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Abstract

Single domain generalization aims to learn a model that

performs well on many unseen domains with only one do-

main data for training. Existing works focus on studying

the adversarial domain augmentation (ADA) to improve

the model’s generalization capability. The impact on do-

main generalization of the statistics of normalization lay-

ers is still underinvestigated. In this paper, we propose

a generic normalization approach, adaptive standardiza-

tion and rescaling normalization (ASR-Norm), to comple-

ment the missing part in previous works. ASR-Norm learns

both the standardization and rescaling statistics via neural

networks. This new form of normalization can be viewed

as a generic form of the traditional normalizations. When

trained with ADA, the statistics in ASR-Norm are learned

to be adaptive to the data coming from different domains,

and hence improves the model generalization performance

across domains, especially on the target domain with large

discrepancy from the source domain. The experimental re-

sults show that ASR-Norm can bring consistent improve-

ment to the state-of-the-art ADA approaches by 1.6%, 2.7%,

and 6.3% averagely on the Digits, CIFAR-10-C, and PACS

benchmarks, respectively. As a generic tool, the improve-

ment introduced by ASR-Norm is agnostic to the choice of

ADA methods.

1. Introduction

Deep learning has achieved remarkable success in vari-

ous areas [25, 28] where the training and test data are sam-

pled from the same domain. In real applications, however,

there is a great chance of applying a deep learning model to

the data from a new domain unseen in the training dataset.

The model that performs well on the training domain often

cannot maintain a consistent performance on a new domain

[5, 53], due to the cross-domain distributional shift [37].

To address the potential discrepancies between the train-

ing and test domains, a number of works [6, 20, 61] have

been proposed to learn domain-invariant features using the

∗The main work was done during an internship at Google Research.

Figure 1: Illustration of single domain generalization with

the PACS [30] benchmark. The dataset contains 4 domains:

art paint, cartoon, sketch, and photo domains, which share

the same categories that include dog, elephant, giraffe, gui-

tar, house, horse, and person. Single domain generalization

aims at training a model on one source domain data (art

paint domain in the shown case), while generalizing well to

other domains with very different visual presentations.

training data from multiple source domains [30, 45] to im-

prove the model’s generalization capability across domains.

However, acquiring multi-domain training data is both chal-

lenging and expensive. Alternatively, a more practical but

less investigated solution is to train the model on a single

source domain data and enhance its capability of general-

izing to other unseen domains (see the example in Fig. 1).

This emerging learning paradigm is referred to as single do-

main generalization [42].

Existing works on single domain generalization [20, 42,

52, 53, 60] try to improve the generalization capability

through adversarial domain augmentation (ADA), which

synthesizes new training images in an adversarial way to

mimic virtual challenging domains. The model therefore

learns the domain-invariant features to improve its gener-

alization performance. In this work, we propose to tackle

the single domain generalization challenge from a differ-

ent perspective, building an adaptive normalization in the

ADA framework to improve the model’s domain general-
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Figure 2: Accuracy of five different normalization methods for

single domain generalization on CIFAR-10-C, compared at five

different levels of domain discrepancy brought by corruptions.

Methods include BN, IN, BN-Test (different batch sizes), and our

method. See detailed experimental settings in Sec. 4.

ization capability. The motivation behind this idea is that

the batch normalization (BN), used by the existing works on

single domain generalization, lacks the domain generaliza-

tion capability due to the discrepancy between the training

and testing data statistics. More specifically, at the training

stage, BN standardizes the feature maps by the statistics es-

timated on a batch of training data. The exponential moving

averages (EMA) of the training statistics are then applied

during testing and make the computation graph inconsistent

between the training and testing. In single domain gener-

alization, the testing domain statistics are usually different

from the training domain statistics. Therefore, applying the

statistics estimated from the training to testing will likely re-

sult in performance drops. BN-Test [37] has been proposed

to substitute the EMA of the training statistics with testing

batch statistics for remedy. However, this would require

batching test data and the testing performance becomes de-

pendent on the testing batch size.

Fig. 2 verifies the deficiency of BN by comparing five

different normalizations for single domain generalization

on CIFAR-10-C [14]. Due to the domain discrepancy

between the training and testing data, BN underperforms

instance normalization (IN) [50]. The performance gap

increases significantly with the level of the domain dis-

crepancy getting higher. Although BN-Test(16) improves

the performance over BN when the domain discrepancy is

large, it requires a batch size of 16 during inference which

might not be available in practice. Additionally, as shown

in Table 9 in Appendix, BN-Test might not work on some

other benchmarks even with a large batch size. This mo-

tivating example shows that using BN by default is sub-

optimal and inspires us to explore the normalization al-

gorithm to improve the model’s generalization capability

across domains.

To this end, we propose a novel adaptive form of normal-

ization named as adaptive standardization and rescaling

normalization (ASR-Norm), in which the standardization

and rescaling statistics are both learned to be adaptive to

each individual input sample. When being used with ADA

[20, 52, 53], ASR-Norm can learn the normalization statis-

tics by approximately optimizing a robust objective, making

the statistics be adaptive to the data coming from different

domains, and hence helping the model to generalize better

across domains than traditional normalization approaches.

We also show that ASR-Norm can be viewed as a generic

form of the traditional normalization approaches including

BN, IN, layer normalization (LN) [1], group normalization

(GN) [55], and switchable normalization (SN) [32].

Our main contributions are as follows: (1) We propose

a novel adaptive normalization, the missing ingredient for

current works on ADA for single domain generalization.

To the best of our knowledge, the proposed ASR-Norm is

the first to learn both standardization and rescaling statistics

in normalization with neural networks. (2) We show that

ASR-Norm can bring consistent improvements to the state-

of-the-art ADA approaches on three commonly used sin-

gle domain generalization benchmarks. The performance

gain is agnostic to the choice of ADA methods and becomes

more significant as the domain discrepancy increases.

2. Related work

Domain Discrepancy. Domain adaptation [11, 43, 49, 59]

alleviates the effect of domain discrepancy by allowing the

model to see unlabeled target domain data during training.

By contrast, domain generalization aims to learn domain-

invariant representations so as to improve the generalization

without any access to the target domains. The majorities of

the literatures on domain generalization [6, 20, 42, 45, 61]

focus on learning the domain invariant knowledge from

multiple source domains. Another line of works studies a

more challenging and realistic setting, single domain gen-

eralization, which is the focus of this paper. A few recent

works on single domain generalization [42, 52, 53, 60]

show that ADA can effectively improve the generalization

and robustness of models by synthesizing virtual images

during training. For example, Volpi et al. [53] generated

the virtual images with adversarial updates on the input

images while maintaining the semantic similarities with the

original images. Volpi and Murino [52] proposed a random

search data augmentation (RSDA) algrorithm that picks

one set of the most challenging transformations in terms of

inference accuracy to augment the image for training. On

the other side, Huang et al. [20] proposed a representation

self-challenging (RSC) algorithm to virtually augment

challenging data by shutting down the dominant neurons

that have the largest gradients during training. Our work

builds an adaptive normalization scheme and combines

it with ADA which yields a better generalization ability
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across domains than the state-of-the-art single domain

generalization approaches.

Robustness against Distributional Shifts. Adversar-

ial training [13, 35] aims to make models be robust to

adversarial examples with imperceptible perturbations

added to the inputs. However, our work focuses on the

generalization ability to more perceptible and natural

distributional shifts brought by the domain discrepancy.

Meanwhile, there are also works trying to improve model

robustness to natural and perceptible noises with pretrain

[15, 17, 18], data augmentation [16, 17, 42], contrastive

learning [7], stochastic networks [9, 10], etc. This setting

can be included into the single domain generalization

framework by viewing different distortions as different

domains. Our work is compatible with these methods and

can potentially further improve the performance in single

domain generalization.

Normalization in Neural Networks. Since the invention

of BN [22], various normalization techniques [1, 23, 29,

32, 37, 44, 45, 50, 54–56] have been proposed for different

applications. Batch-instance normalization (BIN) [39] and

SN [32, 46] were proposed to generalize the fixed normal-

izations by combining their standardization statistics with

the learnable weights. However, their restrictive forms still

do not allow enough adaptivity. More recently, instance-

level meta (ILM) normalization [23] focused on improving

the rescaling performance by using neural networks to learn

the rescaling statistics. Before our work, the majorities of

the works on normalization do not study the generalization

ability under domain shift. Below are a few exceptions:

BN-Test [37] uses testing time statistics, making its perfor-

mance highly depend on the testing batch size; DSON [45]

requires multi-source training data to learn separate BIN for

each domain and ensemble the normalization during testing.

Compared with these methods, our normalization scheme

does not impose dependencies between the testing samples,

requires only the single domain training data, and is generic

by learning both the standardization and rescaling statistics.

3. Adversarially Adaptive Normalization

3.1. Background

3.1.1 Single Domain Generalization Problem Setup

Consider a supervised learning problem with the training

dataset Ds ∼ Ps , where Ps denotes the source domain

distribution. The goal of single domain generalization is

to train a model using single source domain data Ds to

correctly classify the images from a target domain distri-

bution Pt unavailable during training. In this case, using

the vanilla empirical risk minimization (ERM) [51] solely

on the source domain Ps as the training objective could be

sub-optimal and yield a model that does not generalize well

to unseen domains [53]. Denote θ as the model parameters

and l : X × Y → R as the loss function. To help the model

better generalize to the unseen domains, a robust objective

that considers a worst-case problem around the source do-

main Ps has been proposed in [47] as

LR(θ) := sup
P :D(P,Ps)≤ρ

E{X,Y }∼P [l(θ;X,Y )], (1)

whereD(P,Q) is a distance metric on domain distributions.

The robust objective LR enables training a model which

performs well on the distributions that are ρ-distance away

from the source domain distribution Ps. However, it is gen-

erally difficult to directly optimize the robust objective.

3.1.2 Adversarial Domain Augmentation

The optimization of LR can be converted to a Lagrangian

optimization problem with a penalty parameter η and solved

via a min-max approach:

LRL := sup
P

{EP [l(θ; (X,Y ))]− ηD(P, Ps)}. (2)

Defining the distance D between two distributions by the

Wasserstein distance [53] on a learned semantic space, the

gradient of LRL, under suitable condition, can then be

written as ∇θLRL = E(X,Y )∼Ps
[∇θl(θ; (X

∗
η , Y ))], where

X∗
η := argmaxx∈X {l(θ; (x, Y )) − ηcθ((x, Y )), (X,Y ))},

and cθ is a learned distance measure over the space X × Y
(see details in Appendix Sec. B) [3, 53]. Gradient ascent

was proposed to find approximation Xaug, to X∗
η , which

maximizes the prediction loss l while maintaining close se-

mantic distance to the original image X . The synthesized

image, Xaug, with its label is then appended to the training

dataset. This phase, referred to as the maximization phase,

is alternated with the minimization phase, where we opti-

mize θ to minimize the prediction loss on both the original

and augmented data.

3.1.3 Standardization and Rescaling in Normalization

This section briefly introduces the normalization frame-

work. Denote the input tensor of a normalization layer by

x ∈ R
C×H×W , where C denotes the number of chan-

nels of the tensor, H denotes the height, and W denotes

the width. A typical normalization layer consists of two

steps: standardization and rescaling. During standardiza-

tion, the mean and standard deviation, µstan,σstan ∈ R
C ,

are derived from the input tensors and used to standardize

the input tensors (a small positive number, ǫ, is added to

σstan to avoid numerical issues). At the rescaling step, the

standardized activations xstan are rescaled with the rescaling

statistics γ,β ∈ R
C :

{

xstan = (x− µstan)/(σstan + ǫ),

xnorm = xstan ∗ γ + β.
(3)
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Figure 3: Illustration of the ASR-Norm layer. It can be divided into two steps: standardization and rescaling. We use encoder-decoder

structured networks to learn both the standardization and rescaling statistics from the channel-wise statistics of the input. For standardiza-

tion, we combine the learned statistics and native statistics with adaptive weights for stabilizing the training process.

Different types of normalization share the similar for-

mula but differ in the way of measuring the statistics. For

example, BN computes the statistics for each batch, while

IN, GN and LN compute the statistics for each sample with

different channel groups. SN combines the statistics of

these normalizations with learnable weights. In this work,

we aim to build an adaptive normalization with statistics

learned by neural networks to improve the model’s domain

generalization capability.

3.2. ASR­Norm: Adaptive Standardization and
Rescaling Normalization

In this section, we propose a novel generic and adaptive

normalization technique, ASR-Norm, short for Adaptive

Standardization and Rescaling Normalization. ASR-Norm

learns both standardization and rescaling statistics with

auto-encoder structured neural networks. ASR-Norm is

adaptive to the individual input sample and therefore has

a consistent computational graph between training and test-

ing. Additionally, we introduce a residual term for the stan-

dardization statistics to stabilize the learning process. Using

ASR-Norm with ADA can learn robust normalization statis-

tics to enhance the model’s domain generalization ability.

An overview of the proposed ASR-Norm is shown in Fig. 3

with details in the following sections.

3.2.1 Adaptive Standardization (AS)

A Functional Form. The standardization statistics can be

viewed as the functions of the input tensor x, i.e.,

µstan = f(x),σstan = g(x). (4)

Remark 1. This form generalizes a variety of normaliza-

tion methods:

• If f, g are constant functions with values being the

statistics µ0,σ0 computed from the whole training set,

this form is equivalent to BN with all training data as

a batch: fBN(x) = µ0, gBN(x) = σ0;
• If f, g are domain-wise constant functions with values

being the statistics µd,σd computed for each domain

Pd in the whole training set, this form is equivalent to

domain-specific BN (DSBN) with each domain data as

a batch: fDSBN(x) =
∑Nd

d=1 µd1{x∈Pd}, gDSBN(x) =
∑Nd

d=1 σd1{x∈Pd}, where Nd is the number of do-

mains;
• If f, g are the mean and std functions for each group

of channels respectively, this form is equivalent to GN,

which also generalizes IN and LN;
• If f, g are weighted combinations of BN, IN, and LN,

this form is equivalent to SN:

fSN(x) = w1fBN(x) + w2fIN(x) + w3fLN(x),

gSN(x) = w′
1gBN(x) + w′

2gIN(x) + w′
3gLN(x).

From the above observations, we notice that each nor-

malization imposes a rather restrictive form of f and g,

which limits the flexibility of the normalization layers. As

a result, we propose to use neural networks to fully learn

the functions f, g so as to provide a generic way to obtain

standardization statistics.

Standardization Neural Networks. Our goal is to con-

struct mappings from the feature map x to the learned

statistics µstan and σstan. To lower the computational cost

and leverage the original statistics information contained

in the convolutional feature maps, the standardization net-

work chooses the channel-wise mean and standard devia-

tion statistics, instead of the original feature map, as the

input to learn the standardization statistics.

Formally, denote channel-wise mean and standard devi-

ation statistics vector of x by µ,σ ∈ R
C , respectively. The

per-channel mean and standard deviation are expressed as
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{

µc =
∑H

i=1

∑W
j=1 xcij/(H ×W ),

σc =
√

∑H
i=1

∑W
j=1(xcij − µc)2/(H ×W )

(5)

for c = 1, ..., C.

We make use of an encoder-decoder structure [19, 23] to

learn µstan and σstan from µ and σ respectively, where the

encoder extracts global information by interacting the infor-

mation of all channels and the decoder learns to decompose

the information for each channel. For the sake of efficiency,

both the encoder and decoder consist of one fully-connected

layer, forming a bottleneck connected by a non-linear acti-

vation function, ReLU. Another ReLU [38] layer is applied

to the output of σstan to make sure it is non-negative:
{

µstan = f(x) := fdec(ReLU(fenc(µ))),

σstan = g(x) := ReLU(gdec(ReLU(genc(σ)))),
(6)

where fenc, fdec, genc, gdec are fully-connected layers. The

encoders project the input to the hidden space R
Cstan , while

the decoders project it back to the space R
C , where Cstan <

C. In practice, we find that sharing the encoders for µstan

and σstan would not affect the performance and save mem-

ory. Therefore, we let fenc = genc.

Residual Learning. In the early training stage, the

learning process of the standardization networks can be un-

stable and lead to numerical issues when the learned statis-

tics are inaccurate. For example, σstan could be very small

due to the ReLU activation, making the scale of xstan very

large. One remedy for this is to impose additional restric-

tive activation functions, such as sigmoid, on σstan so that

the output values σstan are bounded. However, this could

harm the training process for the case that the scale of xstan

is large when the scale of x is large. To retain the flexibility

of σstan’s scale, we stick to the ReLU activation and solve

the numerical issue by introducing a residual term for reg-

ularization. In particular, we make both µstan and σstan as

weighted sums of the learned and original statistics:
{

µstan = λµfdec(ReLU(fenc(µ))) + (1− λµ)µ,

σstan = λσReLU(gdec(ReLU(genc(σ))) + (1− λσ)σ.

(7)
The weights λµ, λσ are learnable parameters ranging from

0 to 1 (bounded by sigmoid). They are both initialized with

small values close to 0 so that the standardization process

is stable in the early stage and the network can gradually

switch to the learned statistics in the later stage (see Fig. 5).

Remark 2. All statistics and transformation operations in

AS are computed for each sample independently. Unlike

BN, AS removes the dependencies among samples during

standardization. The computational graph of AS is consis-

tent between the training and testing.

3.2.2 Adaptive Rescaling (AR)

Data-dependent rescaling parameters. Most normaliza-

tion layers use the learnable parameters γ,β ∈ R
C to

rescale standardized output xstan, resulting in a rescaling

process that is uniform to all samples. Recently, Jia et al.

[23] found that making the rescaling parameters depen-

dent on the samples and allowing different samples to have

different rescaling parameters can bring performance gain

to instance-level normalization for a variety of in-domain

tasks. Inspired by this observation, we construct a rescaling

network for the adaptive rescaling in ASR-Norm.

Rescaling Neural Networks. Similar to the standard-

ization networks, we define the following network to learn

the rescaling parameters from the original statistics µ,σ:

{

β = ψ(x) := tanh(ψdec(ReLU(ψenc(µ)))) + βbias,

γ = φ(x) := sigmoid(φdec(ReLU(φenc(σ)))) + γbias,

(8)
where φenc, φdec, ψenc, ψdec are fully-connected layers,

and sigmoid(), tanh() are activation functions to ensure the

rescaling statistics are bounded. The encoders project the

inputs to the hidden space R
Crescale with Crescale < C. The

decoders project the encoded feature back to the space R
C .

γbias,βbias ∈ R
C are learned parameters and are initialized

with ones and zeros, respectively, as the traditional rescaling

parameters. The encoders for β,γ are also shared accord-

ing to the same reason as the standardization networks, i.e.,

φenc = ψenc.

3.2.3 Adversarially Adaptive Normalization

The parameters in ASR-Norm can be learned together with

the model θ by the robust objective as θ in Eq 2. With ADA,

the objective can be optimized approximately, and ASR-

Norm can learn the normalization statistics to be adaptive

to the data coming from different domains, thus helping the

model generalize well across domains. Note that the pro-

posed normalization is agnostic to the choice of ADA. In

the experiments, we show the implementations and perfor-

mances of our method coupling with three different ADA

methods.

4. Experiments

4.1. Experimental Settings

Datasets. We conduct experiments on three standard

benchmarks for single domain generalization [42, 52, 53,

60], including Digits, CIFAR-10-C, and PACS.

(1) Digits: This benchmark consists of five digits

datasets: MNIST [27], SVHN [40], MNIST-M [11], SYN

[11], and USPS [21] (see examples in Fig. 9 in Appendix).

We use MNIST as the source domain, and the rest as the tar-

get domains. All images are resized to 32 × 32 pixels and

the channels of MNIST and USPS are duplicated so that

different datasets have compatible shapes.
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(2) CIFAR-10-C [14]: This benchmark is proposed to

evaluate the robustness to 19 types of corruptions with 5
levels of intensities. The original CIFAR-10 [26] is used

for training and corruptions are only applied to the testing

images (see examples in Fig. 4). The level of domain dis-

crepancy can be measured by the corruption intensity.

Figure 4: Example images with level 5 corruption from 4 corrup-

tion types in the CIFAR-10-C benchmark.

(3) PACS [30]: A recent benchmark for domain general-

ization containing four domains: art paint, cartoon, sketch,

and photo (see examples in Fig. 1). This dataset is consid-

ered to pose a challenging distributional shift for domain

generalization. For this dataset, we consider two settings:

1) training a model with one domain data and testing with

the rest three domains; 2) training a model on three domains

and test on the remaining one. The second setting is widely

used for multi-source domain generalization with the do-

main label available for training. In our experiment for sin-

gle domain generalization, we remove the domain label and

mix data from multiple source domains during training.

Implementation Details. For ASR-Norm, unless other-

wise noted, Cstan, Crescale are set to C/2, C/16, respectively,

and λµ, λσ are both initialized as sigmoid(-3).

(1) For Digits, we use the ConvNet architecture [27]

(conv-pool-conv-pool-fc-fc-softmax) with ReLU following

each convolution. Since this model does not have any nor-

malization layer, ASR-Norm is inserted after each conv

layer before ReLU. We adopt RSDA [52] for domain aug-

mentation, which is the state-of-the-art (SOTA) on this

benchmark, and follow its experimental settings: setting the

size of transformation tuples as 3, using a subset of 1, 000
samples from training set to select the worst transformation,

conducting the search every 1, 000 steps, running a total of

106 weight updates, and using Adam [24] optimizer with

learning rate 10−4 and mini-batch size 32.

(2) For CIFAR-10-C, we use the Wide Residual Network

(WRN) [58] with 40 layers and widen factor 4. We follow

the experiment setting in [58] to use SGD with Nesterov

momentum (0.9) and batch size 128. The learning rate starts

at 0.1 with cosine annealing [31]. Models are trained for

200 epochs in total. We replace the default BN with ASR-

Norm and train with ADA [53], where the augmentation is

performed for every 1000 steps of training with three aug-

mentations in total, and each augmentation step consists of

25 gradient updates.

(3) For PACS, we use a ResNet-18 pretrained on Im-

ageNet as the backbone and add a fully-connected layer

for classification as the setting in [20] which presented the

SOTA domain generalization performance on PACS. The

BN in the ResNet-18 model is substituted by ASR-Norm.

We find that directly replacing BN with ASR-Norm during

the fine tuning stage fails to work. The main reason is that

the models are sensitive to the scale of the activations af-

ter pretrain and replacing the rescaling parameters with the

AR networks could lead to significant changes in the acti-

vation scales. To remedy the issue, we resume βbias and

γbias from the BN layers in the pretrained model and add

learnable weights λβ, λγ to the first terms:
{

β = ψ(x) = λβtanh(ψdec(ReLU(ψenc(µ)))) + βbias,

γ = φ(x) = λγsigmoid(φdec(ReLU(φenc(σ)))) + γbias,

(9)
where we initialize λβ and λγ with a small value,

sigmoid(−5), to smooth the learning process. In this way,

the scale of xnorm will be close to that of the pretrained mod-

els initially. The network can gradually learn to make use

of the learned statistics. During training, the model learns

ASR-Norm with the RSC procedure [20] by SGD optimizer

with the initial learning rate as 0.004, which decays to 10%
after 24 epochs. Models are trained for 30 epochs with the

batch size of 128.

4.2. Main Results: Comparing with the SOTA

Our approach improves upon the SOTA single domain

generalization results by 1.6%, 2.7%, and 6.3% on the Dig-

its, CIFAR-10-C, and PACS benchmarks, respectively.

Method SVHN MNIST-M SYN USPS Avg.

ERM 27.8 52.7 39.7 76.9 49.3

CCSA[36] 25.9 49.3 37.3 83.7 49.1

d-SNE[57] 26.2 51.0 37.8 93.2 52.1

JiGen[5] 33.8 57.8 43.8 77.2 53.1

ADA[53] 35.5 60.4 45.3 77.3 54.6

M-ADA[42] 42.6 67.9 49.0 78.5 59.5

ME-ADA[60] 42.6 63.3 50.4 81.0 59.3

RSDA[52] 47.4±4.8 81.5±1.6 62.0±1.2 83.1±1.2 68.5

RSDA+ASR (Ours) 52.8±3.8 80.8±0.6 64.5±1.1 82.4±1.4 70.1

∆ to RSDA 5.4 -0.7 2.5 -0.7 1.6

Table 1: Single domain generalization accuracies on Dig-

its. MNIST is used as the training set, and the results on

different testing domains are reported in different columns.

Results on Digits. Table 1 shows the results on the Dig-

its benchmark. The proposed method, ASR-Norm, is com-

bined with RSDA and compared with methods including:

(1) ERM which uses cross-entropy loss for training, with-

out domain augmentation; (2) CCSA [36] which regularizes

latent features to improve generalization; (3) d-SNE [57]

which uses stochastic neighborhood embedding techniques

and a novel modified-Hausdorff distance for training; (4)

JiGen [5] which adds the patch order prediction as auxil-

iary; (5) ADA [53]; (6) M-ADA [53] which uses Wasser-

stein auto-encoder and meta-learning to improve ADA; (7)
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ME-ADA [60] which adds entropy regularization to help

ADA; (8) RSDA [52] which does not use normalization.

Our method outperforms both the baseline and the SOTA

methods on average. In particular, our method improves

the performance on challenging domains like SVHN and

SYN. We have similar observations on USPS as [42], where

ADA-based methods are not as good as CCSA or d-SNE

due to USPS’s strong similarity with MNIST (see Fig. 9).

Method Level 1 Level 2 Level 3 Level 4 Level 5 Avg.

ERM 87.8±0.1 81.5±0.2 75.5±0.4 68.2±0.6 56.1±0.8 73.8

PGD[34] 73.1±0.5 69.0±1.1 64.1±1.3 58.0±2.2 48.9±2.8 61.6

ST [15] - - - - - 76.9

TTT [48] - - - - - 84.4

ADA[53] 88.3±0.6 83.5±2.0 77.6±2.2 70.6±2.3 58.3±2.5 75.7

M-ADA[42] 90.5±0.3 86.8±0.4 82.5±0.6 76.4±0.9 65.6±1.2 80.4

ME-ADA[60] - - - - - 83.3

ERM+ASR 89.4±0.2 86.1±0.2 82.9±0.3 78.6±0.6 72.9±1.0 82.0

ADA+ASR (Ours) 91.5±0.2 89.3±0.6 86.9±0.5 83.7±0.7 78.4±0.8 86.0

∆ to ADA 3.2 5.8 9.3 13.1 20.1 10.3

Table 2: Single domain generalization accuracies on

CIFAR-10. CIFAR-10 is used as the training domain, while

CIFAR-10-C with different corruption types and corruption

levels are used as the testing domains.

Results on CIFAR-10-C. We report the average accu-

racies of the 19 corruption types for each level of inten-

sity on CIFAR-10-C in Table 2 (we also provide results

for each corruption type in Fig. 6 in Appendix Sec. A).

ERM, ADA[53], M-ADA[52], ME-ADA[60], ST[15], and

TTT[48] are used for the comparison on this benchmark.

We also include the results by using project gradient de-

scent (PGD) [34] for adversarial training. The results show

ASR-Norm makes significant improvement over ADA and

all other improved ADA-based methods such as M-ADA

and ME-ADA, as well as self-supervised method ST and

test-time training method TTT. Similar to the results on

the Digits benchmark, ASR-Norm achieves larger improve-

ments on the more challenging domains, i.e., domains with

more intense corruptions, than on the less challenging ones.

We also note that the standard PGD training for defending

against adversarial examples does not help improve robust-

ness to perceivable noises in this dataset.

Method Artpaint Cartoon Sketch Photo Avg.

ERM 70.9 76.5 53.1 42.2 60.7

RSC[20] 73.4 75.9 56.2 41.6 61.8

RSC+ASR (Ours) 76.7 79.3 61.6 54.6 68.1

∆ to RSC 3.3 3.4 5.4 13.0 6.3

Table 3: Single domain generalization accuracies on PACS.

One domain (name in column) is used as the training set

and the other domains are used as the testing set.

Results on PACS. In Table 3, we show the results on

PACS where we use one domain for training and the rest

three for testing. The reported numbers are the average ac-

curacies across the testing domains. Again, ASR-Norm im-

proves the performance of RSC significantly, especially on

challenging domains. Table 4 shows the results on PACS

for the multi-source domain setting, where we do not utilize

domain labels during training. Similarly, ASR-Norm out-

performs not only the SOTA performance reported by RSC

but also the other SOTA methods, including those that make

use of the domain labels, such as DSON and MetaReg.

Method Artpaint Cartoon Sketch Photo Avg.

ERM 79.0 73.9 70.6 96.3 79.9

JiGen[5] 79.4 75.3 71.4 96.0 80.5

MetaReg [2] 83.7 77.2 70.3 95.5 81.7

Cutout[8] 79.6 75.4 71.6 95.9 80.6

DropBlock[12] 80.3 77.5 76.4 95.6 82.5

AdversarialDropout[41] 82.4 78.2 75.9 91.1 83.1

BIN[45] 82.1 74.1 80.0 95.0 82.8

SN[32] 78.6 75.2 77.4 91.1 80.6

DSON[45] 84.7 77.7 82.2 95.9 85.1

RSC[20] 83.4 80.3 80.9 96.0 85.2

RSC+ASR (Ours) 84.8 81.8 82.6 96.1 86.3

∆ to RSC 1.4 1.5 1.7 0.1 1.1

Table 4: Domain generalization accuracies on PACS. One

domain (name in column) is used as the test set and the

other domains are used as the training sets. During training,

no domain identification is used.

4.3. Result Analysis

On the Effect of Normalization. In Table 5, we study

the effect of using different normalizations on the gener-

alization ability for CIFAR-10-C benchmark (Table 9 in

Appendix reports the results on Digits). We observe that

BN underperforms all the other normalization methods that

have a consistent computational graph between training and

testing. For this reason, our experiment with SN only in-

cludes IN and LN, but excludes BN. With the generic form

that allows the model to adapt to single domain general-

ization easily, ASR-Norm outperforms BN, SN, and IN.

The performance gain improves with the corruption level

increasing. We also note that both AR and AS play a signif-

icant role in the performance gain, meaning learning both

standardization and rescaling statistics in normalization is

indeed helping models to learn to generalize. Further, AS

achieves better performance than SN, which implies that

learning only the combination weights for different stan-

dardization statistics are not as good as learning the statis-

tics with neural networks.

Method Level 1 Level 2 Level 3 Level 4 Level 5 Avg.

ADA+BN[53] 88.3 83.5 77.6 70.6 58.3 75.7

ADA+IN[50] 90.3 87.3 84.5 80.5 75.0 83.5

ADA+SN[32] 91.5 88.4 85.5 81.2 75.3 84.4

ADA+AR 90.4 87.7 85.1 81.1 76.6 84.2

ADA+AS 91.4 88.9 86.3 82.8 77.3 85.4

ADA+ASR (Ours) 91.5 89.3 86.9 83.7 78.4 86.0

Table 5: Single domain generalization accuracies on

CIFAR-10-C with different normalizations.

Uncertainty Evaluation. For CIFAR-10-C, we also

evaluate the quality of predictive probabilities using Brier
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score (BS) [4], defined as the squared distance between

the predictive distribution and the one-hot target labels:

BS =
∑K

k=1(1{k=Y } − pθ(Y = k|X))2/K, where K is

the number of classes, and pθ is the predictive probability.

Table 6 shows that ASR-Norm outperforms BN and IN in

uncertainty prediction, meaning that ASR-Norm provides

not only better predictions for classes but also better predic-

tive distributions. The improvement is also increasing along

with the rise of the domain discrepancy.

Method Level 1 Level 2 Level 3 Level 4 Level 5 Avg.

ADA+BN[53] 0.019 0.028 0.035 0.044 0.061 0.037

ADA+IN[50] 0.015 0.020 0.025 0.032 0.041 0.027

ADA+ASR (Ours) 0.014 0.018 0.022 0.027 0.037 0.024

∆ to BN -0.005 -0.010 -0.013 -0.017 -0.024 -0.013

Table 6: Uncertainty evaluations of different normalizations

at different corruption levels using Brier score (the smaller

the better) on CIFAR-10-C.

In-domain Performance and Adversarial Robustness.

In Table 7, we report the in-domain performance of differ-

ent normalizations by evaluating on the original CIFAR-

10 testing set without corruptions. We note that BN in-

deed achieves better performance than IN and ASR-Norm

on in-domain data. One explanation for that is the depen-

dencies between training samples introduces the inductive

biases that would help BN when samples come from the

same domain. We also test the robustness towards adver-

sarial attacks of each normalization, where we first apply

several adversarial updates on each testing image and then

make predictions on the adversarially corrupted image. The

results in Table 7 show that ASR-Norm benefits from its

adaptation capability and achieves better performance un-

der adversarial attack.

Domain ADA+BN ADA+IN ADA+ASR (Ours)

In-domain 95.4 94.6 94.6

Adversarial 32.0 46.9 52.2

Table 7: Evaluation of different normalizations for in-

domain data and adversarially corrupted images.

Analysis of Residual Learning. In our experiments, we

find that the residual learning is necessary for stabilizing

the training of ASR-Norm. Without this part, ASR-Norm

would have numerical instabilities and yield NAN. Fig. 5

shows the evolution of the adaptive weights λµ and λσ in

the residual terms along the training process of the CIFAR-

10-C benchmark. The weights for learned statistics are ini-

tialized close to 0 and learn to increase gradually, meaning

that the model favors the learned statistics more and more,

which verifies that learned statistics are indeed helping the

model. Interestingly, at the end of training, λσ adapts to

almost 1, i.e., the normalization learns to use only learned

σstan (see more plots on PACS in Fig. 7 in Appendix.)

Trade-off between Complexity and Performance. The

complexity and performance of ASR-Norm are impacted

Figure 5: Weights λµ, λσ learn to increase along the training

process for the first normalization layer in WRN on CIFAR-10-C.

by the number of ASR-Norm layers used and the hidden

dimension sizes, Cstan and Crescale. As in [23], we fix

Crescale to 16. We conduct ablation study on PACS with

the ResNet-18 backbone, shown in Table 8, to investigate

the trade-off between complexity and performance by vary-

ing both the number of ASR-Norm layers applied and Cstan.

First, we observe that a single layer of ASR-Norm improves

over the baseline with only 0.1% increase in parameters.

As the number of ASR-Norm layers increases, the perfor-

mance improves further at the expense of higher complex-

ity. Second, applying ASR-Norm to all normalization layers

with Cstan = C/16 could provide a significant performance

boost over baseline with a small memory addition (4.1%).

Average accuracy increases as Cstan increases with a sub-

linear speed while parameters increase linearly with Cstan.

Norm layers (Cstan, Crescale) Avg. # Params Params ↑

BN 61.8 11.18M 0

ASR to the first norm layer (C/2, C/16) 62.3 11.19M 0.1%

ASR to selected 4 norm layers (C/2, C/16) 64.4 11.80M 5.5%

ASR to all norm layers (C/16, C/16) 66.5 11.64M 4.1%

ASR to all norm layers (C/8, C/16) 67.5 11.83M 5.8%

ASR to all norm layers (C/2, C/16) 68.1 13.01M 16.4%

Table 8: Trade-off between model complexity and accura-

cies on PACS. One domain is used for training. Average

accuracies, parameter sizes, and the increasing proportion

of parameter sizes with respect to the baseline are reported.

5. Conclusion

We propose ASR-Norm, a novel adaptive and general

form of normalization which learns both the standardization

and rescaling statistics with auto-encoder structured neural

networks. ASR-Norm is a generic algorithm that comple-

ments a variety of adversarial domain augmentation (ADA)

approaches on single domain generalization by making the

statistics be adaptive to the data of different domains, and

hence improves the model generalization capability across

domains. On three standard benchmarks, we show that

ASR-Norm brings consistent improvement to the state-of-

the-art ADA approaches. The performance gain is agnostic

to the choice of ADA methods and becomes more signifi-

cant as the domain discrepancy increases.
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