
ManipulaTHOR: A Framework for Visual Object Manipulation

Kiana Ehsani1,2 Winson Han1 Alvaro Herrasti1 Eli VanderBilt1 Luca Weihs1

Eric Kolve1 Aniruddha Kembhavi1,2 Roozbeh Mottaghi1,2

1 Allen Institute for AI 2 University of Washington

https://ai2thor.allenai.org/manipulathor

Figure 1: We address the problem of visual object manipulation, where the goal is to move an object between two locations

in a scene. Operating in visually rich and complex environments, generalizing to unseen environments and objects, avoiding

collisions with objects and structures in the scene, and visual planning to reach the destination are among the major challenges

of this task. Here, we illustrate a sequence of actions taken a by a virtual robot within the AI2-THOR environment for picking

up a vase from the shelf and stack it on a plate on the countertop.

Abstract

The domain of Embodied AI has recently witnessed sub-

stantial progress, particularly in navigating agents within

their environments. These early successes have laid the

building blocks for the community to tackle tasks that

require agents to actively interact with objects in their

environment. Object manipulation is an established re-

search domain within the robotics community and poses

several challenges including manipulator motion, grasping

and long-horizon planning, particularly when dealing with

oft-overlooked practical setups involving visually rich and

complex scenes, manipulation using mobile agents (as op-

posed to tabletop manipulation), and generalization to un-

seen environments and objects. We propose a framework

for object manipulation built upon the physics-enabled, vi-

sually rich AI2-THOR framework and present a new chal-

lenge to the Embodied AI community known as ArmPoint-

Nav. This task extends the popular point navigation task [2]

to object manipulation and offers new challenges including

3D obstacle avoidance, manipulating objects in the pres-

ence of occlusion, and multi-object manipulation that ne-

cessitates long term planning. Popular learning paradigms

that are successful on PointNav challenges show promise,

but leave a large room for improvement.

1. Introduction

Embodied AI, the sub-specialty of artificial intelligence

at the intersection of robotics, computer vision, and natural

language processing continues to gain popularity amongst

researchers within these communities. This has expedited

progress on several fronts – open source simulators are get-

ting faster, more robust, and more realistic via photoreal-

ism and sophisticated physics engines, a variety of tasks

are being worked on such as navigation and instruction fol-

lowing, new algorithms and models are inching us towards

more powerful and generalizable models and the recent de-

velopment of multiple sim-to-real environments with paired

worlds in simulation and real is enabling researchers to

study the challenges of overcoming the domain gap from

virtual to physical spaces. A notable outcome has been the

development of near-perfect pure learning-based Point Nav-

igation [33] agents, far outperforming classical approaches.

Most of the focus and progress in Embodied AI has re-

volved around the task of navigation – including navigating

to coordinates, to object instances, and to rooms. Navigat-

ing around in an environment is a critical means to an end,

not an end in itself. The aspiration of the Embodied AI

community remains the development of embodied agents

that can perform complex tasks in the real world, tasks that

4497



involve actively manipulating objects in one’s environment.

The early successes and interest in Embodied AI have laid a

foundation for the community to tackle the myriad of chal-

lenges that lie within the problem of object manipulation.

Object manipulation has long posed daunting challenges

to roboticists. Moving manipulators within an environment

requires estimating free spaces and avoiding obstacles in the

scene, tasks which are rendered even harder due to the un-

wieldy nature of robotic arms. Generalizing to novel en-

vironments and objects is another important challenge. Fi-

nally, real-world tasks often involve manipulating multiple

objects in succession in cluttered scenes, which requires

fairly complex visual reasoning and planning. Besides, de-

veloping simulators for object manipulation poses a unique

set of challenges. In contrast to navigation tasks that require

camera translation and fairly rudimentary collision check-

ing, object manipulation requires fine grained collision de-

tection between the agent, its arms, and surrounding ob-

jects, and the usage of advanced physics emulators to com-

pute the resulting displacements of the constituent entities.

In particular, these computations are expensive and require

significant engineering efforts to produce effective simula-

tions at reasonably high frame rates.

We extend the AI2-THOR [20] framework by adding

arms to its agents, enabling these agents to not only navi-

gate around their environments but also actively manipulate

objects within them. The newly introduced arm rig is de-

signed to work with both forward and inverse kinematics,

which allows one to control the arm using both joint actu-

ations or by specifying the desired wrist translation. This

flexibility allows Embodied AI practitioners to train poli-

cies requiring fine-grained actuator controls for all joints if

they so desire, or instead use inbuilt kinematics functional-

ities and focus solely on the desired positioning of the end

of the arm and manipulator.

As a first step towards generalizable object manipula-

tion, we present the task of ARMPOINTNAV– moving in

the scene towards an objects, picking it up and moving it

to the desired location (Figure 1). ARMPOINTNAV builds

upon the navigation task of PointNav [2] in that it is an

atomic locomotive task, a key component of more complex

downstream goals, specifies source and target locations us-

ing relative coordinates as opposed to other means such as

language or images and utilizes compass as part of its sensor

suite. But in contrast, it offers significant new challenges.

Firstly, the task requires the motion of both the agent and

the arm within the environment. Secondly, it frequently en-

tails reaching behind occluding obstacles to pick up objects

which requires careful arm manipulation to avoid collisions

with occluding objects and surfaces. Thirdly, it may also re-

quire the agent to manipulate multiple objects in the scene

as part of a successful episode, to remove objects, or make

space to move the target object, which requires long-term

planning with multiple entities. Finally, the motion of the

arm frequently occludes a significant portion of the view, as

one may expect, which is in sharp contrast to PointNav that

only encounters static unobstructed views of the world.

The end-to-end ARMPOINTNAV model provides strong

baseline results and shows an ability to not just generalize to

new environments but also to novel objects within these en-

vironments – a strong foundation towards learning general-

izable object manipulation models. This end-to-end model

is superior to a disjoint model that learns a separate policy

for each skill within an episode.

In summary, we (a) introduce a novel efficient frame-

work (ManipulaTHOR) for low level object manipulation,

(b) present a new dataset for this task with new challenges

for the community, and (c) train an agent that generalizes

to manipulating novel objects in unseen environments. Our

framework, dataset and code will be publicly released. We

hope that this new framework encourages the Embodied

AI community towards solving complex but exciting chal-

lenges in visual object manipulation.

2. Related Works

Object Manipulation. A long-standing problem in

robotics research is object manipulation [12, 4, 5, 31, 39,

6, 9, 21, 10]. Here, we explain some recent example works

that are more relevant to our work. [15] address the prob-

lem of multi-step manipulation to interact with objects in

presence of clutter and occlusion. [25] propose a planning

approach to grasp objects in a cluttered scene by relying on

partial point cloud observation. [38] learn a 3D scene rep-

resentation to predict the dynamics of objects during ma-

nipulation. [18] propose a reinforcement learning approach

for robotic manipulation where they construct new policies

by composing existing skills. [11] propose a model-based

planner for multi-step manipulation. [22, 35] study mobile

manipulation by generating sub-goal tasks. A combination

of visually complex scenes, generalization to novel objects

and scenes, joint navigation and manipulation, as well as

navigating while manipulating object in hand are the key

factors that distinguish our work from the previous work on

object manipulation.

Environments for object manipulation. While several

popular Embodied AI frameworks have focused on the nav-

igation task, recently proposed improvements and frame-

works such as iGibson [36], SAPIEN [37] and TDW [13]

have enabled new research into manipulation. Sapien [37]

is a virtual environment designed for low-level control of a

robotic agent with an arm. In contrast, our framework in-

cludes a variety of visually rich and reconfigurable scenes

allowing for a better exploration of the perception problem.

Meta-World [41] is developed to study multi-task learning

in the context of robotic manipulation. The Meta-World

framework includes a static table-top robotic arm and a

4498



limited set of objects. In contrast, our framework enables

studying the problem of joint navigation and manipulation

using a variety of objects. RLBench [19] also provides a

simulated environment for a table-top robotic arm. Robo-

Turk [23] is a crowdsourcing platform to obtain human tra-

jectories for robotic manipulation. RoboTurk also considers

table-top manipulation scenarios. [16] provide a large-scale

dataset of grasping and manipulation to evaluate the gener-

alization of the models to unstructured visual environments.

Unlike our framework, their dataset is non-interactive and

includes only pre-recorded manipulation trajectories. iGib-

son [36] involves object interaction, but it does not support

low-level manipulation (the interactions primarily involved

pushing objects and rotation around hinges). Recently, an

extension of iGibson [28] has enabled object manipulation

with contact forces.

Visual navigation. Our problem can be considered as an

extension of the visual navigation work [43, 17, 24, 26, 34,

40, 7, 33] in the Embodied AI literature. There are a few

key differences between our manipulation task and naviga-

tion. In manipulation, the shape of the agent changes dy-

namically due to the extension of the arm. Also, the manip-

ulation of objects is performed in 3D and through clutter,

while the navigation works assume 2D motion on a plane

in fairly clean scenes. Finally, our proposed task requires

the agent to plan its motion as well as the motion of its arm

simultaneously.

3. ManipulaTHOR

The growing popularity of Embodied AI can be partly

attributed to the availability of numerous free and fast 3D

simulators such as AI2-THOR [20], Habitat [27] and iGib-

son [36]. Some of these simulators excel at their photore-

alism, some at their speed, some at the interactivity they

afford while others at their physics simulations. While re-

searchers have many options to choose from when it comes

to researching embodied navigation, fewer choices exist to

study object manipulation, particularly in visually rich en-

vironments with varied objects and scenes. Simulating ob-

ject manipulation presents unique challenges to simulator

builders beyond ones posed by navigation, including the

need for fine-grained physics emulations, object and ma-

nipulator properties, and obtaining acceptable frame rates.

We present ManipulaTHOR, an extension to the AI2-

THOR framework that adds arms to its agents. AI2-THOR

is a suitable base framework due to its powerful physics en-

gine, Unity, variety of realistic indoor scenes, large asset

library of open source manipulable objects as well as ar-

ticulated receptacles such as cabinets, microwaves, boxes,

and fridges. While AI2-THOR has been previously used

to train agents that interact with objects, this interaction

has been invoked at a high level – for instance, a cabinet is

opened by choosing a point on the cabinet and invoking the

Y

Z
X

X

Z
Y

Y

Z
X

X

Z
Y

Y

Z
X

1.06m

0.95m

0.6335m

Y

Z
X(a) (b) (c)

(d) (e) (f)

Figure 2: Arm Design and Kinematic Constraints. The

arm consists of four joints (a). The max reach of the arm is

defined by a hemisphere centered around the end of the first

joint, whose radius is equal to 0.6335m (b,c). The height of

the arm can be adjusted along the body of the agent (d). All

joint rotations are solved by inverse kinematics, so any po-

sition the wrist can move to within the hemisphere’s extents

will have the joints rotate to accommodate the position of

the wrist joint (e,f).

“open” command. ManipulaTHOR allows agents to inter-

act with objects at a lower level via their arm manipulators,

and thus opens up a whole new direction for Embodied AI

research. The sensors that are available for use are RGB

image, depth frame, GPS, agent’s location, and arm config-

uration.

Arm Design. In ManipulaTHOR, each agent has a sin-

gle arm. The physical design of the arm is deliberately sim-

ple: a three-jointed arm with equal limb-lengths, attached to

the body of the agent. This design is inspired by Kinova’s

line of robots [1], with smooth contours and seamless joint-

transitions and it is composed entirely of swivel joints, each

with a single axis of rotation. The shoulder and wrist sup-

port 360 degrees of rotation and the hand grasper comes

with a 6DOF (see Figure 2). The robot’s arm rig has been

designed to work with either forward or inverse kinemat-

ics (IK), meaning its motion can be driven joint-by-joint, or

directly from the wrist, respectively.

Grasper. The Grasper is defined as a sphere at the

end of the arm. Objects that intersect with the sphere can

be picked up by the grasper. This abstract design follows

the ‘abstracted grasping’ actuation model of [3] in lieu of

more involved designs like jaw grippers or humanoid hand

graspers, enabling researchers to solve problems involved

with object manipulation through the environment without

having to account for the complexities of grasping. Object

grasping is a challenging problem with a rich history in the

robotics community and we hope to add this explicit func-

tionality into ManipulaTHOR in future versions.

4499



Arm Interface. The arm comes with the following func-

tionalities: 1) manipulating the location and orientation of

the wrist (the joints connecting the base of the arm to the

wrist are resolved via IK as the wrist moves), 2) adjusting

the height of the arm, 3) obtaining the arm state’s metadata

including joint positions, 4) picking up the objects colliding

with the grasper’s sphere, 5) dropping the held object and

6) changing the radius of the grasper’s sphere.

Physics Engine. We use NVIDIA’s PhysX engine

through Unity’s engine integration to enable physically re-

alistic object manipulation. This engine allows us to realis-

tically move objects around, move the arm in the space, and

cascade forces when the arm hits an object.

Rendering Speed. Accurate collision detection and ob-

ject displacement estimation are very time consuming but

are important requirements for our simulator. Through ex-

tensive engineering efforts, we are able to obtain a training

speed of 300 frames per second (fps) on a machine with 8

NVIDIA T4 GPUs running 40 cores. To put this into per-

spective, POINTNAV using AI2-THOR on the same ma-

chine achieves a training speed of roughly 800 fps, but has

very rudimentary collision checks and no arm to manipu-

late. At 300 fps researchers may train for 20M steps per

day, a fast rate to advance research in this direction, which

we hope to improve significantly with more optimizations

in our code base.

4. ARMPOINTNAV

As a first step towards generalizable object manipula-

tion, we present the task of ARMPOINTNAV– moving an

object in the scene from a source location to a target loca-

tion. This involves, navigating towards the object, moving

the arm gripper close to the object, picking it up, navigating

towards the target location, moving the arm gripper (with

the object in place) close to the target location, and finally

releasing the object so it lands carefully. In line with the

agent navigation task of POINTNAV [2], source and target

locations of the object are specified via (x, y, z) coordinates

in the agent coordinate frame.

Dataset. To study the task of ARMPOINTNAV, we present

the Arm POINTNAV Dataset (APND). This consists of 30

kitchen scenes in AI2-THOR that include more than 150

object categories (69 interactable object categories) with a

variety of shapes, sizes and textures. We use 12 pickupable

categories as our target objects. As shown in Figure 3, we

use 20 scenes in the training set and the remaining is evenly

split into Val and Test. We train with 6 object categories and

use the remaining to test our model in a Novel-Obj setting.

Metrics. We report the following metrics:

• Success rate without disturbance (SRwD) – Fraction of

successful episodes in which the arm (or the agent) does

not collide with/move other objects in the scene.

• Success rate (SR) – Similar to SRwD, but less strict since

K
it

c
h

e
n

1
K

it
c
h

e
n

2
K

it
c
h

e
n

3
K

it
c
h

e
n

4
K

it
c
h

e
n

5

K
it

c
h

e
n

6
K

it
c
h

e
n

7
K

it
c
h

e
n

8
K

it
c
h

e
n

9
K

it
c
h

e
n

1
0

K
it

c
h

e
n

1
1

K
it

c
h

e
n

1
2

K
it

c
h

e
n

1
3

K
it

c
h

e
n

1
4

K
it

c
h

e
n

1
5

K
it

c
h

e
n

1
6

K
it

c
h

e
n

1
7

K
it

c
h

e
n

1
8

K
it

c
h

e
n

1
9

K
it

c
h

e
n

2
0

Apple
Bread

Tomato
Lettuce

Pot
Mug

Potato
Soap Bottle

Pan
Egg

Spatula
Cup

Val-NovelObj Test-NovelObj

Val-SeenObj Test-SeenObj

Train
1800

points
1800

points

1800
points

1800
points

A large stream of datapoints 
is available for sampling

SeenScenes-NovelObj
7200

points

K
it

c
h

e
n

2
1

K
it

c
h

e
n

2
2

K
it

c
h

e
n

2
3

K
it

c
h

e
n

2
4

K
it

c
h

e
n

2
5

K
it

c
h

e
n

2
6

K
it

c
h

e
n

2
7

K
it

c
h

e
n

2
8

K
it

c
h

e
n

2
9

K
it

c
h

e
n

3
0

Figure 3: Scene and object splits in APND. In order to

benchmark the performance on ARMPOINTNAV, in addi-

tion to providing a large pool of datapoints for training, we

provide a small subset of tasks per data split. We randomly

subsampled 60 tasks per object per scene for evaluation pur-

poses.

it does not penalize collisions and movements of objects.

• Pick up success rate (PuSR) – Fraction of episodes where

the agent successfully picks up the object.

• Episode Length (Len) – Episode length for both success

and failure episodes.

• Successful episode Length (SuLen) – Episode length for

successful episodes.

• Pick up successful episode length (PuLen) – Episode

length for episodes with successful pickups.

APND offers significant new challenges. The agent

must learn to navigate not only itself but also its arm relative

to its body. Also, as the agent navigates in the environment,

it should avoid colliding with other objects – which brings

new complexities given the addition of the arm and poten-

tially carrying an object in its gripper. Further, reaching to

pick up objects involves free-space estimation and obstacle

avoidance – which becomes challenging when the source

or target locations are behind the occluders. Moreover, it

needs to choose the perfect time to attempt pickup as well

as ending the episode. Finally, these occluders themselves

may need to be manipulated in order to complete the task.

The agent should overcome these challenges while its view

is frequently obstructed by the arm and/or the object being

carried. Figure 4 illustrates a few of the challenges involved

with picking up the object from its source location.

Figure 5 shows the distribution of the distances of the

target location of the object from its initial state. For com-

parison, we show the step size for agent navigation and arm

navigation as well. Note that the initial distance of the agent

from the object is not taken into account.

5. Model

ARMPOINTNAV requires agents to learn to navigate

themselves along the 2D floor while also learning to navi-

gate their arm and objects within the 3D space around them.

4500



(a)

(b)

(c)

(d)

Figure 4: Dataset Samples. The initial location of the object can pose a variety of challenges. In (a) the tomato is occluded

by the bowl, therefore the agent needs to remove the bowl to reach the tomato. In (b) the lettuce is on the shelf, which requires

the agent to move the arm carefully such that it does not collide with the shelf or the vase. In (c) The goal object is inside

another object and in (d) the goal object is inside a receptacle, therefore it requires interacting with another entity (opening

microwave’s door) before reaching for the object. The latter case is outside the scope of this paper.

One Arm Step

One Agent Step

Average 

Width of 

Rooms

Figure 5: Statistics of the dataset. This plot presents the

distribution of the initial distance of the object from the tar-

get location in meters. We mark the step size for the agent

and the arm movements, and the average width of the rooms

for reference.

Past works for visual object manipulation tend to use modu-

lar designs to solve this problem [25, 30, 14] – for instance,

employing object detection models, instance segmentation

models, point cloud estimators, etc. and then feeding these

outputs into a planner. In contrast, recent developments in

the Embodied AI domain [42, 29] have demonstrated the

benefits of using end-to-end learning-based approaches. In

this work, we investigate end-to-end learning approaches

for our task. See Sec. 6 for results obtained by a single end-

to-end model in comparison to a disjoint approach.

Our approach builds upon the model and learning meth-

ods used in [33] for the task of POINTNAV. Manipu-

laTHOR provides the agent with access to a variety of sen-

sors including egocentric RGB and Depth sensors, GPS and

Compass coordinates of the arm and target locations in the

scene, ground truth instance segmentation maps as well as

the kinematics of the arm. In this work, we investigate using

the Depth and RGB sensors as well as the GPS and Com-

pass coordinates, but leave other sensing modalities to fu-

ture work.

Our agent at each time step uses as inputs, its egocen-

tric frame It, the current relative distance of the arm (the

end-effector location) to the object’s location doarm and the

current relative distance of the arm to the object’s goal state

dgoalo . These observations are encoded into visual and lo-

cation embeddings respectively and then fed into a con-

troller to produce a distribution over possible actions, i.e. its

policy. The discretized action space of the agent includes:

moving forward, rotating the agent (left and right), pickup

up the object, issuing done action, moving the arm in the

space in front of the agent (ahead, backward, right, left, up,

down), rotating the arm (in terms of Euler angles) and in-

creasing or decreasing the height of the arm. Discretization

of the action space is discussed in details in Sec. 6. An

action is sampled from this policy and fed into the Manip-

ulaTHOR simulator which generates the next state and cor-

responding observations. An episode terminates when the

4501



Move The Arm 

To The Left

Learned Layers

Intermediate Features

Initial State Goal State

Distance to Goal

In
p

u
t 

F
ra

m
e

Conv1

[8x8]
Conv2

[4x4]

Conv3

[3x3]

FC

Image 

Features

FC FC

Distance 

Feature

GRU FC
FC

A
ct

or

Cri
ti
c

224x224xc

512

11
512

𝑠
∈
ℝ
!

Figure 6: Architecture. Our network uses the Depth (c=1), RGB (c=3) or RGBD (c=4) observations and the agent’s arm

relative location to the object to estimate the movements needed to pickup the target object and take it to the goal state while

avoiding the unwanted collisions.

object reaches its goal state or when the agent runs out of

time (the episode reaches its maximum length).

Figure 6 provides an overview of the model architecture.

Visual embeddings are obtained using 3 convolution layers

followed by a fully-connected layer with non-linearity in

between to produce a 512 dimensional vector. The relative

coordinates (arm → object and arm → goal) are embedded

by 2 fully connected layers with ReLU non-linearity to a

feature vector of size 512, which is then concatenated with

the image features. The controller consisting of a GRU [8]

with a hidden size of 512 uses this resulting embedding as

input to produce a policy (i.e. distribution over actions) and

a value (i.e. an estimate of future rewards).

The network parameters are optimized using DD-

PPO [33] with both a terminal reward and intermediate re-

wards used to shape the reward space. More specifically,

the reward at each time step t is:

rt = Rsuccess.Isuccess+Rpickup.Ipickup+∆o
arm+∆goal

o ,

(1)

where Rsuccess = 10, Rpickup = 5, Isuccess, Ipickup are

the indicators of the success of the task and success of the

object pickup, respectively, and ∆o
arm and ∆goal

o are the

differences in the distance of the arm to object (doarm), and

the distance of the object to the goal (dgoalo ) in comparison

to the previous timestep. This method of reward shaping

provides us the ability to balance the importance of the dif-

ferent phases of the task – pickup vs place.

6. Experiments

We now present results for our ARMPOINTNAV using

the APND dataset and quantify its ability to generalize to

new scenes as well as new objects within these scenes. We

also provide comparisons of our end-to-end approach to a

multi-stage model. Finally, we ablate the importance of the

RGB and Depth sensors in the presence of the GPS and

Compass coordinates.

Experimental Setup. We use the AllenAct [32] framework

to implement and train our models. Our agent uses an ac-

tion space with 13 discrete actions: 1) moving the agent for-

ward by 20cm, 2-3) rotating the agent to the right/left for 45
degrees, 4-9) changing the relative location of the wrist by

5cm w.r.t. agent (±x,±y,±z), and 10-11) increasing or de-

creasing the height of the arm by 7cm (refer to Figure 2 for

illustrations of the possible arm movements), 12) abstract

grasp (which can be either successful or unsuccessful), 13)

issuing a Done action indicating the end of an episode. We

use DD-PPO [33] as our optimization algorithm. We train

each model for 20M frames and maximum episode length

of 200.

As specified in Section 4 we use 20 scenes for training, 5

for validation and 5 for test. Unless otherwise specified, we

train our networks on the training scenes with 6 objects and

evaluate the learned policy on the val and test scenes using

the 6 seen and 6 novel object categories. Each object cate-

gory includes instances of different shape and appearance.

Quantitative results. Table 1 reports results for our

model using 6 metrics – Episode Success w/o Disturbance

(SRwD), PickUp Success (PuSR), Episode Success (SR),

Ep-Len for PickUp (PuLen), Ep-Len for Success (SuLen)

and Episode Length (Len). The proposed model performs

reasonably well and achieves 39.4% SRwD (68.7% when

allowing disturbance) for objects it has interacted with at

training time. It obtains a significantly higher PuSR of

89.9% indicating that navigating towards the initial loca-

tion of the object and picking it up is easier than navigat-

ing the object through the scene. Interestingly, the model

also generalizes moderately well to novel objects (row 2 –

4502



(a
)

(b
)

(c
)

Figure 7: Qualitative Results. Our qualitative results illustrate our network’s ability to generalize to picking up objects in

novel environments and navigating the agent with the object in hand to the desired location. For example, row (c) shows a

scenario from a third-perspective in which the agent needs to navigate in the kitchen while avoiding the collision with other

objects (toaster, tomato and sink in this case).

Test-NovelObj). The SRwD metric degrades in the chal-

lenging zero shot setting compared to the seen object sce-

nario. These results are promising and a stepping stone to-

wards learning a generalizable object manipulation model.

We also provide results for SeenScene-NovelObj – where

the agent is tested within seen environments but provided

with novel objects. It is interesting to note that the perfor-

mance is similar to Test-NovelObj, once again showing the

challenges of moving to new object categories. Moving and

manipulating objects requires an understanding of the ob-

ject geometry (to be able to avoid collisions), and therefore

generalizing to unseen objects is challenging.

It is interesting to analyze the performance of this model

and see how the performance of our method changes based

on the closeness of the target location to the initial state. As

expected, the SRwD drops as we increase the distance to

the goal, since it becomes harder to navigate to the target

location. However, our model is relatively robust to longer

distances (Figure 8). But once again, we see that the SRwD

is higher for seen objects than novel objects.

Our qualitative results in Figure 7 illustrate a few exam-

ples of our agent’s behavior on Test-SeenObj. In the second

row the agent must move a moderately sized object (lettuce)

while in the first row it must move a smaller object (apple).

Figure 8: Comparison of SRwD rates based on the initial

distance to goal. The plot shows that our network’s gener-

alizability to novel scenes is superior to generalization to

unseen objects.

The second row shows an example where the target location

is on a table that has several other objects on it, necessitat-

ing careful movements of the arm while placing the object

down. The third row shows the episode in row (b) from a

4503



Ep-Success w/o Disturbance% PickUp Success % Episode Success% Ep-Len for PickUp Ep-Len for Success Ep-Len

(SRwD) (PuSR) (SR) (PuLen) (SuLen) (Len)

Test-SeenObj 39.4 89.9 68.7 43.6 78.1 114.0

Test-NovelObj 32.7 84.3 62.1 48.1 82.4 122.0

SeenScenes-NovelObj 32.2 90.6 74.6 44.6 80.7 104.0

Table 1: Quantitative results. The performance of our network on different data splits. Our experiments show that our

trained agent can generalize to novel scenes and objects.

third camera view. Note that this view is purely for illustra-

tive purposes and not available to the agent.

Comparison to a Disjoint Model. In this work we use a

single end-to-end model for the entire task which includes

navigating the arm to the object to pickup, and navigating

the agent, arm and the object to the goal location. We posit

that navigating the arm to pick up an object shares a lot of

underlying physical understanding with moving the object

within the 3D environment and it would help the perfor-

mance to share weights among them. To evaluate this hy-

pothesis, we also train a disjoint model – which consists of

two separate visual encoders and controllers, one for each

sub-task of picking up the object and moving towards the

goal (weights are not shared). At training time, the first

sub-task model starts receiving gradients at the beginning of

training, but the second sub-task model only receives gradi-

ents once the training episodes proceed beyond successful

pickups. The results in Table 2 show that having a disjoint

approach improves PuSR and PuLen since the first model is

only required to perform the simpler task of picking up the

object. However, this model fails to learn to navigate the

object to the goal since the model only receives gradients

for a fraction of the training episodes (the ones that com-

pleted a pickup). Since it shares no parameters between the

two phases, it cannot leverage skills and abilities learned

across the two phases. While the number of parameters has

doubled for the disjoint model, the training has also become

less efficient. We acknowledge that the success rate might

increase if the model is trained for longer1. This ablation

justifies our design choice for combining the two subtasks

of pickup and move-to-target.

No-Vision Agent. Visual information is an important as-

pect of ARMPOINTNAV, in spite of having access to GPS

and compass sensors. To illustrate the importance of the vi-

sual information in our training, we trained a model with

no visual modalities but still with other sensory information

such as the arm relative locations. In Table 2, we show that

our agent outperforms the non-visual baseline by more than

2x, improving SRwD from 10.3 to 39.4.

RGB and Depth modalities. ManipulaTHOR provides a

host of sensor modalities to train and evaluate agents. Our

experiments thus far have only leveraged ego-centric Depth

1Training for 40M frames (2x normal training) slightly increased the

success rate on training set but no increase on test set

Sensors SRwD PuSR SR PuLen SuLen Len

No-Vision G 10.3 66.8 18.7 38.1 65.6 64.9

Disjoint GD 0.0 91.6 0.0 40.8 - 5.05

Model

RGB GR 21.2 68.3 37.7 56.2 91.1 53.0

RGBD GRD 37.1 86.8 62.8 45.1 82.2 123.0

Depth GD 39.4 89.9 68.7 43.6 78.1 114.0

Table 2: Ablation Studies. We study ablations of our net-

work using different combinations of sensors as well as ar-

chitecture design. Input sensors that are used by these net-

works are a subset of GPS (G), Depth (D) and RGB (R)

sensors.

observations. In Table 2, we show results for agents that

are trained using RGB and RGBD frames as well. For our

RGB experiment, we use the same architecture as Depth

setup and for the RGBD input, we concatenate image fea-

tures with depth features and use the combined feature as

the input to the GRU. The rest of the setup is similar to our

baseline method. We observe that the depth only model out-

performs the RGB model. A similar trend has been shown

before for the PointNav task [27]. More complex networks

and/or training paradigms might help improve metrics, and

we leave this direction for future work.

7. Discussion / Conclusion

We propose ManipulaTHOR a framework for visual ob-

ject manipulation that builds upon the AI2-THOR environ-

ment. ManipulaTHOR provides a host of diverse and visu-

ally complex scenes with several different object categories

to manipulate. We hope that this new framework encour-

ages the Embodied AI community towards tackling exciting

problems dealing with object manipulation. Using Manipu-

laTHOR, we study the problem of ARMPOINTNAV, where

the goal is to pick up an object and move it to a target lo-

cation. Our experimental evaluations show that the state-

of-the-art models that perform well on embodied tasks such

as navigation are not as effective for object manipulation,

indicating there is still a large room for improving models

for this challenging task. Furthermore, in this paper we use

GPS and visual sensors. Relaxing the usage of these sensors

is an interesting task that is left for future work.

Acknowledgement. We thank Dustin Schwenk for suggesting the

name of the framework.

4504



References

[1] https://www.kinovarobotics.com. 3

[2] Peter Anderson, Angel Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

and Amir R. Zamir. On evaluation of embodied navigation

agents. arXiv, 2018. 1, 2, 4

[3] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J

Davison, Jia Deng, Vladlen Koltun, Sergey Levine, Jitendra

Malik, Igor Mordatch, Roozbeh Mottaghi, Manolis Savva,

and Hao Su. Rearrangement: A challenge for embodied ai.

arXiv, 2020. 3

[4] Antonio Bicchi and Vijay Kumar. Robotic grasping and con-

tact: A review. In ICRA, 2000. 2

[5] Jeannette Bohg, Antonio Morales, Tamim Asfour, and Dan-

ica Kragic. Data-driven grasp synthesis—a survey. IEEE

Transactions on Robotics, 2013. 2

[6] Konstantinos Bousmalis, Alex Irpan, Paul Wohlhart, Yunfei

Bai, Matthew Kelcey, Mrinal Kalakrishnan, Laura Downs,

Julian Ibarz, Peter Pastor, Kurt Konolige, Sergey Levine, and

Vincent Vanhoucke. Using simulation and domain adapta-

tion to improve efficiency of deep robotic grasping. In ICRA,

2018. 2

[7] Devendra Singh Chaplot, Saurabh Gupta, Dhiraj Gandhi,

Abhinav Gupta, and Ruslan Salakhutdinov. Learning to ex-

plore using active neural mapping. In ICLR, 2020. 3

[8] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and

Yoshua Bengio. Learning phrase representations using

rnn encoder-decoder for statistical machine translation. In

EMNLP, 2014. 6

[9] Kuan Fang, Yunfei Bai, Stefan Hinterstoisser, Silvio

Savarese, and Mrinal Kalakrishnan. Multi-task domain adap-

tation for deep learning of instance grasping from simulation.

In ICRA, 2018. 2

[10] Kuan Fang, Yuke Zhu, Animesh Garg, Andrey Kurenkov,

Viraj Mehta, Li Fei-Fei, and Silvio Savarese. Learning task-

oriented grasping for tool manipulation from simulated self-

supervision. The International Journal of Robotics Research,

2020. 2

[11] Kuan Fang, Yuke Zhu, Animesh Garg, Silvio Savarese, and

Li Fei-Fei. Dynamics learning with cascaded variational in-

ference for multi-step manipulation. In CoRL, 2020. 2

[12] Ronald Fearing. Implementing a force strategy for object

re-orientation. In ICRA, 1986. 2

[13] Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf,

James Traer, Julian De Freitas, Jonas Kubilius, Abhishek

Bhandwaldar, Nick Haber, Megumi Sano, et al. Threed-

world: A platform for interactive multi-modal physical sim-

ulation. arXiv, 2020. 2

[14] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack

Kaelbling. Pddlstream: Integrating symbolic planners and

blackbox samplers via optimistic adaptive planning. In

Proceedings of the International Conference on Automated

Planning and Scheduling, 2020. 5

[15] Caelan Reed Garrett, Chris Paxton, Tomás Lozano-Pérez,

Leslie Pack Kaelbling, and Dieter Fox. Online replanning

in belief space for partially observable task and motion prob-

lems. In ICRA, 2020. 2

[16] Abhinav Gupta, Adithyavairavan Murali, Dhiraj Prakashc-

hand Gandhi, and Lerrel Pinto. Robot learning in homes:

Improving generalization and reducing dataset bias. In

NeurIPS, 2018. 3

[17] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-

thankar, and Jitendra Malik. Cognitive mapping and plan-

ning for visual navigation. In CVPR, 2017. 3

[18] T. Haarnoja, Vitchyr H. Pong, Aurick Zhou, Murtaza Dalal,

P. Abbeel, and S. Levine. Composable deep reinforcement

learning for robotic manipulation. In ICRA, 2018. 2

[19] Stephen James, Zicong Ma, David Rovick Arrojo, and An-

drew J Davison. Rlbench: The robot learning benchmark &

learning environment. IEEE Robotics and Automation Let-

ters, 2020. 3

[20] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,

Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-

hinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d

environment for visual ai. arXiv, 2017. 2, 3

[21] Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz,

and Deirdre Quillen. Learning hand-eye coordination for

robotic grasping with deep learning and large-scale data col-

lection. The International Journal of Robotics Research,

2018. 2

[22] Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, and Silvio

Savarese. Hrl4in: Hierarchical reinforcement learning for in-

teractive navigation with mobile manipulators. arXiv, 2019.

2

[23] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan

Booher, Max Spero, Albert Tung, Julian Gao, John Em-

mons, Anchit Gupta, Emre Orbay, et al. Roboturk: A crowd-

sourcing platform for robotic skill learning through imita-

tion. arXiv, 2018. 3

[24] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer,

Andrew J. Ballard, Andrea Banino, Misha Denil, Ross

Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Ku-

maran, and Raia Hadsell. Learning to navigate in complex

environments. In ICLR, 2017. 3

[25] Adithyavairavan Murali, Arsalan Mousavian, Clemens Epp-

ner, Chris Paxton, and Dieter Fox. 6-dof grasping for target-

driven object manipulation in clutter. In ICRA, 2020. 2, 5

[26] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.

Semi-parametric topological memory for navigation. In

ICLR, 2018. 3

[27] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,

Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia

Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A plat-

form for embodied ai research. In ICCV, 2019. 3, 8

[28] Bokui Shen, Fei Xia, Chengshu Li, Roberto Martı́n-

Martı́n, Linxi Fan, Guanzhi Wang, Shyamal Buch, Claudia

D’Arpino, Sanjana Srivastava, Lyne P Tchapmi, et al. igib-

son, a simulation environment for interactive tasks in large

realisticscenes. arXiv, 2020. 3

[29] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan

Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer,

and Dieter Fox. ALFRED: A Benchmark for Interpreting

4505



Grounded Instructions for Everyday Tasks. In CVPR, 2020.

5

[30] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Ro-

han Chitnis, Stuart Russell, and Pieter Abbeel. Combined

task and motion planning through an extensible planner-

independent interface layer. In ICRA, 2014. 5

[31] Mike Stilman, Jan-Ullrich Schamburek, James Kuffner, and

Tamim Asfour. Manipulation planning among movable ob-

stacles. In ICRA, 2007. 2

[32] Luca Weihs, Jordi Salvador, Klemen Kotar, Unnat Jain, Kuo-

Hao Zeng, Roozbeh Mottaghi, and Aniruddha Kembhavi.

Allenact: A framework for embodied ai research. arXiv,

2020. 6

[33] Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee,

Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.

Dd-ppo: Learning near-perfect pointgoal navigators from 2.5

billion frames. In ICLR, 2020. 1, 3, 5, 6

[34] Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari,

Ali Farhadi, and Roozbeh Mottaghi. Learning to learn how to

learn: Self-adaptive visual navigation using meta-learning.

In CVPR, 2019. 3

[35] Fei Xia, Chengshu Li, Roberto Martı́n-Martı́n, Or Litany,

Alexander Toshev, and Silvio Savarese. Relmogen: Leverag-

ing motion generation in reinforcement learning for mobile

manipulation. arXiv, 2020. 2

[36] Fei Xia, William B Shen, Chengshu Li, Priya Kasimbeg, Mi-

cael Edmond Tchapmi, Alexander Toshev, Roberto Martı́n-

Martı́n, and Silvio Savarese. Interactive gibson benchmark:

A benchmark for interactive navigation in cluttered environ-

ments. IEEE Robotics and Automation Letters, 2020. 2, 3

[37] Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao

Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, Yifu Yuan,

He Wang, et al. Sapien: A simulated part-based interactive

environment. In CVPR, 2020. 2

[38] Zhenjia Xu, Zhanpeng He, Jiajun Wu, and Shuran Song.

Learning 3d dynamic scene representations for robot manip-

ulation. In CoRL, 2020. 2

[39] Ali Yahya, Adrian Li, Mrinal Kalakrishnan, Yevgen Chebo-

tar, and Sergey Levine. Collective robot reinforcement learn-

ing with distributed asynchronous guided policy search. In

IROS, 2017. 2

[40] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and

Roozbeh Mottaghi. Visual semantic navigation using scene

priors. In ICLR, 2019. 3

[41] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,

Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-

world: A benchmark and evaluation for multi-task and meta

reinforcement learning. In CoRL, 2020. 2

[42] Yuke Zhu, Daniel Gordon, Eric Kolve, Dieter Fox, Li Fei-

Fei, Abhinav Gupta, Roozbeh Mottaghi, and Ali Farhadi. Vi-

sual semantic planning using deep successor representations.

In ICCV, 2017. 5

[43] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J. Lim,

Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven

visual navigation in indoor scenes using deep reinforcement

learning. In ICRA, 2017. 3

4506


