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Figure 1. Our approach enables transformers to synthesize high-resolution images like this one, which contains 1280x460 pixels.

Abstract

Designed to learn long-range interactions on sequential

data, transformers continue to show state-of-the-art results

on a wide variety of tasks. In contrast to CNNs, they contain

no inductive bias that prioritizes local interactions. This

makes them expressive, but also computationally infeasi-

ble for long sequences, such as high-resolution images. We

demonstrate how combining the effectiveness of the induc-

tive bias of CNNs with the expressivity of transformers en-

ables them to model and thereby synthesize high-resolution

images. We show how to (i) use CNNs to learn a context-

rich vocabulary of image constituents, and in turn (ii) utilize

transformers to efficiently model their composition within

high-resolution images. Our approach is readily applied

to conditional synthesis tasks, where both non-spatial in-

formation, such as object classes, and spatial information,

such as segmentations, can control the generated image.

In particular, we present the first results on semantically-

guided synthesis of megapixel images with transformers.

Project page at https://git.io/JLlvY .

1. Introduction

Transformers are on the rise—they are now the de-facto

standard architecture for language tasks [64, 50, 51, 5]

and are increasingly adapted in other areas such as audio

[12] and vision [8, 15]. In contrast to the predominant vi-

sion architecture, convolutional neural networks (CNNs),

the transformer architecture contains no built-in inductive

prior on the locality of interactions and is therefore free

to learn complex relationships among its inputs. However,

this generality also implies that it has to learn all relation-

ships, whereas CNNs have been designed to exploit prior

knowledge about strong local correlations within images.

Thus, the increased expressivity of transformers comes with

quadratically increasing computational costs, because all

pairwise interactions are taken into account. The result-

ing energy and time requirements of state-of-the-art trans-

former models thus pose fundamental problems for scaling

them to high-resolution images with millions of pixels.

Observations that transformers tend to learn convolu-

tional structures [15] thus beg the question: Do we have

to re-learn everything we know about the local structure

and regularity of images from scratch each time we train

a vision model, or can we efficiently encode inductive im-

age biases while still retaining the flexibility of transform-

ers? We hypothesize that low-level image structure is well

described by a local connectivity, i.e. a convolutional ar-

chitecture, whereas this structural assumption ceases to be

effective on higher semantic levels. Moreover, CNNs not

only exhibit a strong locality bias, but also a bias towards
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spatial invariance through the use of shared weights across

all positions. This makes them ineffective if a more holistic

understanding of the input is required.

Our key insight to obtain an effective and expressive

model is that, taken together, convolutional and transformer

architectures can model the compositional nature of our vi-

sual world [44]: We use a convolutional approach to effi-

ciently learn a codebook of context-rich visual parts and,

subsequently, learn a model of their global compositions.

The long-range interactions within these compositions re-

quire an expressive transformer architecture to model distri-

butions over their consituent visual parts. Furthermore, we

utilize an adversarial approach to ensure that the dictionary

of local parts captures perceptually important local struc-

ture to alleviate the need for modeling low-level statistics

with the transformer architecture. Allowing transformers

to concentrate on their unique strength — modeling long-

range relations — enables them to generate high-resolution

images as in Fig. 1, a feat which previously has been out of

reach. Our formulation directly gives control over the gen-

erated images by means of conditioning information regard-

ing desired object classes or spatial layouts. Finally, experi-

ments demonstrate that our approach retains the advantages

of transformers by outperforming previous codebook-based

state-of-the-art approaches based on convolutional architec-

tures.

2. Related Work

The Transformer Family The defining characteristic of

the transformer architecture [64] is that it models interac-

tions between its inputs solely through attention [2, 32, 45]

which enables them to faithfully handle interactions be-

tween inputs regardless of their relative position to one an-

other. Originally applied to language tasks, inputs to the

transformer were given by tokens, but other signals, such as

those obtained from audio [37] or images [8], can be used.

Each layer of the transformer then consists of an attention

mechanism, which allows for interaction between inputs at

different positions, followed by a position-wise fully con-

nected network, which is applied to all positions indepen-

dently. More specifically, the (self-)attention mechanism

can be described by mapping an intermediate representa-

tion with three position-wise linear layers into three repre-

sentations, query Q ∈ R
N×dk , key K ∈ R

N×dk and value

V ∈ R
N×dv , to compute the output as

Attn(Q,K, V ) = softmax
(QKt

√
dk

)

V ∈ R
N×dv . (1)

When performing autoregressive maximum-likelihood

learning, non-causal entries of QKt, i.e. all entries be-

low its diagonal, are set to −∞ and the final output of the

transformer is given after a linear, point-wise transforma-

tion to predict logits of the next sequence element. Since

the attention mechanism relies on the computation of inner

products between all pairs of elements in the sequence, its

computational complexity increases quadratically with the

sequence length. While the ability to consider interactions

between all elements is the reason transformers efficiently

learn long-range interactions, it is also the reason transform-

ers quickly become infeasible, especially on images, where

the sequence length itself scales quadratically with the res-

olution. Different approaches have been proposed to reduce

the computational requirements to make transformers feasi-

ble for longer sequences. [48] and [66] restrict the receptive

fields of the attention modules, which reduces the expres-

sivity and, especially for high-resolution images, introduces

unjustified assumptions on the independence of pixels. [12]

and [24] retain the full receptive field but can reduce costs

for a sequence of length n only from n2 to n
√
n, which

makes resolutions beyond 64 pixels still prohibitively ex-

pensive.

Convolutional Approaches The two-dimensional struc-

ture of images suggests that local interactions are particu-

larly important. CNNs exploit this structure by restricting

interactions between input variables to a local neighborhood

defined by the kernel size of the convolutional kernel. Ap-

plying a kernel thus results in costs that scale linearly with

the overall sequence length (the number of pixels in the case

of images) and quadratically in the kernel size, which, in

modern CNN architectures, is often fixed to a small constant

such as 3×3. This inductive bias towards local interactions

thus leads to efficient computations, but the wide range of

specialized layers which are introduced into CNNs to han-

dle different synthesis tasks [46, 70, 59, 74, 73] suggest that

this bias is often too restrictive.

Convolutional architectures have been used for autore-

gressive modeling of images [61, 62, 10] but, for low-

resolution images, previous works [48, 12, 24] demon-

strated that transformers consistently outperform their con-

volutional counterparts. Our approach allows us to ef-

ficiently model high-resolution images with transformers

while retaining their advantages over state-of-the-art con-

volutional approaches.

Two-Stage Approaches Closest to ours are two-stage ap-

proaches which first learn an encoding of data and after-

wards learn, in a second stage, a probabilistic model of this

encoding. [13] demonstrated both theoretical and empirical

evidence on the advantages of first learning a data repre-

sentation with a Variational Autoencoder (VAE) [34, 54],

and then again learning its distribution with a VAE. [17, 68]

demonstrate similar gains when using an unconditional nor-

malizing flow for the second stage, and [55, 56] when using

a conditional normalizing flow. To improve training effi-

ciency of Generative Adversarial Networks (GANs), [39]
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Figure 2. Our approach uses a convolutional VQGAN to learn a codebook of context-rich visual parts, whose composition is subsequently

modeled with an autoregressive transformer architecture. A discrete codebook provides the interface between these architectures and a

patch-based discriminator enables strong compression while retaining high perceptual quality. This method introduces the efficiency of

convolutional approaches to transformer based high resolution image synthesis.

learns a GAN [19] on representations of an autoencoder and

[20] on low-resolution wavelet coefficients which are then

decoded to images with a learned generator.

[63] presents the Vector Quantised Variational Autoen-

coder (VQVAE), an approach to learn discrete represen-

tations of images, and models their distribution autore-

gressively with a convolutional architecture. [53] extends

this approach to use a hierarchy of learned representations.

However, these methods still rely on convolutional density

estimation, which makes it difficult to capture long-range

interactions in high-resolution images. [8] models images

autoregressively with transformers in order to evaluate the

suitability of generative pretraining to learn image repre-

sentations for downstream tasks. Since input resolutions of

32× 32 pixels are still quite computationally expensive [8],

a VQVAE is used to encode images up to a resolution of

192 × 192. In an effort to keep the learned discrete repre-

sentation as spatially invariant as possible with respect to

the pixels, a shallow VQVAE with small receptive field is

employed. In contrast, we demonstrate that a powerful first

stage, which captures as much context as possible in the

learned representation, is critical to enable efficient high-

resolution image synthesis with transformers.

3. Approach

Our goal is to exploit the highly promising learning ca-

pabilities of transformer models [64] and introduce them to

high-resolution image synthesis up to the megapixel range.

Previous work [48, 8] which applied transformers to image

generation demonstrated promising results for images up to

a size of 64 × 64 pixels but, due to the quadratically in-

creasing cost in sequence length, cannot simply be scaled

to higher resolutions.

High-resolution image synthesis requires a model that

understands the global composition of images, enabling it to

generate locally realistic as well as globally consistent pat-

terns. Therefore, instead of representing an image with pix-

els, we represent it as a composition of perceptually rich im-

age constituents from a codebook. By learning an effective

code, as described in Sec. 3.1, we can significantly reduce

the description length of compositions, which allows us to

efficiently model their global interrelations within images

with a transformer architecture as described in Sec. 3.2.

This approach, summarized in Fig. 2, is able to generate

realistic and consistent high resolution images both in an

unconditional and a conditional setting.

3.1. Learning an Effective Codebook of Image Con
stituents for Use in Transformers

To utilize the highly expressive transformer architecture for

image synthesis, we need to express the constituents of an

image in the form of a sequence. Instead of building on indi-

vidual pixels, complexity necessitates an approach that uses

a discrete codebook of learned representations, such that

any image x ∈ R
H×W×3 can be represented by a spatial

collection of codebook entries zq ∈ R
h×w×nz , where nz is

the dimensionality of codes. An equivalent representation

is a sequence of h · w indices which specify the respective

entries in the learned codebook. To effectively learn such

a discrete spatial codebook, we propose to directly incor-

porate the inductive biases of CNNs and incorporate ideas

from neural discrete representation learning [63]. First, we

learn a convolutional model consisting of an encoder E and

a decoder G, such that taken together, they learn to repre-
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sent images with codes from a learned, discrete codebook

Z = {zk}Kk=1 ⊂ R
nz (see Fig. 2 for an overview). More

precisely, we approximate a given image x by x̂ = G(zq).
We obtain zq using the encoding ẑ = E(x) ∈ R

h×w×nz

and a subsequent element-wise quantization q(·) of each

spatial code ẑij ∈ R
nz onto its closest codebook entry zk:

zq = q(ẑ) :=

(

argmin
zk∈Z

‖ẑij − zk‖
)

∈ R
h×w×nz . (2)

The reconstruction x̂ ≈ x is then given by

x̂ = G(zq) = G (q(E(x))) . (3)

Backpropagation through the non-differentiable quantiza-

tion operation in Eq. (3) is achieved by a straight-through

gradient estimator, which simply copies the gradients from

the decoder to the encoder [3], such that the model and

codebook can be trained end-to-end via the loss function

LVQ(E,G,Z) = ‖x− x̂‖2 + ‖sg[E(x)]− zq‖22
+ β‖sg[zq]− E(x)‖22. (4)

Here, Lrec = ‖x− x̂‖2 is a reconstruction loss, sg[·] denotes

the stop-gradient operation, and ‖sg[zq]−E(x)‖22 is the so-

called “commitment loss” with weighting factor β [63].

Learning a Perceptually Rich Codebook Using trans-

formers to represent images as a distribution over latent

image constituents requires us to push the limits of com-

pression and learn a rich codebook. To do so, we propose

VQGAN, a variant of the original VQVAE, and use a dis-

criminator and perceptual loss [36, 26, 35, 16] to keep good

perceptual quality at increased compression rate. Note that

this is in contrast to previous works which applied pixel-

based [62, 53] and transformer-based autoregressive mod-

els [8] on top of only a shallow quantization model. More

specifically, we replace the L2 loss used in [63] for Lrec by

a perceptual loss and introduce an adversarial training pro-

cedure with a patch-based discriminator D [25] that aims to

differentiate between real and reconstructed images:

LGAN({E,G,Z}, D) = [logD(x) + log(1−D(x̂))] (5)

The complete objective for finding the optimal compression

model Q∗ = {E∗, G∗,Z∗} then reads

Q∗ = argmin
E,G,Z

max
D

Ex∼p(x)

[

LVQ(E,G,Z)

+λLGAN({E,G,Z}, D)
]

, (6)

where we compute the adaptive weight λ according to

λ =
∇GL

[Lrec]

∇GL
[LGAN] + δ

(7)

where Lrec is the perceptual reconstruction loss [71], ∇GL
[·]

denotes the gradient of its input w.r.t. the last layer L of

the decoder, and δ = 10−6 is used for numerical stability.

To aggregate context from everywhere, we apply a single

attention layer on the lowest resolution. This training pro-

cedure significantly reduces the sequence length when un-

rolling the latent code and thereby enables the application

of powerful transformer models.

3.2. Learning the Composition of Images with
Transformers

Latent Transformers With E and G available, we can

now represent images in terms of the codebook-indices of

their encodings. More precisely, the quantized encoding of

an image x is given by zq = q(E(x)) ∈ R
h×w×nz and

is equivalent to a sequence s ∈ {0, . . . , |Z|−1}h×w of in-

dices from the codebook, which is obtained by replacing

each code by its index in the codebook Z:

sij = k such that (zq)ij = zk. (8)

By mapping indices of a sequence s back to their corre-

sponding codebook entries, zq =
(

zsij
)

is readily recov-

ered and decoded to an image x̂ = G(zq).

Thus, after choosing some ordering of the indices in

s, image-generation can be formulated as autoregressive

next-index prediction: Given indices s<i, the transformer

learns to predict the distribution of possible next indices,

i.e. p(si|s<i) to compute the likelihood of the full repre-

sentation as p(s) =
∏

i p(si|s<i). This allows us to directly

maximize the log-likelihood of the data representations:

LTransformer = Ex∼p(x) [− log p(s)] . (9)

Conditioned Synthesis In many image synthesis tasks a

user demands control over the generation process by provid-

ing additional information from which an example shall be

synthesized. This information, which we will call c, could

be a single label describing the overall image class or even

another image itself. The task is then to learn the likelihood

of the sequence given this information c:

p(s|c) =
∏

i

p(si|s<i, c). (10)

If the conditioning information c has spatial extent, we first

learn another VQGAN to obtain again an index-based rep-

resentation r ∈ {0, . . . , |Zc|−1}hc×wc with the newly ob-

tained codebook Zc Due to the autoregressive structure of

the transformer, we can then simply prepend r to s and

restrict the computation of the negative log-likelihood to

entries p(si|s<i, r). This “decoder-only” strategy has also

been successfully used for text-summarization tasks [40].
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Figure 3. Sliding attention window.

Generating High-Resolution Images The attention

mechanism of the transformer puts limits on the sequence

length h · w of its inputs s. While we can adapt the number

of downsampling blocks m of our VQGAN to reduce

images of size H × W to h = H/2m × w = W/2m, we

observe degradation of the reconstruction quality beyond

a critical value of m, which depends on the considered

dataset. To generate images in the megapixel regime, we

therefore have to work patch-wise and crop images to

restrict the length of s to a maximally feasible size during

training. To sample images, we then use the transformer

in a sliding-window manner as illustrated in Fig. 3. Our

VQGAN ensures that the available context is still sufficient

to faithfully model images, as long as either the statistics of

the dataset are approximately spatially invariant or spatial

conditioning information is available. In practice, this is

not a restrictive requirement, because when it is violated,

i.e. unconditional image synthesis on aligned data, we can

simply condition on image coordinates, similar to [38].

4. Experiments

This section evaluates the ability of our approach to re-

tain the advantages of transformers over their convolutional

counterparts (Sec. 4.1) while integrating the effectiveness

of convolutional architectures to enable high-resolution im-

age synthesis (Sec. 4.2). Furthermore, in Sec. 4.3, we in-

vestigate how codebook quality affects our approach. We

close the analysis by providing a quantitative comparison

to a wide range of existing approches for generative im-

age synthesis in Sec. 4.4. Based on initial experiments, we

usually set |Z|= 1024 and train all subsequent transformer

models to predict sequences of length 16 · 16, as this is the

maximum feasible length to train a GPT2-medium architec-

ture (307 M parameters) [51] on a GPU with 12GB VRAM.

More details on architectures and hyperparameters can be

found in the appendix (Tab. 6 and Tab. 7).

4.1. Attention Is All You Need in the Latent Space

Transformers show state-of-the-art results on a wide va-

riety of tasks, including autoregressive image modeling.

However, evaluations of previous works were limited to

transformers working directly on (low-resolution) pixels

[48, 12, 24], or to deliberately shallow pixel encodings [8].

This raises the question if our approach retains the advan-

tages of transformers over convolutional approaches.

To answer this question, we use a variety of conditional

and unconditional tasks and compare the performance be-

tween our transformer-based approach and a convolutional

Negative Log-Likelihood (NLL)

Data /
# params

Transformer
P-SNAIL steps

Transformer
P-SNAIL time

PixelSNAIL
fixed time

RIN / 85M 4.78 4.84 4.96

LSUN-CT / 310M 4.63 4.69 4.89

IN / 310M 4.78 4.83 4.96

D-RIN / 180 M 4.70 4.78 4.88

S-FLCKR / 310 M 4.49 4.57 4.64

Table 1. Comparing Transformer and PixelSNAIL architectures

across different datasets and model sizes. For all settings, trans-

formers outperform the state-of-the-art model from the PixelCNN

family, PixelSNAIL in terms of NLL. This holds both when com-

paring NLL at fixed times (PixelSNAIL trains roughly 2 times

faster) and when trained for a fixed number of steps. See Sec. 4.1

for the abbreviations.

approach. For each task, we train a VQGAN with m = 4
downsampling blocks, and, if needed, another one for the

conditioning information, and then train both a transformer

and a PixelSNAIL [10] model on the same representations,

as the latter has been used in previous state-of-the-art two-

stage approaches [53]. For a thorough comparison, we vary

the model capacities between 85M and 310M parameters

and adjust the number of layers in each model to match one

another. We observe that PixelSNAIL trains roughly twice

as fast as the transformer and thus, for a fair comparison,

report the negative log-likelihood both for the same amount

of training time (P-SNAIL time) and for the same amount of

training steps (P-SNAIL steps).

Results Tab. 1 reports results for unconditional image

modeling on ImageNet (IN) [14], Restricted ImageNet

(RIN) [57], consisting of a subset of animal classes from

ImageNet, LSUN Churches and Towers (LSUN-CT) [69],

and for conditional image modeling of RIN conditioned on

depth maps obtained with the approach of [52] (D-RIN) and

of landscape images collected from Flickr conditioned on

semantic layouts (S-FLCKR) obtained with the approach

of [7]. Note that for the semantic layouts, we train the

first-stage using a cross-entropy reconstruction loss due to

their discrete nature. The results shows that the transformer

consistently outperforms PixelSNAIL across all tasks when

trained for the same amount of time and the gap increases

even further when trained for the same number of steps.

These results demonstrate that gains of transformers carry

over to our proposed two-stage setting.

4.2. A Unified Model for Image Synthesis Tasks

The versatility and generality of the transformer architec-

ture makes it a promising candidate for image synthesis. In

the conditional case, additional information c such as class

labels or segmentation maps are used and the goal is to learn

the distribution of images as described in Eq. (10). Using

the same setting as in Sec. 4.1 (i.e. image size 256 × 256,
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conditioning samples

Figure 4. Transformers within our setting unify a wide range of

image synthesis tasks. We show 256 × 256 synthesis results

across different conditioning inputs and datasets, all obtained with

the same approach to exploit inductive biases of effective CNN

based VQGAN architectures in combination with the expressiv-

ity of transformer architectures. Top row: Completions from un-

conditional training on ImageNet. 2nd row: Depth-to-Image on

RIN. 3rd row: Semantically guided synthesis on ADE20K. 4th

row: Pose-guided person generation on DeepFashion. Bottom

row: Class-conditional samples on RIN.

latent size 16 × 16), we perform various conditional image

synthesis experiments:

(i): Semantic image synthesis, where we condition on

semantic segmentation masks of ADE20K [72], a web-

scraped landscapes dataset (S-FLCKR) and COCO-Stuff

[6]. Results are depicted in Figure 4, 5 and Fig. 6.

(ii): Structure-to-image, where we use either depth or edge

information to synthesize images from both RIN and IN

(see Sec. 4.1). The resulting depth-to-image and edge-to-

image translations are visualized in Fig. 4 and Fig. 6.

(iii): Pose-guided synthesis: Instead of using the semanti-

cally rich information of either segmentation or depth maps,

Fig. 4 shows that the same approach as for the previous ex-

periments can be used to build a shape-conditional genera-

tive model on the DeepFashion [41] dataset.

(iv): Stochastic superresolution, where low-resolution im-

ages serve as the conditioning information and are thereby

upsampled. We train our model for an upsampling factor of

8 on ImageNet and show results in Fig. 6.

(v): Class-conditional image synthesis: Here, the condi-

tioning information c is a single index describing the class

label of interest. Results on conditional sampling for the

RIN dataset are demonstrated in Fig. 4.

All of these examples make use of the same methodology.

Instead of requiring task specific architectures or modules,

the flexibility of the transformer allows us to learn appropri-

ate interactions for each task, while the VQGAN — which

can be reused across different tasks — leads to short se-

quence lengths. In combination, the presented approach can

be understood as an efficient, general purpose mechanism

for conditional image synthesis. Note that additional results

for each experiment can be found in the appendix, Sec. C.

High-Resolution Synthesis The sliding window ap-

proach introduced in Sec. 3.2 enables image synthesis be-

yond a resolution of 256 × 256 pixels. We evaluate this

approach on unconditional image generation on LSUN-CT

and FacesHQ (see Sec. 4.3) and conditional synthesis on D-

RIN, COCO-Stuff and S-FLCKR, where we show results

in Fig. 1, 6 and the supplementary (Fig. 17-27). Note that

this approach can in principle be used to generate images

of arbitrary ratio and size, given that the image statistics

of the dataset of interest are approximately spatially invari-

ant or spatial information is available. Impressive results

can be achieved by applying this method to image genera-

tion from semantic layouts on S-FLCKR, where a strong

VQGAN can be learned with m = 5, so that its code-

book together with the conditioning information provides

the transformer with enough context for image generation

in the megapixel regime.

4.3. Building ContextRich Vocabularies

How important are context-rich vocabularies? To inves-

tigate this question, we ran experiments where the trans-

former architecture is kept fixed while the amount of con-

text encoded into the representation of the first stage is var-

ied through the number of downsampling blocks of our VQ-

GAN. We specify the amount of context encoded in terms

of reduction factor in the side-length between image in-

puts and the resulting representations, i.e. a first stage en-

coding images of size H × W into discrete codes of size

H/f × W/f is denoted by a factor f . For f = 1, we re-

produce the approach of [8] and replace our VQGAN by a

k-means clustering of RGB values with k = 512.

During training, we always crop images to obtain inputs of

size 16 × 16 for the transformer, i.e. when modeling im-

ages with a factor f in the first stage, we use crops of size

16f × 16f . To sample from the models, we always apply

them in a sliding window manner as described in Sec. 3.
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Figure 5. Samples generated from semantic layouts on S-FLCKR.

Sizes from top-to-bottom: 1280 × 832, 1024 × 416 and 1280 ×
240 pixels. Best viewed zoomed in. A larger visualization can be

found in the appendix, see Fig 17.

Results Fig. 7 shows results for unconditional synthesis of

faces on FacesHQ, the combination of CelebA-HQ [27] and

FFHQ [29]. It clearly demonstrates the benefits of power-

ful VQGANs by increasing the effective receptive field of

the transformer. For small receptive fields, or equivalently

small f , the model cannot capture coherent structures. For

an intermediate value of f = 8, the overall structure of

images can be approximated, but inconsistencies of facial

features such as a half-bearded face and of viewpoints in

different parts of the image arise. Only our full setting of

f = 16 can synthesize high-fidelity samples. For analogous

results in the conditional setting on S-FLCKR, we refer to

the appendix (Fig. 10 and Sec. B).

To assess the effectiveness of our approach quantitatively,

we compare results between training a transformer directly

on pixels, and training it on top of a VQGAN’s latent code

with f = 2, given a fixed computational budget. Again, we

follow [8] and learn a dictionary of 512 RGB values on CI-

FAR10 to operate directly on pixel space and train the same

transformer architecture on top of our VQGAN with a latent

code of size 16 × 16 = 256. We observe improvements of

18.63% for FIDs and 14.08× faster sampling of images.

Figure 6. Applying the sliding attention window approach (Fig. 3)

to various conditional image synthesis tasks. Top: Depth-to-image

on RIN, 2nd row: Stochastic superresolution on IN, 3rd and 4th

row: Semantic synthesis on S-FLCKR, bottom: Edge-guided syn-

thesis on IN. The resulting images vary between 368 × 496 and

1024× 576, hence they are best viewed zoomed in.

Dataset ours SPADE [46] Pix2PixHD (+aug) [65] CRN [9]

COCO-Stuff 22.4 22.6/23.9(*) 111.5 (54.2) 70.4

ADE20K 35.5 33.9/35.7(*) 81.8 (41.5) 73.3

Table 2. FID score comparison for semantic image synthesis

(256× 256 pixels). (*): Recalculated with our evaluation protocol

based on [43] on the validation splits of each dataset.

4.4. Quantitative Comparison to Existing Models

In this section we investigate how our approach quantita-

tively compares to existing models for generative image

synthesis. In particular, we assess the performance of our

model in terms of FID and compare to a variety of es-

tablished models (GANs, VAEs, Flows, AR, Hybrid) on

(i) semantic synthesis in Tab. 2 (where we compare to

[46, 65, 31, 9]) and (ii) unconditional face synthesis in

Tab. 3. Furthermore, to address a direct comparison to the

original VQVAE-2 model [53], we train a class conditional

ImageNet transformer on 256 × 256 images, using a VQ-

GAN with dimZ = 16384 and f = 16, and additionally

compare to BigGAN [4] and MSP [18] in Tab. 4. Note

that our model uses ≃ 10× less parameters than VQVAE-2,
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f1 f2 f8 f16 downsampling factor

1.0 3.86 65.81 280.68 speed-up

Figure 7. Evaluating the importance of effective codebook for HQ-Faces (CelebA-HQ and FFHQ) for a fixed sequence length |s|= 16·16 =

256. Globally consistent structures can only be modeled with a context-rich vocabulary (right). All samples are generated with temperature

t = 1.0 and top-k sampling with k = 100. Last row reports the speedup over the f1 baseline which operates directly on pixels and takes

7258 seconds to produce a sample on a NVIDIA GeForce GTX Titan X.

CelebA-HQ 256× 256 FFHQ 256× 256

Method FID ↓ Method FID ↓

GLOW [33] 69.0 VDVAE (t = 0.7) [11] 38.8

NVAE [60] 40.3 VDVAE (t = 1.0) 33.5

PIONEER (B.) [21] 39.2 (25.3) VDVAE (t = 0.8) 29.8

NCPVAE [1] 24.8 VDVAE (t = 0.9) 28.5

VAEBM [67] 20.4 VQGAN+P.SNAIL 21.9

Style ALAE [49] 19.2 BigGAN 12.4

DC-VAE [47] 15.8 ours 11.4

ours 10.7 U-Net GAN (+aug) [58] 10.9 (7.6)

PGGAN [27] 8.0 StyleGAN2 (+aug) [30] 3.8 (3.6)

Table 3. FID score comparison for face image synthesis. CelebA-

HQ results reproduced from [1, 47, 67, 22], FFHQ from [58, 28].

Dataset ours (+R) VQVAE-2 (+R) BigGAN (-deep) MSP

IN 256, 50K 19.8 (11.2) 38.1 (∼ 10) 7.1 (7.3) n.a.

IN 256, 18K 23.5 n.a. 9.6 (9.7) 50.4

Table 4. FID score comparison for class-conditional synthesis.

“+R”: classifier-based rejection sampling as proposed in VQVAE-

2. FID*-values (calculated on reconstructed data, analogous to

[53]): ours: 13.5 (8.1), VQVAE-2: 19 (5). BigGAN (-deep) eval-

uated via https://tfhub.dev/deepmind truncated at 1.0.

which has an estimated parameter count of 13.5B (estima-

tion based on https://github.com/rosinality/

vq-vae-2-pytorch). While some task-specialized

GAN models report better FID scores, our approach pro-

vides a unified model that works well across a wide range

of tasks while retaining the ability to encode and recon-

struct images. It thereby bridges the gap between purely ad-

versarial and likelihood-based approaches. Fig. 11, 12, 13

and Fig. 14 contain qualitative samples corresponding to the

quantitative analysis in Tab. 4.

How good is the VQGAN? Reconstruction FIDs obtained

via the codebook provide a lower bound on the achiev-

able FID of the generative model trained on it. To quan-

tify the performance gains of our VQGAN over VQVAE-

2, we evaluate this metric on ImageNet and report results

in Tab. 5. Our VQGAN outperforms VQVAE-2 while pro-

viding significantly more compression (seq. length of 256
vs. 5120 = 322 + 642). As expected, larger versions of

Model Codebook Size dimZ FID ↓

VQVAE-2 64× 64 & 32× 32 512 ∼ 10

VQGAN 16× 16 1024 8.0

VQGAN 16× 16 16384 4.9

VQGAN 64× 64 & 32× 32 512 1.7

Table 5. Reconstruction FID on ImageNet (validation split).

VQVAE-2 reported their reconstruction FID as “∼ 10”.

VQGAN (either in terms of larger codebook sizes or in-

creased code lengths) further improve performance. Us-

ing the same hierarchical codebook setting as in VQVAE-2

with our model provides the best reconstruction FID, al-

beit at the cost of a very long and thus impractical se-

quence. Furthermore, Fig. 9 qualitatively shows that a stan-

dard VQVAE cannot achieve such compressions; the cor-

responding reconstruction-FIDs read: VQVAE 254.4; VQ-

GAN 5.7. Sampling from this VQVAE cannot achieve FIDs

below 254.4, whereas our VQGAN achieves 21.93 with Pix-

elSNAIL and 11.44 with a transformer (see Tab. 3).

5. Conclusion

This paper adressed the fundamental challenges that previ-

ously confined transformers to low-resolution images. We

proposed an approach which represents images as a compo-

sition of perceptually rich image constituents and thereby

overcomes the infeasible quadratic complexity when mod-

eling images directly in pixel space. Modeling constituents

with a CNN architecture and their compositions with a

transformer architecture taps into the full potential of their

complementary strengths and thereby allowed us to rep-

resent the first results on high-resolution image synthesis

with a transformer-based architecture. In experiments, our

approach demonstrates the efficiency of convolutional in-

ductive biases and the expressivity of transformers by syn-

thesizing images in the megapixel range and outperforming

state-of-the-art convolutional approaches. Equipped with a

general mechanism for conditional synthesis, it offers many

opportunities for novel neural rendering approaches.
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