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Abstract

Humans possess a unique social cognition capabil-

ity [43, 20]; nonverbal communication can convey rich so-

cial information among agents. In contrast, such crucial so-

cial characteristics are mostly missing in the existing scene

understanding literature. In this paper, we incorporate dif-

ferent nonverbal communication cues (e.g., gaze, human

poses, and gestures) to represent, model, learn, and infer

agents’ mental states from pure visual inputs. Crucially,

such a mental representation takes the agent’s belief into

account so that it represents what the true world state is and

infers the beliefs in each agent’s mental state, which may

differ from the true world states. By aggregating different

beliefs and true world states, our model essentially forms

“five minds” during the interactions between two agents.

This “five minds” model differs from prior works that in-

fer beliefs in an infinite recursion; instead, agents’ beliefs

are converged into a “common mind” [31, 47]. Based on

this representation, we further devise a hierarchical energy-

based model that jointly tracks and predicts all five minds.

From this new perspective, a social event is interpreted by

a series of nonverbal communication and belief dynam-

ics, which transcends the classic keyframe video summary.

In the experiments, we demonstrate that using such a so-

cial account provides a better video summary on videos

with rich social interactions compared with state-of-the-art

keyframe video summary methods.

1. Introduction

“The human body is the best picture of the human soul.”

— Ludwig Wittgenstein [32]

We live in a world with a plethora of animate and goal-

directed agents [60], or at least it is how humans perceive

and construct [49] the world in our mental state [24]. The

iconic Heider-Simmel display [19] is a quintessential stim-

ulus, wherein human participants are given videos of sim-

ple shapes roaming around the space. In this experiment,
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humans have a strong inclination to interpret the observed

featureless motions composed of simple shapes as a story-

telling description, such as a hero saving a victim from

a bully. This social cognition account of human vision is

largely missing in the computational literature of scene un-

derstanding or, more broadly, the field of computer vision.

In the field of social cognition, researchers have identi-

fied two unique components that distinguish human adults

from infants and other primates [43]. The first component

is “representational Theory of Mind (ToM),” the ability

to attribute mental states to oneself and others, to under-

stand that others have perspectives and mental states differ-

ent from one’s own, as well as using these abilities to recog-

nize false belief [39]. In the theoretical construct of mental

states, mainstream psychology and related disciplines have

traditionally treated belief as one simplest form, and there-

fore one of the building blocks of conscious thought [23].

Belief can be constructed as mental objects with seman-

tic attributes; cognitive states and processes are consti-

tuted by the occurrence, transformation, and storage of such

information-bearing structure [38]. The second component

is the triadic relations: You, and Me, collaboratively look-

ing at, working on, or talking about This [47]. Much power

of human social cognition depends on the ability to form

representations with a triadic structure [43].

To promote social cognition in computer vision, we fo-

cus on belief dynamics in nonverbal communication. Here,

belief is defined as an entity and its attributes (e.g., loca-

tion), and belief dynamics (i.e., the change of belief) are

naturally and completely summarized using four categories:

occur indicates an agent becomes aware of an object at a

certain location, update means an agent knows the object’s

attribute was updated, disappear denotes that an agent loses

track of the object’s attribute, and null is no change. We em-

phasize on triadic relations emerged during nonverbal com-

munication, including No Communication, Attention Fol-

lowing, and Joint Attention [12, 1]: No Communication in-

dicates no social interaction between the two agents, Atten-

tion Following is a one-way observation, and Joint Attention

means that two agents have the same intention to share at-

tention on a common stimulus and both know that they are

sharing the attention [47]; see an illustration in Fig. 1.
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Figure 1: Triadic belief dynamics in nonverbal communication. Three types of communication events emerge from social

interactions (bottom) and causally construct agents’ belief dynamics (top). In this paper, we propose a novel structural mind

representation “five minds” and a learning and inference algorithm for belief dynamics based on a hierarchical energy-based

model that tracks (i) each agent’s mental state (m1 and m2), (ii) their estimated belief about other agent’s mental state (m12

and m21), and (iii) the common mind (mc). Of note, some events have two phases connected by three arrows.

To account for the two social components computation-

ally, we propose a novel structural mind representation,

termed “five minds,” that includes two first-order self men-

tal states (i.e., the ground-truth mental state), two second-

order estimated mental states of each other’s mind (may

deviate from the ground-truth mental states), and the third-

level “common mind.” Note that the proposed “five minds”

differs from prior models that attempt to infer mental states

among agents recursively with potentially infinite loops; in-

stead, the “common mind” considers what the two agents

share completely transparently without infinite recursion

and corresponds to the concept of “common ground” [47].

The proposed “five minds” model is well-grounded to

visual inputs, especially in terms of nonverbal communica-

tion. For instance, gaze communication uses eye gazes as

portals inward to provide agents with glimpses into the in-

ner mental world [12], and pointing gesture serves as “the

first uniquely human forms of communication” to ground

and reshape mental states [47]. We bring these crucial so-

cial components into representing, modeling, learning, and

inference of belief dynamics in the computer vision com-

munity. Intuitively, the spatiotemporal parsing of social in-

teractions affords the emergence of communication events;

these events causally affect belief dynamics. Thus, a hierar-

chical energy-based model with Bayesian inference is natu-

rally derived to track, maintain, and predict the mental states

of all “five minds.” To demonstrate the model’s efficacy, we

collect a new 3D video dataset with eye-tracking devices

to facilitate ground-truth labeling. We verify the proposed

method on this new 3D video dataset focusing on rich non-

verbal social interactions and triadic belief dynamics.

This paper makes four contributions: (i) By incorporat-

ing crucial social cognition components, we address a new

task of triadic belief dynamics learning and inference from

nonverbal communication in natural scenes with rich social

interactions. We propose a novel structural mental represen-

tation “five minds” by introducing a “common mind,” with

well-defined and quantized belief and belief dynamics, as

well as nonverbal communication events. To the best of our

knowledge, ours is the first to tackle such challenging prob-

lems in the field of computer vision. (ii) We collect a new

3D video dataset with rich social interactions using eye-

tracking devices to facilitate ground-truth labeling; nonver-

bal communication events and belief dynamics are densely

annotated. Such a setup goes beyond toy and symbolic ex-

amples presented in the literature, which we believe will

serve as a modern benchmark for high-level social learning

based on pixel inputs. (iii) We devise a hierarchical energy-

based model and a beam-search-based algorithm to simul-

taneously optimize the learning and inference of nonverbal

communication events and belief dynamics. (iv) We provide

a benchmark and demonstrate the efficacy of the proposed

method in a keyframe-based video summary.

2. Related Work

Nonverbal behavior and human communication

Tomasello [47] argues that nonverbal communication is

the “unconventionalized and uncoded” form, more founda-

tional than the human natural language. Crucially, instead

of merely treating head and body motions as an assembly

of skeletons movements (e.g., gaze [27], gesture [35], or in-

teraction [26] in computer vision), we do recognize the un-

derlying intentions behind these motions from the perspec-

tive of human social cognition; pointing and iconic gestures

have their special meaning to convey the message and es-

tablish shared intentionality and common ground [13].

This unique view of nonverbal behavior and communica-

tion is largely ignored in modern scene understanding and

computer vision. The present work subsumes prior work in

gaze, gesture, body motions, and interactions in computer

vision by presenting a hierarchical graphical representation,

wherein the communication events [12, 11] emerge from the

spatiotemporal parsing of low-level signals to maintain the

triadic relations and belief dynamics among agents.

Machine ToM ToM has been long regarded as an acid

test for human social interaction; impairment of such ca-

pability to construe persons in terms of their inner men-

tal lives often results in autism [4]. In literature, modern

computational models of ToM often treat the inference of

mental states as infinite (or approximated by finite) recur-

sions, notably by partially observable Markov decision pro-

cess (POMDP) [17, 2, 9, 8]. Recent research includes esti-
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mating the opponent’s sophistication (i.e., recursion) in se-

quential games [52, 7], representing and updating beliefs

through time [56, 37], reasoning about other agent’s de-

sires and beliefs based on their actions with a Bayesian

account [3], or learning to model agent’s mental state and

policy in grid world [41]. However, studies have concluded

that the default level of recursive reasoning typically could

go no deeper than one or two levels [5]; instead, we tend to

build and rely on the “common mind” [46, 45] after only

one or two levels of recursive reasoning of mental states.

In this paper, we adopt the representation of “common

mind,” a crucial ingredient to properly interpret the triadic

relation without infinite recursion. Sharing a similar spirit,

the coordinated and joint planning [14, 15, 29, 21] has been

extensively studied in symbolic-like environments. Addi-

tional efforts have also emerged to recognize false-belief or

perspective-taking with more realistic and noisy data in the

field of robotics [55, 34], computer vision [10], and natural

language processing [36]. However, the problem settings in

prior work either lack rich interactions or communications

among agents or have relatively confined problem space (at

most on object/human tracking). In comparison, the prob-

lem setting in this paper considers rich social interactions

with nonverbal communication in physical indoor environ-

ments captured and synced with multiple Azure Kinect sen-

sors and eye-tracking devices. To tackle the challenges in-

troduced by raw video input, we present a much more ex-

pressive hierarchical representation to interpret the interac-

tions and communications among agents.

Keyframe-based video summary Keyframe-based

video summary is a practical application of video under-

standing. In literature, models tend to obtain keyshots for

segment-based summary [16], minimize the reconstruction

loss [33], or directly compute a frame-level score, mea-

suring the frame’s contribution in summarizing the video

essence [44]. Various mechanisms and additional cues have

been adopted to improve semantics, including temporal de-

pendency [57], subtitles [54] and action features [30]. Al-

though these models are effective in general, they primarily

rely on low-level features (e.g., appearance, motion) with-

out much modeling of high-level “agency” of human agents.

Obtaining a better semantic summary for videos with

rich human interactions and nonverbal communications ne-

cessitates the modeling and understanding of the agents’

mental world. To tackle this problem, we incorporate be-

lief dynamics and model nonverbal communications in the

video summary task for interaction-rich videos.

3. Representation and Model

In this section, we start by introducing the proposed ToM

representation, “five minds,” that accounts for the triadic re-

lation and “common mind”; this representation is embedded

in a hierarchical graphical model with a six-level structure.

Next, to learn a probabilistic distribution over such hierar-

chically structured data and capture the relations among la-

tent and observable variables, a classic Gibbs energy-based

probabilistic formulation with carefully designed and most

representative energy terms is derived, capable of pars-

ing the communication events that emerged from the raw

pixel inputs and tracking belief dynamics in five minds. At

length, we conclude this section with a detailed description

of learning and joint inference algorithms.1

3.1. Hierarchical Representation

Given the input image sequence I “ tItut“1,...,T , the

detected human agent i at time t is denoted by hi
t “

pxi
t, p

i
t, g

i
tq, where xi

t P R
3 denotes the spatial position,

pit P R
3ˆ26 the skeleton pose, and git P R

3 the gaze di-

rection. Similarly, o
j
t “ pxj

t , c
j
t , d

j
t q denotes the detected

object j at time t, where x
j
t P R

3 denotes the spatial loca-

tion, c
j
t P C the object category, and d

j
t P t1, . . . , Nou the

object ID; C is the object category set. Let H “ thi
tu and

O “ tojtu denote all the detected human agents and objects

in the video. Without loss of generality, we assume a mini-

mal setting for triadic relation with two agents in a video.

Formally, all minds Mt at time t is represented as a set,

forming a “five minds” representation:

Mt “ tm1

t ,m
2

t ,m
12

t ,m21

t ,mc
tu, t “ 1, . . . , T, (1)

where m1

t and m2

t denote two agents’ mind, m12

t and

m21

t denote the agent’s belief about the other agent’s

mind, and mc
t denotes their common mind. Each mind

is defined as mt “ tpoit, Apoitqq : i “ 1, . . . , No,tu
with a set of objects oi and their attributes Apoiq (e.g.,

3D location). The state change of Mt, i.e., ΔMt “
tΔm1

t ,Δm2

t ,Δm12

t ,Δm21

t ,Δmc
tu, defines the belief dy-

namics. Here, Δm “ tΔpoit, Apoitqqu and belief dynamics

in each mind Δpoit, Apoitqq P t0, 1, 2, 3u, correspond to four

communication types, occur, disappear, update, and null.

ΔMt along time construct the overall belief dynamics

tΔMu, derived from the spatiotemporal parsing of the

video. The parsing is represented by a spatiotemporal parse

graph [59] pg “ ppt, Eq, a hierarchical graphical model

that combines a parse tree pt and the contextual relation E

on terminal nodes; Fig. 2 illustrates an example. A parse

tree pt “ pV,Rq includes the vertex set with a six-level hi-

erarchical structure V “ Vr Y Vb Y Ve Y Vs Y Vf Y Vt

and the decomposing rule R, where Vr is the root set with

only one node representing the entire video, Vb the set of

belief dynamics of “five minds,” Ve is the set of communi-

cation events, Vs is the set of interactive segments, Vf is the

set of frame-based static scenes, and Vt is the set of all the

detected instances in an indoor scene. Specifically:

1Henceforth, we use the term “mind” in human and animal studies and

the term “mental state” in computational models interchangeably.
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Figure 2: A parse graph of a social event with a six-level hierarchical structure. V denotes vertex sets in the hierarchy.

The root node Vr corresponds to the entire video. The set of belief dynamics Vb emerges from the lower-level communication

events (see also Fig. 1). Communication events in Ve decompose into lower-level interactive segments in Vs; these segments

are social primitives learned unsupervisedly. Each frame of the scene in Vf further decomposes into several terminal nodes

in Vt, grounded into entities detected from videos. The colored dots in the Ve layer represent belief changes triggered by

communication events. Note that belief dynamics are accumulated over time; we only illustrate the most significant changes.

• The belief dynamics ΔM are conditioned on communi-

cation events Ve, grouped by interactive segments Vs.

• A communication event e P Ve is one of the three cate-

gorical nonverbal communication events: No Communi-

cation, Attention Following, or Joint Attention; see Fig. 1.

• An interactive segment s P Vs is the decomposition of a

communication event e P Ve and represented by the 4D

spatiotemporal features Φs “ pΦ1

s,Φ
2

sq extracted from

detected entities. These features describe social interac-

tions, including both unary Φ1

s and pair-wise features Φ2

s.

• The contextual relation E is represented by an attention

graph Gs formed based on 4D features, wherein the node

represents an agent or an object in the scene, and an edge

is connected between two nodes if there is directed atten-

tion detected among the two entities from visual inputs.

3.2. Probabilistic Formulation

To infer the optimal parse graph pg˚ from raw video se-

quence I , we formulate the video parsing of social events

as a maximum a posteriori (MAP) inference problem:

pg� • arg max
pg

Pppg|H, O qPpH, O |I q

• arg max
pg

PpH, O |pgqPppgqPpH, O |I q,
(2)

where P pH,O|Iq is the detection score of agents and

objects in the video, P ppgq is the prior model, and

P pH,O|pgq is the likelihood model. Below, we detail the

prior model and the likelihood model one by one.

Prior The prior model P ppgq measures the validness

of parse graph; all the nodes in the parse graph should

be reasonably parsed from the root node. We model the

prior probability of pg as a Gibbs distribution: P ppgq “
1

Z1
expt´Eppgqu “ 1

Z1
expt´Eaggr ´ Eevt ´ Ebeu, where

Eaggr is the aggregation prior, Eevt the communication

event prior, and Ebe the belief dynamics prior. Specifically,

• The aggregation prior is defined as Eaggr “ λ1
Ne
T

to en-

courage the algorithm to focus more on high-level com-

munication patterns, instead of being trapped into trivial

primitives that results in fragmented segmentation.

• The communication event prior leverages transition and

co-occurrence frequencies of communication events,

Eevt • ´
� 2

�
i,j, trans pei ,e j q• 1 log ptrans pei , ej q

�
i,j p trans pei , ej q • 1q

´
� 3

�
i,j, occ pei ,e j q• 1 log pocc pei , ej q

�
i,j p occ pei , ej q • 1q

,

(3)

where ptranspei, ejq and poccpei, ejq are based on fre-

quencies from the dataset, and trans and occ are indi-

cator functions that reflects the spatiotemporal relations.

• Ebe models the prior of belief dynamics, which helps to

prune some invalid configurations, such as two consecu-

tive occurs or an occur after an update. The prior model

is defined as Ebe “ ´λ4

� Ne
j“1

log pM pΔMj |ejq, and

pM p� M j |ej q •
�

t

pp� M t ` 1 |� M t , ej qpp� M t |ej q, (4)

where ΔMj is the set of belief dynamics in event ej .
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