization of the objective in Equation 11

over ψ amortizes the loss over the entire dataset.

These equations calculate the optimal parameters of a la-

tent GMM in a minimum KL-Divergence sense with respect

to the backbone network fψ . For the theoretical justification

behind this choice, refer to the Supplementary.

3.4. Autoencoding through a Parametric Bottleneck

One instructive way to view the proposed approach is

through the lens of a traditional autoencoding task (See

8252



Figure 1). A traditional autoencoder (Figure 1a) learns

to compress its high dimensional input by pushing the in-

put through an information bottleneck into a much smaller

dimensional latent space (z), which is then decompressed

from the bottleneck dimension back to its original dimen-

sion. After training, the learned autoencoder will compress

its input in such a way as to be able to decompress it as

faithfully as possible.

Our proposed method is similar to an autoencoder in the

sense that we are also trying to encode our high dimen-

sional input data into a smaller dimension that we can then

use to reconstruct the original data as faithfully as possi-

ble. In this paradigm, our encoder eψ is the concatenation

of fψ and ξ, and our decoder is g (Figure 1b). However, our

method is different in the sense that the bottleneck layer has

a standalone parametric model interpretation with respect

to some underlying latent generative model defined by the

decoding process g. Furthermore, in this view the decoder

g is completely and deterministically defined by the specific

values of the bottleneck layer (i.e., Θ). This is in contrast

to something like a Variational Autoencoder (VAE) [26],

whose bottleneck layer also has a parametric interpretation

with respect to an underlying generative model (diagonal-

ized multivariate Gaussian), but for which this generative

model is used only to seed a stochastic input into a learn-

able decoder.

Given that g is parameter-less and defines a total gen-

erative probability of P as the product of individual point

probabilities, we can skip an explicit decoding or sampling

step when calculating the loss and instead compute the ex-

act likelihood of reconstructing the original N points if g

were to be sampled N times. Backpropagating through a

loss defined from this reconstruction likelihood will there-

fore produce better and better generative descriptions of the

input data. That is, the segmentation network can only de-

crease its loss by inferring different spatial partitions using

fψ such that the spatial density predicted by the model more

closely fits the input data. For this reason, our proposed

method can be seen as a kind of generalization to the jigsaw

puzzle task since the network must learn something holis-

tic about the global shape of its input in order to adequately

partition it into geometrically compact and well-fitted parti-

tions. See Figures 3 and 4 for different visualizations of Θ

and learned feature spaces using fψ trained from ShapeNet

(Section 4.2).

4. Experimental Results

4.1. Implementation Details

Point Segmentation Backbone: We directly compare our

implementation against Sauder and Sievers’ 3D jigsaw

task [41] (“Jigsaw3D”), Poursaeed et al.’s orientation es-

timation task [35] (“Rotation3D”), and Wang et al.’s occlu-

(a) Visualizing Θ for different ShapeNet models

(b) Isocontour visualization

(c) Feature distance approximates manifold distance

Figure 3. Self-Supervised Pre-Training on ShapeNet Models

Top: We visualize g(·;Θ) by plotting ellipsoid meshes around

each Gaussian component’s 1-sigma isocontour. The pretext task

learns to partition the input such that these implicitly defined Gaus-

sian components well-model their local geometry. Middle: We

visualize an isocontour g(·;Θ) = c for a constant c and render

the resulting isosurface using Marching Cubes. Bottom: Points

are colored according to the distance from a random point p0.

The left point cloud is colored according to the 3D distance of

p0 with every point pi ∈ P . Similarly, the right point cloud is col-

ored according to distance from p0 but with respect to the learned

point-level features. Point-level feature distance differs from 3D

distance and tends toward local manifold distance. In region B,

the bottom shelf is very far away from p0 in feature space since

it is unlikely that these points will belong to the same partition.

In region A, the feature distance remains small since this area is

located on the same planar segment.

sion completion task [45] (“OcCo”). In order to provide

fair apples-to-apples comparison with these methods, we

implement our proposed task using the same two 3D back-

bone networks that both these works use: PointNet [36] and

Dynamic Graph CNN (DGCNN) [46]. In all cases, and to

match prior work, our latent dimension is set to 1024.

Latent Feature Extraction: When performing feature ex-

traction for use in downstream tasks, we don’t use Θ di-

rectly as our learned latent feature. Instead, we extract the

global feature z embedded inside the point-wise classifica-

tion backbone itself (note z in Figure 2). In the case of

PointNet, we extract the global feature vector directly after

the point-wise max-pool operation. Similarly, for DGCNN,

we extract the global feature after the pooling layer after

the fifth EdgeConv layer. One consequence of this is that

our choice of the number of partitions J has no direct effect
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Figure 4. Unsupervised features learned from ShapeNet: t-

SNE [29] visualization (perplexity of 10, 1000 iterations) of the

1024-dimensional feature vectors from the ModelNet10 test split,

color coded by class label. Even though the model was trained on

ShapeNet and never had access to any label information, the pre-

text task produces a feature space with strong semantic and class

separation.

on the downstream task. For example, though the S3DIS

dataset has 13 semantic classes (see Section 4.4), we do not

need to pre-train our network to infer J = 13 spatial parti-

tions.

Choice of Hyperparameter J: The most notable hyper-

parameter in our method is the choice of J , which sets

the number of spatial partitions to infer during pre-training.

Empirically, we found that increasing J yields better perfor-

mance (see ablation results in Supplementary). However,

given that our method requires the calculation of the full

N × J matrix S , this limits our ability to choose a large J

if N is also large. In our experiments we set J = 32, which

seems to be a good compromise between representational

richness and training efficiency.

4.2. Representation Learning on ShapeNet

We apply our pretext task on the ShapeNet dataset,

which consists of 57448 meshed models from 55 different

household categories. We pre-train for 25 epochs, using

point clouds consisting of N = 1024 uniformly random

point samples from the original meshes (we found better

results could be had with N = 2048, but to remain consis-

tent with the methodology in [41] and elsewhere, we show

results for N = 1024 only).

In addition to the common dimensionality reduction

techniques for visualizing the feature space (e.g. see Fig-

ure 4), we can also readily interpret the parametric bottle-

neck itself, since each Θ output predicts a unique PDF over

3D space. Furthermore, since Θ is itself comprised of J

mixture components Θ = {πj ,µj ,Σj}
J
j=1, we can visu-

alize each Gaussian component individually to see the in-

teraction between S , the partitions defined by it, and the

Learned Features + Linear SVM Accuracy%

SPH [24] 68.2

LFD [5] 75.5

T-L Network [15] 74.4

VConv-DAE [42] 75.5
3D-GAN [47] 83.3
Latent-GAN [1] 85.7
PointGrow [43] 85.7
MRTNet-VAE [13] 86.4
PointFlow [50] 86.8
FoldingNet [51] 88.4
VIP-GAN [19] 90.2

PointNet + Jigsaw3D [41] 87.3
PointNet + Rotation3D [35] 88.6
PointNet + OcCo [45] 88.7
PointNet + ParAE (ours) 90.3

DGCNN + Jigsaw3D [41] 90.6
DGCNN + Rotation3D [35] 90.8
DGCNN + OcCo [45] 89.2
DGCNN + ParAE (ours) 91.6

Table 1. ModelNet40 Classification using Linear SVM: All

models listed pre-train on ShapeNet in a self-supervised fashion,

then fit a linear SVM to the features from the training split of Mod-

elNet40 and report classification accuracy on the test split. Our

method is denoted “ParAE” (Parametric Autoencoder), and we

show performance both with a PointNet backbone and a DGCNN

backbone.

parameterization it implies. In Figure 3a, we plot a mesh of

each individual Gaussian’s 1-sigma isocontour. One can see

that the network learns to partition points in such a way as

to keep each Gaussian as compactly supported as possible

by its corresponding softly assigned point partition.

4.3. ModelNet40 Classification

Linear SVM Performance: To test the efficacy of our

learned representations, we apply the standard procedure of

fitting a simple linear SVM classifier to the features from

our unsupervised model [41, 1, 47, 51]. First, we pre-train

on ShapeNet [4] as described in Section 4.2. Then, we

freeze the network weights and extract global features from

each point cloud in the training split of ModelNet40 [48].

ModelNet40 consists of 12311 meshed models from 40 ob-

ject categories, split into 9843 training meshes and 2468

testing meshes. We train the linear SVM on the features

from ModelNet40’s training split and then report test accu-

racy on the test split.

Our linear SVM classification accuracy is compared in

Table 1. We compare against a set of methods consisting of

previous hand-crafted or generative modeling approaches,

as well as PointNet and DGCNN models with various pre-

text tasks. Our basic PointNet backbone yields higher clas-

sification accuracy (90.3) than even a modern GAN ap-

proach [19] (90.2), and also yields better accuracy than
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Model Accuracy

PointNet + Random Initialization [36] 89.2

PointNet + Jigsaw3D [41] 89.8†

PointNet + OcCo [45] 90.2
PointNet + ParAE (ours) 90.5

DGCNN + Random Initialization [46] 92.2
DGCNN + Jigsaw3D [41] 92.4
DGCNN + OcCo [45] 93.1

DGCNN + ParAE (ours) 92.9
† as reported in [45]

Table 2. Fully Supervised ModelNet40 Classification: We com-

pare random weight initialization against initializing models with

pre-trained weights from various self-supervision tasks. Our pre-

text task outperforms the others using a PointNet backbone, and

falls slightly behind the Occlusion Completion pretext task when

using a DGCNN backbone.

other proposed pretext tasks for learning on 3D point clouds

(the next best is Occupancy Completion [45] at 88.7). In-

terestingly, we find that our linear SVM performance even

exceeds the performance of a fully supervised PointNet it-

self, which trains to 89.2 test accuracy from random initial-

ization [36]. With DGCNN, we see additional performance

gains given that it is a more substantial and modern back-

bone with hierarchical graph-based features. Our DGCNN-

based model obtains 91.6 overall test accuracy, while the

next best is the Rotation3D, the pretext task based on orien-

tation estimation (90.8).

Semi-Supervised Performance: We additionally test semi-

supervised performance by limiting the amount of labeled

ModelNet data. With only 50% of the training data labels,

our method outperforms Jigsaw3D even if trained on 100%

of the data (90.9 vs. 90.6). Surprisingly, with only 20%

of labels our method outperforms a fully supervised Fold-

ingNet [51] (88.6 vs. 88.4). For more details on these ex-

periments, refer to the Supplementary.

ModelNet Fine-Tuning: In this experiment, we pre-train

using our unsupervised pretext task on ShapeNet and then

fine tune using ModelNet labels. Refer to Table 2. We

can see that initializing the weights of the model using the

weights learned from the pretext task unilaterally improves

performance, even in the case of full supervision. Our

classification accuracy in PointNet is state-of-the-art (90.5),

however our performance with DGCNN (92.9) falls slightly

below that of Occupancy Completion (93.1).

4.4. Semantic Segmentation

In this section, we show our method’s downstream per-

formance for semantic segmentation on the Stanford Large-

Scale 3D Indoor Spaces (S3DIS) dataset [2]. This dataset

consists of 3D scans from 6 different indoor spaces, to-

talling 271 rooms. Each point is labeled in terms of 13

different semantic categories. Our self-supervision exper-

iment uses DGCNN and mirrors the set-up of [41]:

Supervised JigSaw3D [41] ParAE (ours)

Train Area ∆mIOU ∆Acc ∆mIOU ∆Acc

Area 1 +1.1 +0.6 +9.9 +8.9

Area 2 +0.3 0 +3.9 +1.1

Area 3 +2.5 +1.2 +8.5 +6.7

Area 4 +0.5 +0.1 +5.6 +5.4

Area 6 0 +0.2 +5.3 +3.3

Table 3. Semantic Segmentation with S3DIS: We look at the

delta performance improvement when comparing supervised train-

ing performance under random weight initialization vs. pre-

trained weights learned from an unsupervised pre-training task.

Compared to pre-training with JigSaw3D [41], our proposed task

provides a significantly larger boost to mIOU and accuracy. In all

cases, the results are reported by supervised training on a single

Area and calculating test performance on Area 5.

Baseline Models: We train 5 different supervised models

from scratch on Areas 1-4 and 6. Then we test each of the

5 models on Area 5.

Pre-Trained Model: We pre-train a single model on all Ar-

eas 1-4 and 6 using the self-supervised pretext task. Then

we use this single pre-trained model for weight initializa-

tion before fine tuning 5 different models according to the

baseline scenario.

Our results are summarized in Table 3. For clarity of

presentation, we omit absolute numbers and show the delta

in performance that a given pre-training task provides over

training the network from randomly initialized weights.

Both self-supervised pretext tasks produce overall improve-

ment in mIOU and accuracy compared to the baseline of

random initialization without pre-training. However, our

proposed task produces much large relative improvement.

For example, pre-training on Areas 1-4 and 6 using our un-

supervised pretext task produces a network with nearly 10

more mIOU than the baseline, compared to JigSaw3D’s rel-

ative performance increase of +1.1 mIOU.

5. Conclusion

Even with the recent successes in representation and

transfer learning for 2D images, it yet remains unclear how

to apply these techniques in the 3D realm where the data is

much less structured. While recent works have shown that

straightforward 3D adaption of jigsaw puzzles [41] and ro-

tation estimation [35] can be beneficial, we propose a new

pretext task tailored specifically for 3D data. We do this

by exploiting the computational connection between super-

vised point-wise classification and the unsupervised calcu-

lation of a latent posterior with respect to a discrete genera-

tive model. This allows us to adapt any 3D architecture for

point-wise classification to implicitly learn a discrete gen-

erative model of point density. In general, we hope this

inspires further research into novel pretext tasks designed

specifically to the idiosyncrasies of 3D data.
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