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Abstract

We present a novel group collaborative learning frame-

work (GCoNet) capable of detecting co-salient objects in

real time (16ms), by simultaneously mining consensus rep-

resentations at group level based on the two necessary cri-

teria: 1) intra-group compactness to better formulate the

consistency among co-salient objects by capturing their in-

herent shared attributes using our novel group affinity mod-

ule; 2) inter-group separability to effectively suppress the

influence of noisy objects on the output by introducing our

new group collaborating module conditioning the inconsis-

tent consensus. To learn a better embedding space without

extra computational overhead, we explicitly employ auxil-

iary classification supervision. Extensive experiments on

three challenging benchmarks, i.e., CoCA, CoSOD3k, and

Cosal2015, demonstrate that our simple GCoNet outper-

forms 10 cutting-edge models and achieves the new state-of-

the-art. We demonstrate this paper’s new technical contri-

butions on a number of important downstream computer vi-

sion applications including content aware co-segmentation,

co-localization based automatic thumbnails, etc. Code has

been made publicly available: https://github.com/

fanq15/GCoNet.

1. Introduction

Co-salient object detection (CoSOD) targets at detect-

ing common salient objects sharing the same attributes

given a group of relevant images. CoSOD is more chal-

lenging than the standard salient object detection (SOD)

task [1, 2, 3] and RGB-D SOD [4, 5, 6, 7], because CoSOD

needs to distinguish co-occurring objects across multiple

images [8] in presence of other objects. That is, both

intra-class compactness and inter-class separability should

be simultaneously maximized. With this favorable fea-

ture CoSOD is thus often employed as a pre-processing

∗This work was done when Qi was an intern at Kuaishou Technology.
†Corresponding author: Deng-Ping Fan (dengpfan@gmail.com).
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Figure 1. t-SNE [18] visualization of consensuses, where each

point represents one consensus of an image group. Highlighted

here are two similar but different groups (guitar & violin) to il-

lustrate the effectiveness of GCoNet. The consensus strategy in

traditional CoSOD model (CoEGNet [8]) tends to cluster consen-

suses together even they belong to different groups, resulting in

ambiguous co-saliency detection. In contrast, our consensus strat-

egy with effective inter-group constraint enables higher diversity

with a very large group variance (d2 ≫ d1) and thus better inter-

group separability.

step for various computer vision tasks, such as image re-

trieval [9], image quality assessment [10], collection-based

crops [11], co-segmentation [12, 13], semantic segmen-

tation [14], image surveillance [15], video analysis [16],

video co-localization [17], etc.

Previous works attempt to leverage the consistency

among relevant images to facilitate CoSOD within an image

group by exploring different shared cues [19, 20, 21] or se-

mantic connections [22, 23, 24]. Some of them [25, 26] use

predicted saliency maps by computing various inter-image

cues to discover co-salient objects. Other works [8, 27] ex-

ploit a unified network to jointly optimize co-saliency infor-

mation and saliency maps.
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Despite their promising results, most current models

only extract their CoSOD representations in an individual

group, which introduces a number of limitations. First, im-

ages from the same group contain similar foregrounds (i.e.,

co-salient objects) only provide positive relations while

lacking the negative relations between different objects.

Training the model only using positive pairs may lead to

overfitting and result in ambiguous results for outlier im-

ages. Moreover, the number of images in a group is typi-

cally limited (20 to 40 images for most CoSOD datasets), so

using a single group cannot provide enough information for

learning a discriminative representation. Finally, individual

groups also fall short in offering high-level semantic infor-

mation, which is necessary for distinguishing noisy objects

during inference in complex real-world scenarios.

To address the above issues, we propose a novel group

collaborative learning framework (GCoNet) to mine the se-

mantic correlation between different image groups. The

proposed GCoNet consists of three important components:

group affinity module (GAM), group collaborating module

(GCM) and auxiliary classification module (ACM), which

simultaneously learn the intra-group compactness and

inter-group separability. The GAM makes the network

learn the consensus feature within the same image group,

while the GCM discriminates target attributes between dif-

ferent groups, thus enabling the model to be trained on the

existing large-scale SOD datasets.1 We further improve the

feature representation at a global semantic level through our

ACM on each image to learn a better embedding space. In

summary, our contributions are:

• We introduce a novel group collaborative learning

strategy to address the CoSOD problem, and validate

its effectiveness with extensive ablation studies.

• We design a novel unified Group Collaborative Learn-

ing Network (GCoNet) for CoSOD by simultaneously

considering intra-group compactness and inter-group

separability to mine the consensus representation.

• Our group affinity module (GAM) and group collab-

orating module (GCM) collaborate with each other

to achieve better intra- and inter-group collaborative

learning. The auxiliary classification module (ACM)

further promotes learning at a global semantic level.

• Extensive experiments on three challenging CoSOD

benchmarks, i.e., CoCA, CoSOD3k, and Cosal2015,

show that our GCoNet achieves the new state-of-the-

art. Furthermore, we present two downstream appli-

cations based on our technical contributions, i.e., co-

segmentation and co-localization.

1Note that the existing CoSOD datasets altogether contain about 6k

images, while there are more than 12 SOD datasets, containing about 60k

images. It may partially alleviate the insufficient training data issue in co-

salient object detection.

2. Related Work

The traditional salient object detection task [28, 29, 30,

31, 32] targets at directly segmenting salient object in each

image separately, while CoSOD aims to segment the com-

mon salient objects across several relevant images. Previous

works mainly exploit inter-image cues to detect co-salient

objects. Early CoSOD methods explore the inter-image cor-

respondence between image-pairs [19, 33] or a group of

relevant images [34] based on shallow handcrafted descrip-

tors [17, 35]. They employ different approaches to mine

the inter-image relationships using constraints or heuristic

characteristics. Several studies attempt to capture the inter-

image constraints by employing an efficient manifold rank-

ing scheme [36] to obtain guided saliency maps, or using a

global association constraint with clustering [20], or transla-

tional alignment [11]. Other works attempt to formulate the

semantic attributes shared among images in a group from

the high-level features in the heuristic characteristics, us-

ing multiple saliency cues and self-adaptive weights [21],

regional histograms and constrasts [37], metric learning by

optimizing a new objective function [23], or pairwise simi-

larity ranking and linear programming [38].

Recently deep-based models simultaneously explore the

intra- and inter-image consistency in a supervised manner

with different approaches, such as graph convolution net-

works (GCN) [39, 40, 41], self-learning methods [22, 42],

inter-image co-attention with PCA projection [8] or recur-

rent units [43], correlation techniques [44], quality mea-

surement [45], or co-clustering [46]. Some methods ex-

ploit multi-task learning to simultaneously optimize the

co-saliency detection and co-segmentation [47] or co-peak

search [13]. Other works explore hierachical features from

multi-scale [48], multi-stage [49], or multi-layer [50] fea-

tures. Another notable research line is to explore group-

wise semantic representation (consensus) which is used to

detect co-salient regions for each image. There are dif-

ferent methods to capture the discriminative semantic rep-

resentation, such as group attentional semantic aggrega-

tion [51], gradient feedback [27], co-category association

[52], united fully convolutional network [53, 54], or in-

tegrated multilayer graph [55]. Methods are proposed to

solve the CoSOD problem in a semi-supervised [56] or un-

supervised manner [24, 57, 58, 59], and studies [60, 61] are

availalbe on co-saliency detection from a single image.

Previous works have focused on intra-group (intra- and

inter-image) cues for capturing common attributes of co-

salient objects. The inter-group information has received

less attention, although CODW [62] focuses on visually

similar neighbor. Recently Zhang et al. [27] utilized a

jigsaw training to implicitly exploit other images to facili-

tate group training. But their model still targets intra-group

learning. Our method differs from existing models in the

exploration of inter-group relations for discriminating fea-
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Figure 2. Pipeline of the proposed Group Collaborative Learning Network (GCoNet). Images in two groups are first processed

by a weight-shared encoder. Then we employ the group affinity module (GAM, see Figure 3 for more details) to conduct intra-group

collaborative learning for each group to generate a consensus, which is collaborated with the original feature maps to segment co-salient

objects using the decoder. In addition, the original feature maps and consensuses of both groups are fed to the group collaborating module

(GCM, see Figure 4) to conduct the inter-group collaborative learning. Moreover an auxiliary classification module (ACM) is applied to

obtain the high-level semantic representation. The GCM and ACM are only used for training and are removed at inference.

ture learning at a group level explicitly and semantically.

3. Group Collaborative Learning Network

3.1. Architecture Overview

Given a group of N relevant images {I1, I2, ..., In} con-

taining common salient objects of a certain class, CoSOD

aims to detect them simultaneously and output the co-

saliency maps. Unlike existing CoSOD methods which

only depend on the information within the image group,

we propose a novel group collaborative learning network

(GCoNet) to mine the consensus representations at both

intra- and inter-group level.

Figure 2 illustrates the flowchart of our GCoNet. First,

an encoder network is used to extract feature maps F1 =
{F1,n}

N
n=1,F2 = {F2,n}

N
n=1 ∈ R

N×C×H×W for two im-

age groups, where C is the channel number and H ×W is

the spatial size. Then, a group affinity module (GAM) is

used to combine all single-image features to distill the con-

sensus feature Ea
1 ,Ea

2 ∈ R
1×C×1×1 (C = 512 in our exper-

iments) from F1,F2, representing the common attributes

of the co-salient objects for each group. Simultaneously, a

group collaborating module (GCM) is applied to enhance

the image representation for discriminating the target at-

tributes between different image groups. Finally, we further

improve the high-level semantic representation of images

using an auxiliary classification module (ACM) to learn a

better embedding space. The resulting collaborative fea-

tures are then fed to a decoder network to produce the co-

saliency maps M1,M2.

3.2. Group Affinity Module

Intuitively, common objects from the same class always

share some similarity in appearance and have high similar-

ity in features, which have been widely employed in many

tasks. Inspired by self-supervised video tracking meth-

ods [63, 64, 65, 66], which propagate the segmentation

masks of target objects based on the pixel-wise correspon-

dences between two adjacent frames, we extend this idea to

the CoSOD task by computing the global affinity among all

images in a group.

For any two image features {F1,n, F1,m} ∈ F1
2 and

without losing generality we drop the group subscript, we

can use the inner product to compute their pixel-wise corre-

lations:

S(n,m) = θ(Fn)
Tφ(Fm), (1)

where θ, φ are linear embedding functions (3 × 3 × 512
convolutional layer). The affinity map S(n,m) ∈ R

HW×HW

efficiently captures the commonality of co-salient objects in

the image pair (n,m). Then we can generate Fn’s affinity

map An←m ∈ R
HW×1 by finding the maxima for each of

Fn’s pixel conditioned on Fm which alleviates the influence

of noisy correlation values in the map.

Similarly, we can extend the local affinity of two images

to the global affinity of all images in the group. Specifically,

we compute the affinity map SF ∈ R
NHW×NHW between

all image features F using Eq. 1. Then, we find the maxima

for each image A′
F

∈ R
NHW×N from SF , and average all

the maxima of N images to generate the global affinity at-

tention map AF ∈ R
NHW×1. In this way, the affinity atten-

2All analyses in section 3.2 on F1 can be applied to F2. We omit the

group subscript for notation simplicity, i.e., we use Fn to represent F1,n.

12290



N x (1 x H xW)

ℱ 𝐸#

ℱ$

𝜙

𝜃

NHW x NHW NHW x N x HW NHW x N NHW x 1

𝑆ℱ 𝐴ℱ
) 𝐴ℱ

R
S 

RM A
A

A

R Reshape M Maximize A Average
S
R Softmax & Reshape

A
A Batch & Spatial AverageMultiplication

𝐴*

N x (C x H xW)

Figure 3. Group Affinity Module. We first exploit the affinity attention to generate the attention maps for the input features by collaborating

all images in group. Subsequently, the maps are multiplied with the input features to generate the consensus for the group. Then the obtained

consensus is used to coordinate the original feature maps and is also fed to the GCM for inter-group collaborative learning.

tion map is globally optimized on all images thus alleviating

the influence of occasional co-occurring bias. Then, we use

a softmax operation to normalize AF and reshape it to gen-

erate the attention map AS ∈ R
N×(1×H×W ). We multiply

AS with the original feature F to produce the attention fea-

ture maps Fa ∈ R
N×C×H×W . Finally, all the attention

feature maps Fa for the whole group are used to produce

the attention consensus Ea by average pooling along both

the batch and spatial dimensions, as shown in Figure 3.

The global affinity module focuses on capturing the com-

monality among co-salient objects within the same group

and therefore improves the intra-group compactness of the

consensus representation. Such intra-group compactness

alleviates the disturbance of co-occurring noise and enables

the model to concentrate on the co-salient regions. This al-

lows the shared attributes of co-salient objects to be better

captured and therefore results in better consensus represen-

tation. The obtained attention consensus Ea is combined

with the original feature maps F through depth-wise corre-

lation [67, 68] to achieve efficient information association.

The resulting feature maps Fout are fed to the decoder to

predict co-saliency maps Mn for each image. The loss

function is:

Lsal =
1

N

N∑

n

Lsiou(Mn,Gn), (2)

where Lsiou is the soft IoU loss [28, 69] and Gn denotes the

ground-truth label for each image in the group.

3.3. Group collaborating module (GCM)

Most CoSOD methods tend to focus on the intra-group

compactness of the consensus, but the inter-group separa-

bility is equally crucial for distinguishing distracting ob-

jects, especially when processing complex images with

more than one salient objects. To enhance the discrimina-

tive representations between different groups, we propose a

simple but effective module, i.e., the GCM, by learning to

encode the inter-group separability.

Given two image groups with the corresponding fea-

tures {F1,F2} and attention consensus {Ea
1 ,Ea

2} obtained
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Figure 4. Group collaborating module. The original feature

maps and consensuses of both groups are fed to the GCM. The

predicted output conditioned on the consistent feature and consen-

sus (from the same group) is supervised with the available ground-

truth labels. Otherwise, it is supervised by the all-zero maps.

from the GAM, we apply an intra- and inter-group cross-

multiplication. Specifically, the intra-group multiplication

deals with the features and their consensus: F1
1 = F1 · Ea

1

and F2
2 = F2 · Ea

2 for the intra-group collaboration, while

the inter-group multiplication acts on the features and con-

sensus of different groups, i.e., F2
1 = F1 · Ea

2 and F1
2 =

F2 · Ea
1 , to express the inter-group interaction. The intra-

group representation F+ = {F1
1 ,F

2
2} is exploited to pre-

dict the co-saliency maps, and the inter-group representa-

tion F− = {F2
1 ,F

1
2} is employed to provide a consensus

with group separability. Specifically, we feed {F+,F−}
to a small convolutional network with an upsampling layer

and produce the saliency map {M+,M−}3 with different

supervision signals: we use ground-truth labels to supervise

F+, while all-zero maps are used for F−. The loss function

is:

Lctm =
1

N

N∑

n

LFL(< M+
n ,M

−

n >,< Gn,G
0
n >), (3)

where LFL is the focal loss [70], Gn is the ground-truth, G0
n

is the all-zero map and < · > denotes the concatenation

operation.

Our GCM thus encourages the consensus to distinguish

different groups with high inter-group separability to iden-

3M+
= {M+

1
,M+

2
} and M−

= {M−
1
,M−

2
}.
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Table 1. Quantitative ablation studies of our GCoNet on the effectiveness of the GAM (group affinity module), GCM (group collaborating

module), ACM (auxiliary classification module) and their combinations.
Modules CoCA [27] CoSOD3k [8] Cosal2015 [62]

ID GAM GCM ACM E max
φ

↑ Sα ↑ F max
β

↑ ǫ ↓ E max
φ

↑ Sα ↑ F max
β

↑ ǫ ↓ E max
φ

↑ Sα ↑ F max
β

↑ ǫ ↓

1 0.618 0.591 0.419 0.190 0.811 0.764 0.721 0.108 0.862 0.818 0.800 0.087

2 X 0.663 0.605 0.442 0.160 0.823 0.772 0.736 0.099 0.873 0.825 0.815 0.079

3 X 0.666 0.616 0.452 0.156 0.839 0.788 0.748 0.087 0.877 0.834 0.823 0.074

4 X 0.651 0.606 0.442 0.167 0.829 0.779 0.737 0.094 0.875 0.832 0.820 0.076

5 X X 0.719 0.650 0.504 0.126 0.850 0.798 0.766 0.078 0.884 0.842 0.837 0.070

X X X 0.760 0.673 0.544 0.105 0.860 0.802 0.777 0.071 0.888 0.845 0.847 0.068

tify distractors in complex environment. Another advantage

is that this module enables the model to be trained on the ex-

isting SOD datasets, whose images typically contain only

one dominating object. We can discard this module dur-

ing inference without introducing additional computational

overhead.

3.4. Auxiliary Classification Module (ACM)

To obtain more discriminative features for consensus, we

also introduce an ACM to facilitate high-level semantic rep-

resentation learning. Specifically, we add a classification

predictor with a global average pooling layer and one fully

connected layer to the backbone to classify Fn to the corre-

sponding class Yn. In the Euclidean feature space, the clas-

sification supervision can separate classes by introducing

a large margin, and cluster samples belonging to the same

class. Therefore, it enables the model to generate more rep-

resentative features and benefits the consensus learning for

intra-group compactness and inter-group separability. The

loss function is:

Lcls = Lce(Yn, Ŷn), (4)

where Lce is the cross-entropy loss and Ŷn is the ground-

truth class label.

3.5. End­to­end Training

During training, the GAM, GCM, and ACM are jointly

trained with the backbone in an end-to-end manner. The

whole framework is optimized by integrating all the afore-

mentioned loss functions:

L = λ1Lsal + λ2Lctm + λ3Lcls, (5)

where λ1, λ2, and λ3 are hyperparameter weights to balance

the loss functions.

4. Experiments

4.1. Implementation Details

We use VGG-16 [71] with Feature Pyramid Network

(FPN) [72] as our backbone. For fair comparison, we follow

GICD [27] and use the DUTS [73] dataset as our training

set. The group labels derived from GICD [27] are used to

group the images during training. In each training episode,

we randomly pick two different groups with 16 samples4 in

each group to train the network. The images are all resized

to 224x224 for training and testing, and the output saliency

maps are resized to the original size for evaluation. The net-

work is trained over 50 epochs in total with the Adam opti-

mizer. The initial learning rate is set to 10e − 4, β1 = 0.9
and β2 = 0.99. The whole training takes around four hours

and the inference speed on the image pair groups5 is 16ms.

The platform for training and inference is equipped with

56 Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz and a

Nvidia GeForce GTX 1080Ti.

4.2. Evaluation Datasets and Metrics

We employ three challenging datasets for evaluation:

CoCA [27], CoSOD3k [74], and Cosal2015 [62]. The last

is a large dataset widely used in the evaluation of CoSOD

methods. The first two were recently proposed for chal-

lenging real-world co-saliency evaluation, with the images

usually containing multiple common and non-common ob-

jects against a complex background. Following the advice

of recent large-scale benchmark work [74], we do not use

iCoseg [75] and MSRC [76] for evaluation, because they

usually provide only one salient object in an image and are

not very suitable for evaluating CoSOD models. We use

maximum E-measure Emax
φ [77], S-measure Sα [78], maxi-

mum F-measure Fmax
β [79], and mean absolute error (MAE)

ǫ [80] to evaluate methods in our experiments.6

4.3. Ablation Studies

In this section, we study the effectiveness of each com-

ponent in our approach (Table 1) and investigate how they

contribute to a good consensus feature.

Effectiveness of GAM. The global co-attention module is

a fundamental component of our model, which is designed

to capture the common attributes of co-salient objects in an

image group for better intra-group compactness. Compared

to the baseline model with only the vanilla consensus ex-

tracted by an average pooling operation, GAM improves the

performance on all metrics and datasets. To get a deeper un-

4Due to limited computing resource. The larger the better.
5CoSOD task works for image groups. Therefore we use the basic

image pair group to evaluate the speed rather than the single image.
6Evaluation toolbox: https://github.com/DengPingFan/

CoSODToolbox.
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Table 2. Quantitative comparison results between our GCoNet and other methods. “↑” (“↓”) means that the higher (lower) is better. Co

= CoSOD models, Sin = Single-SOD models. The symbol ∗ denotes traditional CoSOD algorithms.
CoCA [27] CoSOD3k [8] Cosal2015 [62]

Method Pub. & Year Type E max
φ

↑ Sα ↑ F max
β

↑ ǫ ↓ E max
φ

↑ Sα ↑ F max
β

↑ ǫ ↓ E max
φ

↑ Sα ↑ F max
β

↑ ǫ ↓

CBCD* [20] TIP 2013 Co 0.641 0.523 0.313 0.180 0.637 0.528 0.466 0.228 0.656 0.544 0.532 0.233

GWD [54] IJCAI 2017 Co 0.701 0.602 0.408 0.166 0.777 0.716 0.649 0.147 0.802 0.744 0.706 0.148

RCAN [43] IJCAI 2019 Co 0.702 0.616 0.422 0.160 0.808 0.744 0.688 0.130 0.842 0.779 0.764 0.126

CSMG [48] CVPR 2019 Co 0.733 0.627 0.499 0.114 0.804 0.711 0.709 0.157 0.842 0.774 0.784 0.130

BASNet [28] CVPR 2019 Sin 0.644 0.592 0.408 0.195 0.804 0.771 0.720 0.114 0.849 0.822 0.791 0.096

PoolNet [29] CVPR 2019 Sin 0.640 0.602 0.404 0.177 0.799 0.771 0.709 0.113 0.848 0.823 0.785 0.094

EGNet [30] ICCV 2019 Sin 0.648 0.603 0.404 0.178 0.793 0.762 0.702 0.119 0.843 0.818 0.786 0.099

SCRN [81] ICCV 2019 Sin 0.642 0.612 0.413 0.164 0.805 0.771 0.716 0.113 0.850 0.817 0.783 0.098

GICD [27] ECCV 2020 Co 0.715 0.658 0.513 0.126 0.848 0.797 0.770 0.079 0.887 0.844 0.844 0.071

CoEGNet [8] TPAMI 2021 Co 0.717 0.612 0.493 0.106 0.825 0.762 0.736 0.092 0.882 0.836 0.832 0.077

GCoNet (Ours) CVPR 2021 Co 0.760 0.673 0.544 0.105 0.860 0.802 0.777 0.071 0.887 0.845 0.847 0.068
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Figure 5. Visualization of affinity attention maps learned by GAM using intra-group collaborative learning across all images in each

group. Masks are sensitive to co-salient regions with shared attributes, which benefits the consensus representation learning.

derstanding of our GAM module, we visualize the learned

attention masks in Figure 5. We find that our global co-

attention effectively alleviates the influence of co-occurring

noise and focuses on co-salient regions in the image groups,

e.g., in both the monkey and bicycle groups, there are some

co-occurring persons in some images, but our GAM is not

adversely influenced. The global view of GAM enables the

most common objects to be detected, while the local pair-

wise co-attention cannot distinguish them in the local view.

Effectiveness of GCM. The group collaborating module is

designed to enable the consensus inter-group separability to

distinguish distracting objects from non-common objects.

After equip the model with GCM, significant performance

improvement (ID-1 versus ID-3) is obtained in Table 1 espe-

cially on the challenging CoCA [27] dataset whose images

usually contain multiple uncommon and common objects.

To investigate the consensus characteristics when the model

is trained with the GCM, we visualize the consensus us-

ing t-SNE [18] on the CoCA dataset, and compare with the

vanilla consensus without the GCM. As shown in Figure 1,

the vanilla consensuses (top: CoEGNet [8]) tend to cluster

together, even if they belong to different groups, resulting

in ambiguous co-saliency detection, especially for objects

belonging to similar but different groups. In contrast, the

consensuses trained with the GCM (bottom: our method) is

more diverse with a higher group variance, for more effec-

tive inter-group separability. For quantitative comparison,

we evaluate the cosine similarity (↓ lower is better) of the

consensus of “guitar” and “violin”, and ours (0.32) is much

better than CoEGNet (0.75).

Effectiveness of ACM. As shown in Table 1, the classifi-

cation module introduces better backbone features for the

consensus with the auxiliary classification supervision. The

ACM improves the baseline performance on all metrics and

datasets. This cost-free improvement does not change the

network architecture and does not introduce extra compu-

tational overhead at inference time, thus has substantial po-

tential to other models and tasks to take advantage of the

multi-task learning and more representative features.

4.4. Competing Methods

Since not all CoSOD models have publicly released

codes, we only compare our GCoNet with one repre-

sentative traditional algorithm (CBCD) and five deep-

based CoSOD models, including GWD [82], RCAN [43],

CSMG [48], GICD [27], and CoEGNet [8]. Following

the current state-of-the-art model [27], we also compare

with four cutting-edge deep salient object detection (SOD)7

models: BASNet [28], PoolNet [29], EGNet [30] and

SCRN [81]. More complete leaderboard can be found in

recent standard benchmark works [8, 74].

7SOD methods can also be directly applied to the CoSOD task.
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Figure 6. Qualitative comparisons of our GCoNet and other methods. “GT” denotes GroundTruth.

Quantitative Results. Table 2 tabulates the quantitative

results of our model and state-of-the-art methods. Our

model outperforms all of them in all metrics, especially

on the challenging CoCA and CoSOD3k datasets. Among

these three datasets, CoCA is the most challenging, since

the images typically contain other multiple objects in ad-

dition to the co-salient objects which are even smaller in

size. Our model capitalizes on our better consensus and

significantly outperforms other methods especially the SOD

methods which are trapped in distinguishing many distract-

ing objects instead. CoSOD3k has similar attributes, and

our model still performs much better than other models on

this dataset. Cosal2015 is the easiest dataset because its im-

ages typically only contain one co-salient object, and there-

fore the SOD algorithms can easily handle this dataset. Our

model cannot take full advantage of the better consensus on

this dataset and the improvement is not as significant as on

other datasets.

Qualitative Results. Figure 6 shows the saliency maps

generated by different methods for qualitative comparison.

In these difficult examples, each image contains other mul-

tiple objects in addition to the co-salient objects. As afore-

mentioned, the SOD methods can only detect salient objects

and fail to distinguish co-salient objects due to their intrin-

sic limitation. The CoSOD methods perform better than the

SOD methods owing to their consensus for distinguishing

co-salient regions. However, limited by the their weak con-

sensus, they are still unable to handle the challenging cases.

Our model introduces an effective consensus through op-

timizing intra-group compactness and inter-group separa-

bility, and therefore performs much better on detecting co-

salient objects.

5. Discussion of Module Cooperation

Our three modules are closely interdependent and mu-

tually reinforced for improving co-saliency detection per-

formance. Combining the GAM and GCM can signif-

icantly improve the performance compared to the indi-

vidual modules. Without the GAM the vanilla consen-

sus is not robust against noise caused by uncommon ob-

jects and background, and the low-quality consensus can-

not take full advantage of the GCM which heavily relies

on the consensus for distinguishing different objects. On

the other hand, although the consensus can capture com-

mon attributes with the help of the GAM, it is difficult to

distinguish different groups without the GCM especially

for similar groups. Overall, the GAM produces better

consensus with high intra-group compactness to detect co-

saliency objects, while the GCM further endows the consen-

sus with inter-group separability for better discriminative

ability. Adding ACM, the consensus can benefit from more

representative features leveraged by the multi-task learning.
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Figure 7. Qualitative ablation studies of our GCNet on different modules and their combinations.

Figure 8. Application 1. Content aware object co-segmentation

visual results (“GT car”) obtained by our GCoNet.

Figure 9. Application 2. Co-location based automatic thumbnails

(“Raccoon”) generated by our GCoNet.

Figure 7 qualitatively analyse their cooperation. The

baseline model detects uncommon objects, while the GAM

and GCM can slightly ameliorate their adverse influence.

When combining the GAM and GCM, the model can ef-

fectively capture co-salient objects with the ACM further

boosting the co-salient object detection result.

6. Downstream Applications

Here, we show how the extracted co-saliency map can be

utilized to generate high-quality segmentation masks for se-

lected closely related downstream image processing tasks.

Application #1: Content-Aware Co-Segmentation. Co-

saliency maps have been previously used in pre-processing

for unsupervised object segmentation. In our implementa-

tion, we first manually select a group of images from the

internet by keyword search . Then, co-saliency maps are

generated by our GCoNet to automatically mine the salient

content of the specific group. Similar to Cheng et al. [26],

we also utilize GrabCut [83] to obtain the final segmen-

tation results. To initialize GrabCut, we simply choose

adaptive threshold [84] to binarize the saliency maps. Fig-

ure 8 shows the results of the content-aware object co-

segmentation which should benefit existing e-commerce ap-

plications requiring background replacement.

Application #2: Automatic Thumbnails. The idea

of paired-image thumbnails is derived from the seminal

work [11]. With the same goal8, we present a CNN-based

photographic triage application which is valuable for shar-

ing images with friends on the website. As shown in Fig-

ure 9, we first generate the yellow box based on the co-

saliency map obtained by our GCoNet. Then, we simply

enlarge the yellow box to get a larger red box. Finally, we

adopt the collection-aware crops technique [11] to produce

the results (2nd row).

7. Conclusion

In this paper, we investigate a novel group collabora-

tive learning framework (GCoNet) for CoSOD. We find

that group-level consensus can introduce effective seman-

tic information to benefit the representation of both the

intra-group compactness and inter-group separability for

CoSOD. Our experiments quantitatively and qualitatively

demonstrate the advantage of our GCoNet which outper-

forms existing state-of-the-art models. In addition, our

GCoNet achieves real-time speed (16ms) which can greatly

benefit many applications such as co-segmentation, co-

localization, and among others.
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