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Figure 1: What are they doing? While just the action is observable (heating the bottle), we still predict the goal behind the

action (to open the bottle). In this paper, we learn from failure examples to learn representations of goals in video.

Abstract

We introduce a framework that predicts the goals behind

observable human action in video. Motivated by evidence

in developmental psychology, we leverage video of uninten-

tional action to learn video representations of goals without

direct supervision. Our approach models videos as contex-

tual trajectories that represent both low-level motion and

high-level action features. Experiments and visualizations

show our trained model is able to predict the underlying

goals in video of unintentional action. We also propose a

method to “automatically correct” unintentional action by

leveraging gradient signals of our model to adjust latent

trajectories. Although the model is trained with minimal

supervision, it is competitive with or outperforms baselines

trained on large (supervised) datasets of successfully exe-

cuted goals, showing that observing unintentional action is

crucial to learning about goals in video.

1. Introduction

Goal-directed action is all around us. Even though Fig-

ure 1 shows a person performing an unconventional action

(heating a wine bottle with a blowtorch), we cannot help but

to perceive the action as rational in the context of the goal

(to open the bottle).

Predicting the goal of action may seem challenging be-

cause future goals are not directly observable in video. How-

ever, in a series of papers, developmental psychologists

Amanda Woodward and Michael Tomasello demonstrated

that children reason about goals before their second birth-

day [48, 56], and this reasoning plays a key role in rapid

development of communicative skills [49] and mental repre-

sentations of the world [2]. Despite the relative ease of this

task for children, machine recognition of goals has remained

challenging.

The hypothesis underlying this paper is that examples of

failure are key missing pieces in action recognition systems.

Without observing unintentional action, we cannot expect

models to discriminate goals from actions. Examples demon-

strating unintentional action are necessary to decouple these

two notions, separating between the visible action and the

latent goals. As Efros has been telling us all along, it is all

about the data [20], and negative data doubly so [59].

The main observation behind our approach is that natural

video will contain abundant and rich examples of both inten-

tional and unintentional action [9], which we can leverage for

learning. In our model, video is represented as a trajectory,

and goals are encoded as the path for the trajectory. Given ex-

amples of videos with variable success, we present a model

that learns goal-oriented video representations by discrimi-

nating between success and failure. Our model captures both

motion and relational features through an attention-based

transformer architecture, allowing end-to-end training.

Our experiments show that failure data is crucial for learn-

11194

https://aha.cs.columbia.edu


Figure 2: Learning goal-oriented video rep-

resentations: We show an overall view of our

approach. First, we embed short clips using a

3D CNN to represent short-term motion features.

Then, we run the sequence of CNN embeddings

through a stack of Transformers, where they in-

teract with each other to finally form a context-

adjusted latent action trajectory. The model is

trained end-to-end from scratch, with intentional-

ity and temporal coherence losses (depicted top-

left). Points along the resultant trajectory are de-

coded with linear projections into various spaces

(top-middle).

ing representations of goals. We evaluate our model on three

goal prediction tasks. First, we experiment on detecting

unintentional action in video, and we demonstrate strong

performance over baselines on this task. Second, we eval-

uate the representation at predicting goals with minimal

supervision, which we characterize as structured categories

consisting of subject, action, and object triplets. Lastly, we

use our representation to automatically “correct” uninten-

tional action and decode these corrections by retrieving from

other videos or generating categorical descriptions.

Our main contribution is an approach that, training on

data of unintentional action, learns a goal-directed represen-

tation of videos. We show that our model often captures

the latent goals behind observed action, performing on par

with or better than supervised models trained on large la-

beled datasets of only intentional action. We also introduce a

method to find minimal adjustments to the path and “automat-

ically correct” unintentional action in video. The remainder

of this paper will describe this approach in detail. Code, data,

and models will be available.

2. Related Work

Recognizing action in video: Previous work explores

many different approaches to recognizing action in video.

Earlier directions develop hand-designed features to pro-

cess spatio-temporal information for action recognition

[31, 28, 53, 41]. Popular deep learning architectures for

images were extended to operate directly on video by model-

ing time as a third dimension [18, 4, 46, 33, 25]. To deal with

variable-length or long video input, previous work frequently

takes one of two approaches: pooling or recurrent networks.

However, pooling loses spatial and/or temporal connections

between different moments of video. Since recurrent net-

works are sequential, they require selecting important video

features ahead of time, without viewing full context. RNNs

are also known to struggle to connect between far-apart in-

puts, which creates significant challenges in modeling long-

term video. [47] is most similar to our approach, since they

also run clips through 3D CNNs and Transformers, but they

freeze 3D CNNs and train on a “masked video modeling"

task, ultimately discarding contextually learned temporal dy-

namics across videos since their goal is to learn information

useful for an effective cross-modal representation. To ad-

dress these drawbacks, we propose a 3D-CNN-Transformer

model which allows for short-term, granular motion detec-

tion combined with a long-term action representation, trained

end-to-end from scratch.

Learning about intention: Evidence in developmental

psychology quantifies why humans perceive intention [2],

how we perceive it [58, 57, 56], when we begin to do so

[34, 35], and what allows us to infer the goals behind others’

behavior [44]. Previous work uses goal supervision to plan

action trajectories [5, 30]. Early work in computer vision

has investigated assessing the quality of action execution

[42, 8, 40], which our work builds upon. However, we view

quality from a goal-directed perspective and automatically

correct unintentional action with minimal supervision. We

take advantage of signals in unconstrained video collections

of both intentional and unintentional action [9] to learn about

goals from video.

Leveraging adversarial attacks: We use adversarial gra-

dients [13, 29] to find adjustments to learned video represen-

tations which “auto-correct” unintentional action back onto

the manifold of intentional action. Previous work studied
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Figure 3: Labeling goals and failures in video: To evalu-

ate our representation, we annotate the Oops! dataset with

short sentences describing the goals and failures. We extract

subject-verb-object triples and train a decoder on learned

representations. The intentional and unintentional action in

the dataset span a diverse range of categories.

adversarial attacks in steganography [19, 63], software bug-

finding [43], generating CAPTCHAs [52] to fool modern

deep nets [39], generating interesting images [45], creating

real-world 3D objects that trick neural networks [62, 1], and

in training models more robust to test-time adversarial at-

tacks [38, 13, 37]. [23] extend this concept to generative

models, setting a new image output as a target label and

perturbing latent space. In video, [27, 55] introduce various

methods to fool action recognition networks, often on a 3D

CNN backbone. We instead utilize adversarial attacks to

manipulate and correct unintentional action.

3. Unintentional Action and Goals Dataset

Similar to how children learn about goals by perceiving

failed attempts at executing them [35], we hypothesize that

examples of failure are crucial for learning to discriminate

between action and goal. Without observing unintentional

action, models can not learn the pattern discriminating action

and intention. We build on the Oops! dataset [9], which is a

large collection of videos containing intentional and uninten-

tional action, to train and evaluate our models. Videos in this

dataset are annotated with the moment at which action be-

comes unintentional. Figure 3 shows some example frames.

We also use the Kinetics dataset [3] to evaluate models, since

it contains a wide range of successful actions.

We would like to learn a representation of goals that only

requires visual information to train. However, evaluating

trained models and probing them for an understanding of

goals requires gathering labels of goals. Therefore, we ex-

pand [9] with textual descriptions of goals and failures in the

dataset, and use these annotations to evaluate our (trained,

frozen) model in comparison to other representations.

3.1. Goal and Failure Annotation

Established action datasets in computer vision [14, 32]

contain annotations about person and object relationships

in scenes, but they do not directly annotate the goal, which

we need for evaluation of goal prediction. We collect uncon-

strained natural language descriptions of a subset of videos

in the Oops! dataset (4675 training videos and 3404 test

videos), prompting Amazon Mechanical Turk workers1 to

answer “What was the goal in this video?” as well as “What

went wrong?”. We then process these sentences2 to detect

lemmatized subject-verb-object triples, manually correcting

for common constructions such as “tries to X” (where the

verb lemma is detected as “try”, but we would like “X”). The

final vocabulary contains 3615 tokens. Figure 3 shows some

example annotations. We use SVO triples to evaluate the

video representations.

4. Method

In this section, we introduce our framework to learn goal-

oriented trajectory representations of video. Our method ac-

cepts as input sequences of video input depicting intentional

and/or unintentional action, and learns to represent these

sequences as latent trajectories, from which intentionality of

action is predicted. We show in Section 5 that, having ob-

served unsuccessful action as well as successful, our trained

model learns trajectories which capture the goals latent in

the input video.

4.1. Visual Dynamics as Trajectories

A common approach to representing video data is to run

each clip through a convolutional network and combine clip

representations by pooling to run models on entire sequences

[10, 15, 12, 61]. However, these methods do not allow for

connections between different moments in video and cannot

richly capture temporal relationships, which give rise to goal-

directed action. While recurrent networks [21] are more ex-

pressive, they require compressing history into a fixed-length

vector, which forces models to select relevant visual features

without viewing full context and makes reasoning about

connections between different moments difficult, especially

when they are far apart.

Temporal streams of visual input are highly contextual

with both short- and long-term dependencies. We will rep-

resent video as a contextually-adjusted trajectory of latent

1with > 10k approvals at a ≥ 99% rate
2Using the Spacy.io natural language library
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representations in a learned space. Figure 2 illustrates this

architecture, which has both a motion and action level:

Motion Level: First, we separate video into short clips

(or tokens) in order to make initial motion-level observations.

Let x be a video, and xi be a video clip centered at time i.

We estimate the motion-level features φi = f(xi) where f

is a 3D CNN [26].

Action Level: Second, we model relations between φi

to construct a contextual trajectory hi = g(φi) where g is

the Transformer [51]. The Transformer accepts as input a

sequence of motion-level representations {φi}
n
i=1, repeat-

edly performs self-attention among them, in the same spirit

as the forward pass of a graph neural network, with video

clips as nodes [60]. The output of the Transformer is a final

latent path {hi}
n
i=1. Since the self-attention operation can

incorporate contributions from both nearby and far away

moments in its representations for each clip, the Transformer

is well-suited to modeling higher-level connections between

the atomic actions recognized at the motion level. The Trans-

former’s output {hi}
n
i=1 can then be applied in different

downstream tasks.

4.2. Learning with Indirect Supervision

We learn the representation with weak, indirect supervi-

sion that is accessible at large scales. This supervision is

also truer to how humans learn about intention, since we do

not require labeled action semantics, but do often receive en-

vironmental cues about whether others’ action is intentional

or not [6]. We use the following two objectives for learning:

Action Intentionality: We train the model to temporally

localize when action is unintentional. We assume that the

video frame where the action shifts from intentional to un-

intentional is labeled [9], and note that these labels are a

significantly weaker form of supervision than semantic ac-

tion categories. For each video clip xi, we set the target

yfail
i ∈ {0, 1, 2} according to whether the labeled frame hap-

pens before, during, or after the clip xi. The model estimates

ŷfail
i = softmax(wT

1 hi) with a linear projection where w1

is a jointly learned projection matrix to R
3. We train with

a cross-entropy loss between ŷfail and yfail where the class

weight is set to the inverse frequency of the class label to

balance training. We label this loss Lfail.

Temporal Consistency: We also train the model to learn

temporal dynamics with a self-supervised consistency loss

[15, 36, 11, 54, 24, 7]. Let ynsp = 1 indicate that the se-

quence is consistent. We predict whether the input sequence

is temporally consistent with ŷnsp = σ(wT
2 h0) where w2 is

a jointly learned projection to R. We train with the binary

cross-entropy loss between ynsp and ŷnsp. We label this loss

Lnsp (next sequence prediction). This loss encourages the

model to learn longer-term patterns in human action.

We create inconsistent sequences as follows: For each

video sequence in the batch, we bisect the sequence into two

parts at a random index with probability psplit = 0.5. For

these sequences, we perturb the video segments with proba-

bility pperturb = 0.5. When perturbing, we swap the order of

the two sequences with probability pswap = 0.3, otherwise

we pick a randomly sized subsequence from another video

sequence in the batch to replace one of the two segments.

A large line of recent and concurrent work has tackled the

problem of self-supervised representation learning in video

(e.g. [15, 16, 17, 36, 11]). Our paper focuses on the value

of training on data of unintentional action to learn goals,

and we use the self-supervised temporal consistency loss

to encourage our model to reason about longer sequences

of action, especially useful for the automatic correction of

unintentional action demonstrated in Section 5.4. Other self-

supervised losses could be incorporated into our framework

to serve the same purpose.

Training: To train our model, we set the overall loss as

L = Lfail + λLnsp, where λ is a hyperparameter controlling

the importance of the coherence loss. We set λ = 0.5 to

balance the magnitudes of the losses.

5. Experiments

5.1. Experimental Setup

Baselines: We evaluate the 3D CNN from [9] which is

trained from scratch on the action intentionality loss (Section

4.2). We also evaluate a 3D CNN pre-trained on Kinetics ac-

tion recognition, which is frozen unless indicated otherwise.

The 3D CNN trained on Kinetics is the current state of the

art in video representation learning when transferred to many

downstream tasks, and represents a high-water mark for per-

formance when training only on intentional action. Further,

to fairly compare the Transformer layer to 3D CNNs which

take in one short clip only, we pool 3D CNN predictions

locally with neighboring predictions such that both methods

have the same effective temporal receptive field.

We evaluate our learned representations by freezing them

and then decoding them via retrieval as well as goal and

failure prediction.

Retrieval: We perform nearest-neighbor retrieval among

one-second long clips in the test sets for the Oops! and Ki-

netics datasets. While we do not learn a representation using

Kinetics data, we include a subset of Kinetics (of the same

size as the Oops! validation set) in retrieval, to see if auto-

corrected actions match with successfully executed goals in

Kinetics rather than failed attempts (see Section 5.4). This

decoder maintains a lookup table of all clip representations

and computes the k-nearest neighbors from different videos

using cosine distance.

Categorization: We also implement a decoder using the

textual labels we gathered on the videos. Here, the task

is to describe the goals of the input video using the SVO

triplets. We train a decoder to predict the main goal for
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Localization Classification

Method 01 sec 0.25 sec Accuracy

Kinetics [4] finetune 75.9 46.7 64.0

Kinetics frozen + linear 69.2 37.8 53.6

3D CNN only [9] 68.7 39.8 59.4

Our model 72.4 39.9 77.9

Chance 25.9 6.8 33.3

Table 1: Detecting unintentional action: We evaluate mod-

els on classifying and localizing unintentional action on the

Oops! Our model is competitive with Kinetics supervised

features on unintentional action localization despite training

from scratch, outperforming it on three-way classification.

Since our model learns how to relate between different mo-

ments in time, instead of naively pooling, it is able to make

better use of temporal context to solve these tasks.

clips with intentional action (before the onset of failure),

and predict what went wrong for clips with unintentional

action, using labels gathered as described in Section 3.1.

The estimated decoder will describe intentional action in

video with descriptions of the goal, for example “athlete

wins game” and not “throwing ball", which is an action.

Unintentional action, in turn, will be described as “man

spills groceries” instead of a generic action category such

as “walking”. We train a linear layer to output a vector for

subject, verb, and object. As ground truth, we use BERT

word embeddings [7], calculating scores using dot product

and running them through softmax and a cross-entropy loss.

5.2. Unintentional Action Detection

We evaluate the model at detection and temporal localiza-

tion when action deviates from its goal. We use labels from

the test set in [9] as the ground truth. We process videos with

our model, sampling continuous one-second clips as tokens,

and take the predicted localization as the center of the clip

with maximum probability of failure. We also classify each

clip according to its label (intentional, transitional, or unin-

tentional). We show results in Table 1. On the former task,

our model is competitive with fine-tuning a fully-supervised

Kinetics CNN, despite using less data and less supervision.

On classification, our network outperforms the Kinetics net-

work by 14%, showing that representing videos as contextual

trajectories is effective.

5.3. Goal Prediction

We next evaluate the model at predicting goal descrip-

tions. We train a decoder on the trajectory to read out subject,

verb, object triplets. In this task, ground truth is the labeled

goal if action is intentional, and the labeled failure if ac-

tion is unintentional. In training, if sentences have more

than one extracted SVO, we randomly select one as ground

Subject Verb Object Average All three

Features R1 R5 R1 R5 R1 R5 R1 R5 R1 R5

Kinetics [4] 26.8 72.3 27.3 52.7 36.0 64.6 30.0 63.2 2.1 16.5

3D CNN [9] 29.4 72.7 26.4 50.4 44.7 57.9 33.5 60.3 2.9 13.9

Random 23.7 55.7 22.7 45.4 44.8 52.7 30.4 51.3 1.4 8.7

Our Model 34.3 74.5 29.7 54.2 45.0 58.2 36.3 62.3 3.3 14.4

Chance 0.1 <0.1

Table 2: Comparison of Representations: To evaluate

how well representations encode goals, we freeze them and

estimate a linear projection to predict labelled subject-verb-

object triples in the Oops! validation set. We evaluate top-1

and top-5 recall (R1, R5). By observing sequences of both

intentional and unintentional action, our model performs

competitively with others trained on large labeled datasets

of successful action.

truth. In testing, we average-pool predictions among all clips

with intentional action and unintentional action separately

and take the maximum over all sentence SVOs. Each video

clip has two pooled predictions: one for video showing in-

tentional action (where ground truth is the labeled goal of

the video), and one for video showing unintentional action

(where ground truth is the labeled failure). Table 2 shows

our model obtains better top-1 accuracy on all metrics than

baselines, including the Kinetics-pretrained model, and is

competitive on top-5 accuracy, highlighting the importance

of observing failure for understanding goals.

5.4. Completing Goals by AutoCorrecting Trajec
tories

We would like to use our learned representation in or-

der to infer the goals of people in scenes of unintentional

action. However, since the model is trained with indirect

supervision, the trajectories h are not supervised with goal

states. We propose to formulate goal completion as a latent

trajectory prediction problem. Given an observed trajectory

of unintentional action h, we seek to find a new, minimally

modified trajectory h′ that is classified as intentional. By

analogy to how word processors auto-correct a sentence,

we call this process action auto-correct. We illustrate this

process in Figure 4.

We find this correction in feature space, not pixel space, to

yield interpretable results. We find a gradient to the features

φ that switches the prediction ŷfail
i to be the “intentional”

category for all clips i.

We formulate an optimization problem with two soft con-

straints. Firstly, we want to increase the classification score

of intentional action Lfail. Secondly, we want the resulting

trajectory to be temporally consistent Lnsp. Without this

term, the corrected trajectory is not required to be coherent

with the initial part of the original trajectory. We minimize
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Figure 4: Automatically correcting unintentional action: Starting from an initial trajectory, we use model gradients as a

signal to correct the course of points representing unintentional action (Section 5.4). We evaluate corrected trajectories by

decoding them into SVO triples and retrieving nearest neighbors from a databank.

Figure 5: Retrievals from Auto-corrected Trajectories: We show the nearest neighbors from auto-corrected action

trajectories, using our proposed method and a linearization baseline. The retrievals are computed across both the Oops! and

Kinetics datasets, since Kinetics contains many examples of goals being successfully executed, whereas Oops! focuses on

unintentional action. The corrected representations yield corrected trajectories that are often embedded close to the goal.

this modified cost function with respect to φ′

t:T :

J = max
(

0,Lnsp
y=1(φ

′)− Lnsp
y=1(φ)

)

+ λ
∑

i

Lfail
y=0(φ

′

i)

where Ls are the original loss functions but with target labels

yfail overridden to be the intentional class, and λ = 2 is a

scalar to balance the two terms. We only modify φ on the

clips which the model classifies as unintentional in the first

place, which we denote φ′

t:T . The coherence loss is also

truncated by its original value, causing the optimization to

favor a trajectory that is no less temporally coherent than the

original one.

To solve this optimization problem, we use the iterative

target class method [29], which repeatedly runs the input

through the model and modifies it in the direction of the de-

sired loss. For every φi corresponding to a clip where action

is unintentional, we repeat a gradient attack step towards the

target yfail
i = 0. The complete update is:3

φk+1

t:T = clip
[

φk
t:T − α sign (∇φt:T

J) , φt:T ± ǫ
]

(1)

3We found kmax = 25, α = 0.03, ǫ = 1 to be reasonable values.

where φ0
t:T = φt:T . We repeat this process until the network

is “fooled” into classifying the input as intentional action,

for at most kmax iterations or until argmax ŷfail
i = 0. Once

the halting condition is satisfied, we run the modified φ′

vectors through the model, yielding a trajectory of corrected

action h′ that encodes successful completion of the goal. In

other words, goals are the adversarial examples [13] of failed

action – instead of viewing adversarial examples as a bug,

we view them as a feature [22].

As a comparison, we implement a simple baseline where

we linearly extrapolate the trajectory of observed intentional

action: if the unintentional action in a sequence of clips

{xi}
n
i=0 begins at clip j, we extend the trajectory for a clip

xk ∈ {xj , . . . , xn} by setting hk = hj + (k − j)
hj−h0

j
.

We find this baseline to outperform other naive ones such

as the identity function (i.e. leaving the representation un-

touched) and using the representation of the last moment

before unintentional action.

Figure 5 shows examples of nearest neighbor retrievals of

the corrected latent vectors, computing over the Oops! and

Kinetics test sets. Despite not training on Kinetics (i.e. on
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Figure 6: Decoding the Trajectories: We run our trained subject-verb-object decoder on different segments of Oops! videos.

Row 1 shows clips of intentional action, and the trained decoder predicts the latent goal. Row 2 shows unintentional action, and

the trained decoder now predicts failures instead. The final row also shows unintentional videos, but we run our auto-correction

algorithm before predicting SVOs. The trained decoder returns to predicting goals, suggesting the auto-correct procedure

shifts the failed trajectories towards successful ones.

videos with completed goals), our representation can adjust

video trajectories such that their nearest neighbors are goals

being successfully executed. We also examine the effects of

auto-correction on the frozen SVO decoder. Table 3 shows

these results. For decoders trained on all models, rankings of

intentional action SVOs increase while those of unintentional

SVOs decrease. However, the changes are greatest for our

model. Figure 6 visualizes the output of a frozen SVO

decoder on auto-corrected actions, demonstrating the auto-

correct process’ ability to encode completed goals in its

output trajectories.

5.5. Analysis of Learned Representation

We finally probe the model’s learned representation to an-

alyze how trajectories are encoded. We measure Spearman’s

rho correlation between the activation of neurons in the out-

put vectors h ∈ R
512 and words in the SVO vocabulary.

Each video is an observation containing neuron activations

and an indicator variable for whether each word is present in

ground truth. Many neurons have significant correlation, and

we show the top 3 in Figure 7a, along with the 5 clips that ac-

tivate them most. These neurons appear to discover common

intentions in the Oops! dataset, despite being trained without

any labels other than the moment of onset of unintentional

action. Note that the neurons are often invariant to action

class and capture shared underlying intention. We also vi-

Intentional SVO Unintentional SVO

Method Features ∆ R5 ∆ Rank ∆ R5 ∆ Rank

Adversarial Ours +1.6 +15.8M -3.3 -9.3M

Kinetics [4] +0.4 +0.3M -0.3 -1.2M

3D CNN [9] +0.3 +0.1M -0.3 -0.6M

Linearized Ours +0.6 +1.0M -0.5 -1.7M

Table 3: Evaluating Autocorrection: We freeze the trained

SVO decoder and run it on trajectories of unintentional ac-

tion, before and after auto-correction. We run our algorithm

based on adversarial attacks in various feature spaces as

well as a linearization baseline. Using our algorithm, the

frozen decoder more often predicts the ground truth goal

SVO instead of the failure, indicating that our representation

– crucially trained on unintentional and intentional action –

captures the goals latent to video.

sualize trajectories of some videos using t-SNE (Figure 7b),

before and after autocorrect. Our model often adjusts trajec-

tories from unintentional action to the region of embedding

space with Kinetics videos, shown in the figure as “at goal"

action.

We evaluate our model’s ability to classify action inten-

tionality, predict goals, and automatically correct uninten-

tional action. We train from scratch using the Oops! dataset
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(a) Top neuron-SVO correlations (b) Trajectories in t-SNE

Figure 7: Analyzing the Representation: We probe the learned trajectories. (a) shows the neurons with highest correlation to

the words in the SVO vocabulary, along with their top-5 retrieved clips. Neurons that detect intentions across a wide range of

action and scene appear to emerge, despite only training with binary labels on the intentionality of action. (b) We show six

randomly sampled video trajectories in t-SNE space, before and after auto-correct, superimposed over the embeddings for

intentional and unintentional action. Visualizations suggest our approach tends to adjust unintentional action in the direction

of successful, intentional action.

[9] as described above.

6. Implementation Details

To train our model, we randomly sample sequences of

clips {xi}
n
i=1, where each clip xi consists of k = 16 frames

at r = 16 fps. In training, the length of these sequences n is

randomly drawn between [nlo, nhi] = [6, 10], so the model

trains on video segments up to 10 seconds long (due to GPU

memory limitations). Each clip is input to a 3D CNN fcnn
(we use the R2+1D-18 architecture [50]) which gives a video

token embedding φi = fcnn(xi) ∈ R
d, where d = 512 is

the hidden representation dimension. This is analogous to

the word token embedding common in language modeling

(e.g. [7]), where we separately learn embeddings for special

tokens used to delimit input sequences.

In addition to video and special token embeddings, an

additional function embeds each token’s position in the input

sequence, since the Transformer’s attention-based compu-

tations do not otherwise encode input positions. This em-

bedding is fixed to a combination of trigonometric functions

as in [51], and is added to the CNN output. This allows the

network to learn to generalize to unseen sequence lengths

at test time, crucial to allow inference on very long videos

(which would not fit in the GPU during training due to com-

putational graph overhead). Input token embeddings are then

fed to a 4-layer Transformer network with 8 attention heads

per layer.

At test time, we feed entire videos through our model,

sampled in continuous one-second intervals. If running auto-

correct, we automatically split the model into two sequences

at the clip where unintentional action is predicted to begin.

Otherwise, we keep the entire video intact and represent it

as a full trajectory.

7. Conclusion

We introduce an approach to learn about goals in video.

By encoding action as a trajectory, we are able to perform

several different tasks, such as decoding to categorical de-

scriptions or manipulating the trajectory. Our experiments

show that learning from failure examples, not just successful

action, is crucial for learning rich visual representations of

goals.
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