
LiDAR-Aug: A General Rendering-based Augmentation Framework

for 3D Object Detection

Jin Fang1,2, Xinxin Zuo3,4*, Dingfu Zhou1,2∗, Shengze Jin5, Sen Wang3,4 and Liangjun Zhang1,2

1 Baidu Research 2 National Engineering Laboratory of Deep Learning Technology and Application, China
3University of Alberta 4University of Guelph 5ETH Zürich, Switzerland

fangjin@baidu.com xzuo@ualberta.ca zhoudingfu@baidu.com

Abstract

Annotating the LiDAR point cloud is crucial for deep

learning-based 3D object detection tasks. Due to expen-

sive labeling costs, data augmentation has been taken as

a necessary module and plays an important role in train-

ing the neural network. “Copy” and “paste” (i.e., GT-

Aug) is the most commonly used data augmentation strat-

egy, however, the occlusion between objects has not been

taken into consideration. To handle the above limitation,

we propose a rendering-based LiDAR augmentation frame-

work (i.e., LiDAR-Aug) to enrich the training data and boost

the performance of LiDAR-based 3D object detectors. The

proposed LiDAR-Aug is a plug-and-play module that can be

easily integrated into different types of 3D object detection

frameworks. Compared to the traditional object augmenta-

tion methods, LiDAR-Aug is more realistic and effective. Fi-

nally, we verify the proposed framework on the public KITTI

dataset with different 3D object detectors. The experimen-

tal results show the superiority of our method compared to

other data augmentation strategies. We plan to make our

data and code public to help other researchers reproduce

our results.

1. Introduction

Due to its precise range sensing ability to capture the

3D geometric information of environment, LiDAR sensor

has been widely used in many applications, especially in

Autonomous Driving (AD).

Recently, deep learning-based point cloud analysis such

as model classification [27], scene segmentation [28, 42],

object detection [35] has achieved significant progress by

employing high-capacity neural network. Generally, for

training a high-performance neural network, a large amount

of annotated training data [14] is a prerequisite, especially

in the AD applications where Safety is the first priority.

*Corresponding author

(a) (b)

(c) (d)

Figure 1: Examples of augmented LiDAR data, where (a), (c)

are the original LiDAR point cloud and (b), (d) are the augmented

LiDAR point cloud by “LiDAR-Aug”. Specifically, the “LiDAR-

Aug” can be used to expand the rare objects such as traffic cone

and cyclist which has been highlighted in the sub-fig (d).

However, creating large datasets with pixel-level labels is

extremely difficult which requires extensive labor work.

This problem is even more serious when dealing with the

sparse LiDAR data. Due to its sparsity in remote distance,

how to identify and annotate the objects with rotated 3D

bounding boxes in 3D space becomes particularly difficult.

To reduce the burden of data annotation, generating syn-

thetic data using simulators [7, 34, 25] becomes one of the

mainstream solutions. However, the simulator itself is still

very expensive, time-consuming, and difficult to generalize

to different scenarios. Besides, the distinct domain gap be-

tween simulated data and real data is another problem. Al-

though a variety of approaches [16, 41] have been proposed,

domain adaption is still an open problem to be investigated.

Another common strategy to deal with limited anno-

tated data is data augmentation. The effectiveness of data

augmentation has been verified in many tasks [11, 38],

which has become a typical pre-processing process be-

fore training the neural network. For 2D tasks, various

data augmentation approaches have been proposed such

4710



as [37, 48]. Besides the simple image operations such as

flipping, cropping, resizing, etc., domain adaptation and

generative models [47, 39] are also introduced to synthe-

size realistic training images. However, for 3D point cloud,

especially LiDAR point cloud, the data augmentation is

rarely discussed. Basically, two simple data augmenta-

tion strategies have been employed for 3D point cloud re-

lated tasks [43, 19, 36, 35, 12]. One is called global aug-

mentation which manipulates the whole LiDAR data glob-

ally, such as randomly scaling, flipping and rotating around

z-axis. The other is called object augmentation such as

the “GT-Aug” (ground truth augmentation) [43, 36] which

copies the obstacles or dynamic objects from other frames

and pastes them into the current frame. Although the “GT-

Aug” strategy is simple, it can indeed improve the detection

performance. However, the occlusion between different

augmented objects and the occlusion between augmented

objects and background points have not been considered.

Therefore, it can not be applied to algorithms using spher-

ical projection representation like MV3D [3] and Squeeze-

Seg [40, 41, 42].

To well address the limitations mentioned above, we pro-

pose the first rendering-based LiDAR data augmentation

framework “LiDAR-Aug”, and apply it to the 3D object

detection task. In the proposed framework, we solve the

most important question: where and how to insert obsta-

cles into real background frames. Different from the pre-

vious method (e.g., “GT-Aug”), we utilize a light-weighted

method “ValidMap” to generate the poses for augmented

objects while avoiding collision to achieve more reasonable

obstacle placements. Finally, we leverage the rendering

technique to compose the augmented objects into the real

background frames, from which the occlusion constraints

are automatically enforced. Therefore, the augmented data

generated by our proposed method will be more realistic

and diverse. We show sampled data generated from our

framework in Fig. 1, from which we can clearly see the data

diversity is enormously enriched (Fig. 1 (b)), and the occlu-

sion state is naturally handled. Moreover, “LiDAR-Aug” is

more than a data augmentation strategy. We can also utilize

it to include and expand the rare objects and corner case sce-

narios as shown in Fig. 1 (d), which is important to improve

the robustness of perception module in AD.

The main contributions of our work can be summarized

as below:

1. We present “LiDAR-Aug”, a rendering-based data

augmentation framework for LiDAR point cloud data,

which is more general and effective as compared with

the commonly used approach “GT-Aug”.

2. We evaluate the proposed framework on the public

KITTI dataset, and demonstrate that the “LiDAR-

Aug” can significantly improve 3D object detection

performance on different baselines.

3. We provide in-depth analyses of the factors in

“LiDAR-Aug” processing, including the obstacle

placement, augmentation combination, and domain

gap.

2. Related Work

Data Simulation: data collection and labeling is a

laborious, costly and time-consuming task. To address

this problem, synthetic data simulation has emerged as a

promising solution from which all ground-truth labels can

be easily obtained. For example, [31] generated a large

collection of synthetic images of urban scenes called SYN-

THIA for semantic segmentation, where the generated im-

ages have diverse illumination, textures, pose of dynamic

objects, and camera view-points with pixel-wise annotation.

Recently, video games have also been used to create large-

scale ground truth data for training purposes. For example,

in [30, 29, 46], a popular video game called Grand Theft

Auto V (GTA-V) is used to generate semantic segmentation

ground truth for the synthesized in-game images.

In addition, built upon Unreal engine [1], many driv-

ing simulators such as Carla [7] and Airsim [34], gradually

spring up from which various kinds of labeled data could

be obtained for autonomous driving purposes. Although

we have seen improved performance by taking the synthetic

data during training [15], the domain gap between synthetic

and real data is still a big issue. [32, 33] deal with this

domain gap through image translation to map the synthetic

images into real ones via GANs.

In contrast to generating purely synthetic datasets, there

are image synthesis works [2, 5, 21] that propose to com-

bine real-world imagery and virtual objects of the target

category by rendering the virtual objects into the real back-

ground. In this way, with only moderate human effort, we

can get annotated data with great diversity. [9] shares the

same idea in LiDAR simulation by inserting the synthetic

CADs into the scanned real background, which is obtained

by using the expensive scan device RIEGL. Recently, Li-

DARsim [24] further replaced the scan background by Li-

DAR data registration and fusion of multiple frames, and

used the reconstructed dynamic objects from point cloud

instead of synthetic CADs.

Data Augmentation Data augmentation is a commonly

used strategy to avoid overfitting and improve generaliza-

tion ability of neural networks by artificially enlarging the

quantity and diversity of the training samples. There are

some general image augmentation strategies such as flip-

ping, rotation and translation. Depending on the specific

learning task, various other augmentation approaches have

also been proposed. For example, Instaboost [8] presented

a copy and paste augmentation method with location prob-

ability map for instance segmentation. In addition to aug-

4711



Pose Generator

Rendering 

Module

3D Object 

Detection 

Backbone

Input

LiDAR

Point Cloud

LiDAR-Aug

Figure 2: The overview of our proposed “LiDAR-Aug” framework. The input original LiDAR point cloud is first sent to the “Pose

Generator” module. Then the CAD models are inserted into the scene under the sampled poses , after which the augmented LiDAR

point cloud is generated by rendering the inserted models onto the original background via the “Rendering Module”. We then exploit the

augmented LiDAR data and validate the effectiveness in the 3D object detection task.

mentation in the image space, [6] brought up the potential

to implement augmentation in feature space. Readers can

refer to [37] for a comprehensive summary of image aug-

mentation.

While there are extensive works on image augmenta-

tion, only a few focus on data augmentation for point cloud.

Random scale, flipping, rotation around the gravity axis,

and point jittering are the most commonly used augmen-

tation operations for point cloud. [11] investigated those

general augmentation operations and evaluated their per-

formance in 3D object detection. Inspired by Mixup [48]

in image augmentation, PointMixup [4] proposed an in-

terpolation method that generated new examples through

an optimal assignment of the path function between two

point clouds. [20] presented an interesting differentiable

auto-augmentation framework for point cloud classifica-

tion, but it could not generalize to detection tasks. For 3D

object detection specifically, [43] proposed an augmenta-

tion method (“GT-Aug”) by sampling ground-truth objects

from the database and copying-pasting them into the train-

ing frames. But it ignored the placement rationality and

occlusion relationship. By simply copying and pasting ob-

jects, the foreground and background diversity actually does

not increase.

3D Object Detection 3D object detection has been stud-

ied for decades with various approaches being proposed.

Readers can refer to papers for a thoroughly summary on

3D object detection where the object detection from Li-

DAR data can be divided into three categories depending

on the ways of representing point clouds: projection/view-

based [17, 44, 23, 44, 22, 49, 13], voxel-based [51, 43,

18, 45] and raw point cloud-based [50, 19, 26]. Instead of

bringing forward new detection methods, in this paper, we

evaluate our data augmentation on several representative de-

tection approaches. For example, as a typical voxel-based

method, Voxelnet [51] split the LiDAR data into voxels and

sent the points in each voxel into a voxel feature encod-

ing layer to get point-wise features. We evaluate on SEC-

OND [43] which has made a series of improvements over

VoxelNet [51] to reduce the training and testing time. We

also validate our data augmentation with several point cloud

based approaches. For instance, PointRCNN [36] directly

generated 3D proposals from raw point cloud in a bottom-

up scheme followed by a refinement stage combining se-

mantic features. PointPillars [19] is also utilized in this pa-

per which used a pillar representation combining 3D point

cloud feature representation and 2d object detection back-

bone. In addition, we exploit a very recent work called PV-

RCNN [35] which combined both point cloud and multi-

scale voxel representation and achieves high performance.

By evaluating our data augmentation using various kinds

of detection methods, we want to demonstrate the effective-

ness and generalization ability of our proposed augmenta-

tion approach.

3. Proposed Method

The overview of the proposed framework is illustrated in

Fig. 2 which includes two modules namely the Pose Gen-

erator and the Rendering Module. The former is a data

distribution-based pose generation engine which provides

the location of the object to be inserted and the latter is to

render the inserted object into the scene. The detailed in-

troduction of each module is given in the following subsec-

tions.

3.1. Pose Generator with ValidMap

As mentioned in previous works [2, 9], how to place

the augmented obstacles also affects the perception perfor-

4712



(a) (b)

(c) (d)

Figure 3: Pose generator with ValidMap. (a) Original input Li-

DAR point cloud with bird’s-eye-view; (b) ValidMap shown in

red color pixels are overlaid with (a); (c) Post-processing results

for the ValidMap with the isolated pixels marked by yellow circles

in (b) are removed; (d) better illustration for (c) by zooming in.

mance. Previous methods (e.g., “GT-Aug”) “Copy” the ob-

jects from other frames and “Paste” them into the current

frame, however, the diversity (e.g., location and orienta-

tion) of these objects is not increased with the naive “Copy”

from the training data. To ensure the consistency between

augmented objects and the background scene, the collision

detection between the foreground object and background

scene also needs to be considered. It means the occupied

LiDAR points in the current frame will be removed. How-

ever, since the augmented objects are directly copied from

other scenes, it will result in augmented scenes which are

not appropriate in real life such as a person inside a bush,

a car across a wall or a cyclist inside a building. In addi-

tion, the “GT-Aug” uses a plane equation to represent the

road to make sure the augmented objects lays on the ground

which is only a rough approximation. To well address these

problems, we propose a simple yet effective obstacle place-

ment strategy to decide the final pose of obstacles based on a

predefined “ValidMap”. The generation of the “ValidMap”

will be discussed in the following text and the final pose

discussed here consists of the position, orientation, and the

type of obstacles to be inserted.

ValidMap: the “ValidMap” is defined as a bird’s-eye-

view map that represents the validness information of ob-

stacle placement, as shown in Fig. 3. To generate a

“ValidMap”, the LiDAR point cloud is first divided into dif-

ferent pillars [19]. Depending on the points’ height distri-

bution in each pillar, they can be classified into three states:

valid, invalid, or empty. For each pillar, we set its state ac-

cording to the following strategy,

Sp =















empty, if length(Z) = 0;
valid, if max(Z)−min(Z) < δ and

abs(mean(Z)−mean(L(X,Y ))) < γ;
invalid, others.

where L is the road plane equation estimated by plane fit-

ting, Z is an array representing the height of the points, X

and Y are the coordinate values for x- and y-axis, δ and γ

are hyper-parameters for threshold.

An example of “ValidMap” is shown in Fig. 3, where

the isolated valid pixel (having no valid neighbors as

shown in sub-figure 3 (c)) will be removed. Based on the

“ValidMap”, a valid pillar is uniformly sampled, and then

the exact position will be randomly selected within this pil-

lar. Here, the height can be directly computed as the mean

height of points in the local valid pillar, which is more pre-

cise than the global plane estimation strategy used in the

“GT-Aug” method.

For the orientation and object’s size, we randomly sam-

ple them from a prepared ground truth database. The

database stored the information of all the annotated obsta-

cles, including position, orientation, and size, from the pub-

lic dataset.

Collision Avoidance: simply inserting the augmented

objects into the background with the sampled position will

cause the collision problem. The collision comes from two

aspects: 1) overlap with the existing objects in the sur-

roundings of the sampled position, and 2) collision between

other inserted objects. To handle this problem, a novel al-

gorithm has been proposed to remove objects that violate

collisions. Details of the proposed algorithm are shown in

Alg. 1. Specifically, the inserted poses are represented as

an array of 3D bounding box and the original LiDAR points

inside the non-empty 3D bounding box are removed first.

Then the IoUs (Intersection of Union) between every re-

maining 3D bounding box is computed. The IoUs are rep-

resented as a symmetric matrix, in which each value is the

IoU between the row item and the column item respectively,

and the diagonal values are set to be zero. Instead of simply

removing all the non-zero rows and columns, as shown in

Alg. 1, we propose to keep the non-overlap 3D bounding

boxes as much as possible and remove the boxes with high

IoU preferentially.

3.2. Rendering Module

LiDAR captures the 3D information of the surrounding

environment by emitting the laser beams and counting the

travel time between the target surface to estimate the dis-

tance. As inserting the obstacles (CADs) into the current

frame, the point cloud of the original background scene may

4713



Algorithm 1 Collision Avoidance Algorithm

Inputs: - LiDAR point cloud P

- Inserted 3D bbox array O

- Threshold τ for points number;
Outputs: - Valid 3D bbox array O;

1: ◮ Count the points number in every 3D bbox, and re-

move the non-empty bbox (the bbox whose points num-

ber is more than τ is defined as non-empty).

2: ◮ Count the IoUs between each bbox, the IoUs can

be represented as a symmetric matrix I, the values in

diagonal are set to zero.

3: while sum(I) > 0 do

4: i = argmax(sum(I, axis = 0))
5: delete(O[i])
6: I[i] = 0
7: I[:, i] = 0
8: end while

be affected. Basically, in order to simulate the LiDAR sen-

sor, for each laser beam, the intersection point to the surface

should be updated whenever an obstacle is to be inserted

into the scene. Different from LiDAR simulators which

need to consider the vertical and azimuth angles distribution

for different LiDAR devices, we directly update the range

for every laser beam in the current frame.

A straightforward method is to iterate over each laser

beam, recompute the intersection points for all the faces of

all the CADs, and finally update the intersection point, how-

ever, this is very time-consuming. To solve this problem ef-

ficiently, we propose a rendering-based method as shown in

Fig. 4.

First, the laser beam marked as a red dotted line is sup-

posed to intersect with the object surface where the red dot-

ted line ends, shown in Fig. 4 (a). Affected by the newly in-

serted CAD, the intersection point should be updated. The

inserted CAD is projected onto the current frame to generate

an objectness map and depth map. The objectness map de-

cides whether the objects exist and the depth map stores the

depth values for the objects. All the laser rays can find the

corresponding pixel in the maps with the projection matrix.

The rays will not update if the corresponding pixel value

in the objectness map is invalid. Otherwise, it will update

directly by looking up the depth value from the depth map.

We also add Gaussian noise as the measurement noise

of the sensor to simulate the real situation where the laser

actually has some perturbation in distance. The noise pa-

rameters are estimated from the ground truth database.

3.3. Efficiency Analysis

For data augmentation, the data generation speed should

be taken into account. In this paper, the “ValidMap” can

(a) (b)

(c) (d)

(e) (f)

Figure 4: Overview of the LiDAR data rendering procedure. (a)

The original LiDAR point cloud, where the red dotted line stands

for a laser ray. (b) The CAD is inserted with the pose sampled

from the Pose Generator module. The laser ray is occluded by the

CAD. (e) shows the objectness map, and (f) is the depth map. The

laser ray can find the corresponding pixel from the maps. From

the objectness map, we decide for each ray whether to update the

range. And we update the distance value for each ray according to

the depth map. (c) The laser ray is updated. (d) Final augmented

LiDAR point cloud.

be computed with parallel technique efficiently. In addi-

tion, the “ValidMap” can also be generated and stored of-

fline. For the rendering and distance updating operation,

the updating of all the laser beams can be totally executed

on GPUs in parallel.

4. Experimental Results

In order to verify the effectiveness of the proposed

“LiDAR-Aug”, we compare it to the “GT-Aug” technique

on the public KITTI [10] benchmark for the 3D object de-

tection task. In the following subsections, we first introduce

the state-of-the-art 3D object detection baselines that we

have used, then the implementation details and the datasets,

as well as the evaluation metric, will be described. Fi-

nally, the evaluation results on the KITTI benchmark will

be given.

4.1. 3D Object Detection Baselines

Four state-of-the-art 3D object detection baselines have

been employed here: 1) SECOND [43] which greatly im-

proved the detection speed of 3D convolutions based meth-

ods by introducing sparse 3D convolution; 2) PointPil-

lars [19] which divided the LiDAR point cloud into pil-

lars and transformed all computations on pillars into dense

2D convolutions and significantly improved the detection

4714



speed; 3) PointRCNN [36] which proposed a generic point-

based proposal method and generated 3D proposals directly

from the whole point clouds instead of 2D images; 4) PV-

RCNN [35] which integrated both the 3D voxel convolution

network and point-based set abstraction.

4.2. Implementation Details

We follow the same settings in their original papers to

train the baseline methods mentioned above. For a fair

comparison, the baseline models that are trained without

data augmentation, with “GT-Aug” and with “LiDAR-Aug”

share the same hyper-parameters. “Car” and “Pedestrian”

classes are used for evaluation here. For each frame, 10 aug-

mented objects will be generated for both “Car” and “Pedes-

trian’. The pillar resolution for generating the “ValidMap”

is 1m × 1m. Both δ and γ are set to 0.1m and the range

noise variance we used here is 0.5cm. All the models are

trained with global augmentations by default, including ran-

dom frame rotation around gravity axis by an angle from

[−π

4
, π

4
], random flipping along the heading direction of Li-

DAR data, and random world scaling with factor from 0.95

to 1.05 uniformly.

4.3. Dataset

KITTI: as one of the most popular benchmarks for 3D

object detection in AD, it contains 7481 samples for train-

ing and 7518 samples for testing. The objects in each class

are divided into three difficulty levels as “easy”, “moderate”

and “hard”, according to the object size, the occlusion ratio,

and the truncation level. Since the ground truth annotations

of the test samples are not available and the access to the

test server is limited, we follow the idea in [3] and split the

source training data into training and validation where each

set contains 3712 and 3769 samples respectively. Here we

only use LiDAR point cloud data in the experiments.

Metrics: we follow the metrics of average precision

(AP) on the KITTI benchmark. For “Car” class, we use

the metric APCar70 which means that only the samples in

which the overlay of bounding box with ground truth is

more than 70% are considered as positive for all the de-

tection results. While the threshold for “Pedestrian” class is

0.5 (e.g., APPed50) due to its smaller size.

4.4. LiDAR­Aug Evaluation

We evaluate our proposed “LiDAR-Aug” with the base-

line detectors for 3D object detection on the validation set

of KITTI and the AP is calculated by 11 recall positions. To

clarify the definition, we use the name “Object-Aug” to rep-

resent all the augmentation methods which aim at inserting

more objects into the current scene, including “GT-Aug”

and “LiDAR-Aug”. For each baseline, three types of com-

parisons are executed here:

1. No “Object-Aug”: the baselines are trained without

any “Object-Aug”;

2. GT-Aug: the baselines are trained with “GT-Aug”;

3. LiDAR-Aug: the baselines are trained with the pro-

posed “LiDAR-Aug”.

Methods
APCar70 (%) APPed50 (%)

Easy Mod Hard Easy Mod Hard

SECOND [43] w/o Object-Aug 87.07 76.12 68.44 51.08 46.53 43.89

SECOND [43] w GT-Aug 87.43 76.48 69.10 56.55 52.98 47.73

SECOND [43] w LiDAR-Aug 88.65 76.97 70.44 58.53 54.56 51.78

PointPillars [19] w/o Object-Aug 85.41 73.59 68.76 47.51 43.82 42.20

PointPillars [19] w GT-Aug 87.29 76.99 70.84 57.75 52.29 47.91

PointPillars [19] w LiDAR-Aug 87.75 77.83 74.90 59.99 55.15 52.66

PointRCNN [36] w/o Object-Aug 88.45 77.67 76.30 63.19 54.99 49.18

PointRCNN [36] w GT-Aug 88.88 78.63 77.38 62.16 58.00 50.53

PointRCNN [36] w LiDAR-Aug 89.56 79.51 77.89 67.46 59.06 56.23

PV-RCNN [35] w/o Object-Aug 88.86 78.83 78.30 60.56 53.75 51.90

PV-RCNN [35] w GT-Aug 89.57 83.90 78.91 63.12 54.84 51.78

PV-RCNN [35] w LiDAR-Aug 90.18 84.23 78.95 65.05 58.90 55.52

Table 1: Evaluation results of “LiDAR-Aug” for the “Car” and

“Pedestrian” classes on KITTI validation dataset, where “w” and

“w/o” stand for “with” and “without”. The best values are high-

lighted in bold and all the values are the higher the better.

The evaluation results are shown in Tab. 1, where we

can see significant improvements after using “Object-Aug”.

It indicates that sampling foreground objects from other

frames to the current frame indeed have a positive influence

on the detection performance. Compared with the vanilla

version without any “Object-Aug”, the “LiDAR-Aug” con-

tributes about 1.59%, 2.05%, and 1.65% improvements in

average for “easy”, “moderate” and “hard” modes. For the

class of “Car”, the proposed “LiDAR-Aug” performs much

better than the “GT-Aug” strategy by 0.74%, 0.64%, and

1.49% for “easy”, “moderate” and “hard” modes respec-

tively. For the class of “Pedestrian”, “LiDAR-Aug” out-

performs the “GT-Aug” averagely by 3.82%, 3.19%, and

6.08% for all the three modes respectively. Therefore, we

can conclude that the proposed “LiDAR-Aug” can improve

the performance for 3D object detection, and outperforms

the previous state-of-the-art method “GT-Aug” in all three

modes.

5. Ablation Studies

To further explore the effectiveness as well as the lim-

itation of “LiDAR-Aug”, more experiments are conducted

with visualizations demonstrated in this section. All the re-

sults are evaluated among “Car” class on validation split

of KITTI benchmark and the evaluation metric is APCar70

which is the same as defined in Sec. 4.3.

5.1. Influence of Obstacles Placement

In this section, we investigate the augmentation effec-

tiveness over different obstacle placement strategies. For

4715



“GT-Aug”, three types of placements are evaluated here,

(i) random pose, where the pose is uniformly sampled in

the valid range; (ii) GT Pose, in which the pose of the in-

serted object is identical to the one where it comes from;

(iii) ValidMap Pose, in which the pose is generated with the

proposed “ValidMap” algorithm.

For “LiDAR-Aug”, four kinds of placement strate-

gies are evaluated here, (i) random pose, (ii) GT Pose,

which is inherited from the experiment in “GT-Aug”; (iii)

ValidMap without collision avoidance to the background;

(iv) ValidMap with proposed collision avoidance strategy.

Methods
APCar70 (%)

Easy Mod Hard

GT-Aug + Random Pose 88.76 78.32 77.35

GT-Aug + GT Pose 88.88 78.63 77.38

GT-Aug + ValidMap Pose 88.48 78.06 77.32

LiDAR-Aug + Random Pose 79.11 65.92 62.41

LiDAR-Aug + GT Pose 87.69 74.23 69.74

LiDAR-Aug + ValidMap Pose

w/o collision avoidance 87.14 74.09 69.34

LiDAR-Aug + ValidMap Pose

w collision avoidance 89.56 79.51 77.89

Table 2: Evaluation over the influence of obstacles placement for

“Car” class on KITTI validation dataset. All the models are trained

with PointRCNN baseline.

From the results in Tab. 2, we can find that the “GT-Aug”

is not very sensitive to different placement strategies, and

the gap among them is small. The reason is that “GT-Aug”

directly copies objects from other frames with relatively

complete context and the collision can be solved by sim-

ply removing the points overlaid with the inserted bounding

box.

As for our proposed LiDAR-Aug, the objects are in-

serted into the background point cloud in an interactive

manner. We can see significant improvement in the per-

formance using the ValidMap based placement strategy as

compared with the other two strategies. Moreover, as shown

in the Tab. 2, collision avoidance is also an indispensable

part of our rendering-based LiDAR data augmentation. The

AP decreased by 5.46% without enforcing collision avoid-

ance, on average.

5.2. Influence of Augmentation

In this section, we explore the impact of global aug-

mentation (Global-Aug) on detection. Global augmenta-

tion refers to the operations applied onto the overall point

cloud, including random rotation and flipping. The detailed

settings for global augmentation are described in Sec. 4.2.

From Tab. 3, we can see that the global augmentation is

also important in model training. Without global augmenta-

tion, The AP drops about 2.46%, 1.91% and 4.21% in aver-

age for “easy”, “moderate” and “hard” modes, respectively.

And “LiDAR-Aug” alone contributes about 2.42%, 2.17%

and 7.82% increase in AP for those three modes respec-

tively. From the evaluation results, we can see that combin-

ing object augmentation together with global augmentation

can eventually achieve the best performance.

Methods
APCar70 (%)

Easy Mod Hard

w/o Global-Aug, w/o LiDAR-Aug 85.34 75.59 68.98

w Global-Aug, w/o LiDAR-Aug 88.45 77.67 76.30

w/o Global-Aug, w LiDAR-Aug 87.76 77.76 76.80

w Global-Aug, w LiDAR-Aug 89.56 79.51 77.89

Table 3: Evaluation on the two kinds of augmentation for “Car”

class on KITTI validation dataset. All the models are trained with

PointRCNN baseline.

5.3. Domain Gap

Referring to [9], CAD-based rendering simulation data

still has domain gap with real data. Even when the back-

ground comes from scanned point cloud with high precision

devices, the domain gap still exists. Different from LiDAR

simulation, the background of the augmented LiDAR data

generated by “LiDAR-Aug” has no domain difference with

original LiDAR data since it is based on the real LiDAR. In-

stead the domain gap may come from two ways, the quality

of augmented objects as well as the simulated poses.

The real annotated objects and the corresponding poses

are named as “real object” and “real pose” respectively.

The synthetic objects generated with the rendering module

are named as “sim object”, and the poses sampling from

ValidMap are called “sim pose”. To explore the domain gap

between the augmented data and original data, four extra

experiments are conducted here. (i) real object + real pose,

which is a baseline without object augmentation. (ii) real

object + sim pose, in which the real objects are moved to

the positions with synthetic pose sampled from ValidMap.

(iii) sim object + real pose, in which the real annotated ob-

jects are removed, and the synthetic objects are inserted to

the same position using the corresponding pose. Instead of

simply cropping the object, we move the points in the real

object to the inserted object to make sure that there is no dis-

carding of laser rays. (iv) sim object + sim pose, in which

the real annotated objects are removed, and the synthetic

objects are inserted with the pose generated via ValidMap.

LiDAR simulator is used as a baseline here.

The evaluation results are shown in Tab. 4 where we can

find that the domain gap exists between the real object and

synthetic object. But the performance outperforms the Li-

DAR simulator by a remarkable margin, benefiting from the

real LiDAR point cloud foreground and laser beams distri-

bution. When trained by combining with original objects,

the performance achieves the best performance. Leverag-

ing with domain adaptation technique, the results can be

4716



(c) (d)(a) (b)

Figure 5: Visualization comparison between “GT-Aug” and “LiDAR-Aug”. (a) shows the original data with annotation from KITTI; (b)

shows the augmented LiDAR data with “GT-Aug”; (c) shows the augmented LiDAR data with “GT-Aug” but the poses are sampled with

ValidMap; (d) shows the augmented LiDAR data with “LiDAR-Aug” while the poses keep the same as in (c).

further improved to some extent, but this is out of our

scope. What’s more, the performance of using simulated

pose drops only 0.27% averagely in comparison with real

pose, which verified the effectiveness of our ValidMap.

Methods
APCar70 (%)

Easy Mod Hard

Augmented LiDAR Simulator [9] 48.88 44.71 40.61

real object + real pose 88.45 77.67 76.30

real object + sim pose 88.05 77.24 76.31

sim object + real pose 76.73 69.38 64.97

sim object + sim pose 75.98 68.57 64.87

LiDAR-Aug 89.56 79.51 77.89

Table 4: Evaluation of the domain gap between original LiDAR

point cloud and augmented LiDAR point cloud for “Car” class on

KITTI validation dataset. All the models are trained with PointR-

CNN baseline, except Augmented LiDAR Simulator, which is

trained on SECOND and the results refer to [9].

5.4. Results Visualization

In this section, we show some visualizations of “GT-

Aug” and “LiDAR-Aug”. In Fig. 5, the two rows are from

two different frames. (a) is the original data without any

augmentation. (b) is augmented LiDAR point cloud with

“GT-Aug”, where we can find that the placement is quite

messy. Some objects are out of the road, or even stand alone

in an empty place with no neighboring points. Moreover,

some augmented objects have overlap with the background

such as the wall and barriers, which is unrealistic. (c) is

generated by “GT-Aug” with validMap pose generator. Ob-

viously, the placement is more reasonable and most of the

objects are on the ground. (d) is the augmented results with

proposed “LiDAR-Aug”, with the same ValidMap poses as

in (c).

The augmented LiDAR point cloud from “LiDAR-Aug”

is visually natural and realistic, since the occlusion state

is automatically enforced during the rendering procedure.

The effectiveness of “LiDAR-Aug” benefits from the di-

versity of augmented data. The diversity comes from two

ways: firstly, different from simple copy-paste operations,

our augmented foreground from CAD models has more di-

versity in the distribution of object types; Secondly, since

the occlusion inference affects both the original background

and foreground, some laser beams will be cut off by the in-

serted objects, which also increases the diversity. It is worth

mentioning that some objects are filtered due to the occlu-

sion, but this can be compensated by increasing the number

of sampled objects.

6. Conclusion and Future Works

In this paper, we propose a simple but effective frame-

work for LiDAR data augmentation, LiDAR-Aug. The pro-

posed framework includes two modules, a pose generator

with ValidMap and a rendering module for combining the

real LiDAR point cloud background with synthetic fore-

ground. The whole framework is self-consistent without

any redundancy. Moreover, LiDAR-Aug is a light-weighted

framework without any learning procedure. The ValidMap

can be computed offline in advance and the update of ray

distance can be processed in parallel. We evaluate the effec-

tiveness of the framework and conduct deep analysis using

the public KITTI dataset. Currently, the domain gap still ex-

ists between the augmented frame and the real frame. Com-

bining with domain adaptation technology to further reduce

the gap will be one of the future directions.

4717



References

[1] Unreal engine. https://www.unrealengine.com/.

2

[2] Hassan Abu Alhaija, Siva Karthik Mustikovela, Lars

Mescheder, Andreas Geiger, and Carsten Rother. Aug-

mented reality meets computer vision: Efficient data gen-

eration for urban driving scenes. International Journal of

Computer Vision, 126(9):961–972, 2018. 2, 3

[3] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3d object detection network for autonomous

driving. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 1907–1915,

2017. 2, 6

[4] Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas

Mensink, Pascal Mettes, Pengwan Yang, and Cees GM

Snoek. Pointmixup: Augmentation for point clouds. In

ECCV, 2020. 3

[5] Paul Debevec. Rendering synthetic objects into real scenes:

Bridging traditional and image-based graphics with global

illumination and high dynamic range photography. In ACM

SIGGRAPH 2008 classes, pages 1–10. 2008. 2

[6] Terrance DeVries and Graham W. Taylor. Dataset augmen-

tation in feature space. In 5th International Conference on

Learning Representations, ICLR 2017, Toulon, France, April

24-26, 2017, Workshop Track Proceedings. OpenReview.net,

2017. 3

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio

Lopez, and Vladlen Koltun. CARLA: An open urban driving

simulator. In Proceedings of the 1st Annual Conference on

Robot Learning, pages 1–16, 2017. 1, 2

[8] Hao-Shu Fang, Jianhua Sun, Runzhong Wang, Minghao

Gou, Yong-Lu Li, and Cewu Lu. Instaboost: Boosting

instance segmentation via probability map guided copy-

pasting. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 682–691, 2019. 2

[9] Jin Fang, Dingfu Zhou, Feilong Yan, Tongtong Zhao, Feihu

Zhang, Yu Ma, Liang Wang, and Ruigang Yang. Augmented

lidar simulator for autonomous driving. IEEE Robotics and

Automation Letters, 5(2):1931–1938, 2020. 2, 3, 7, 8

[10] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3354–3361, 2012. 5

[11] Martin Hahner, Dengxin Dai, Alexander Liniger, and Luc

Van Gool. Quantifying data augmentation for lidar based 3d

object detection. arXiv preprint arXiv:2004.01643, 2020. 1,

3

[12] Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua,

and Lei Zhang. Structure aware single-stage 3d object detec-

tion from point cloud. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

11873–11882, 2020. 2

[13] Peiyun Hu, Jason Ziglar, David Held, and Deva Ramanan.

What you see is what you get: Exploiting visibility for 3d ob-

ject detection. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 11001–

11009, 2020. 3

[14] Xinyu Huang, Peng Wang, Xinjing Cheng, Dingfu Zhou,

Qichuan Geng, and Ruigang Yang. The apolloscape open

dataset for autonomous driving and its application. IEEE

transactions on pattern analysis and machine intelligence,

42(10):2702–2719, 2019. 1

[15] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta,

Sharath Nittur Sridhar, Karl Rosaen, and Ram Vasudevan.

Driving in the matrix: Can virtual worlds replace human-

generated annotations for real world tasks? In 2017 IEEE In-

ternational Conference on Robotics and Automation (ICRA),

pages 746–753. IEEE, 2017. 2

[16] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Haupt-

mann. Contrastive adaptation network for unsupervised do-

main adaptation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 4893–

4902, 2019. 1

[17] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,

and Steven L Waslander. Joint 3d proposal generation and

object detection from view aggregation. In 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems

(IROS), pages 1–8. IEEE, 2018. 3

[18] Hongwu Kuang, Bei Wang, Jianping An, Ming Zhang, and

Zehan Zhang. Voxel-fpn: Multi-scale voxel feature aggrega-

tion for 3d object detection from lidar point clouds. Sensors,

20(3):704, 2020. 3

[19] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 12697–12705, 2019. 2, 3, 4, 5, 6

[20] Ruihui Li, Xianzhi Li, Pheng-Ann Heng, and Chi-Wing Fu.

Pointaugment: an auto-augmentation framework for point

cloud classification. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

6378–6387, 2020. 3

[21] Wei Li, CW Pan, Rong Zhang, JP Ren, YX Ma, Jin Fang,

FL Yan, QC Geng, XY Huang, HJ Gong, et al. Aads: Aug-

mented autonomous driving simulation using data-driven al-

gorithms. Science Robotics, 4(28), 2019. 2

[22] Zhidong Liang, Ming Zhang, Zehan Zhang, Xian Zhao, and

Shiliang Pu. Rangercnn: Towards fast and accurate 3d object

detection with range image representation. arXiv preprint

arXiv:2009.00206, 2020. 3

[23] Wenjie Luo, Bin Yang, and Raquel Urtasun. Fast and furi-

ous: Real time end-to-end 3d detection, tracking and motion

forecasting with a single convolutional net. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recog-

nition, pages 3569–3577, 2018. 3

[24] Sivabalan Manivasagam, Shenlong Wang, Kelvin Wong,

Wenyuan Zeng, Mikita Sazanovich, Shuhan Tan, Bin Yang,

Wei-Chiu Ma, and Raquel Urtasun. Lidarsim: Realistic lidar

simulation by leveraging the real world. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 11167–11176, 2020. 2

[25] Matthias Mueller, Vincent Casser, Jean Lahoud, Neil Smith,

and Bernard Ghanem. Ue4sim: A photo-realistic simulator

for computer vision applications. 2017. 1

4718



[26] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-

d data. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 918–927, 2018. 3

[27] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 652–660,

2017. 1

[28] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural informa-

tion processing systems, pages 5099–5108, 2017. 1

[29] Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun.

Playing for benchmarks. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 2213–2222,

2017. 2

[30] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen

Koltun. Playing for data: Ground truth from computer

games. In European conference on computer vision, pages

102–118. Springer, 2016. 2

[31] German Ros, Laura Sellart, Joanna Materzynska, David

Vazquez, and Antonio M Lopez. The synthia dataset: A large

collection of synthetic images for semantic segmentation of

urban scenes. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3234–3243,

2016. 2

[32] Ahmad El Sallab, Ibrahim Sobh, Mohamed Zahran, and

Nader Essam. Lidar sensor modeling and data augmentation

with gans for autonomous driving. In ICML, 2019. 2

[33] Ahmad El Sallab, Ibrahim Sobh, Mohamed Zahran, and Mo-

hamed Shawky. Unsupervised neural sensor models for syn-

thetic lidar data augmentation. In NIPS, 2019. 2

[34] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish

Kapoor. Airsim: High-fidelity visual and physical simula-

tion for autonomous vehicles. In Field and Service Robotics,

pages 621–635, 2018. 1, 2

[35] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-

voxel feature set abstraction for 3d object detection. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 10529–10538, 2020. 1, 2, 3,

6

[36] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 770–779, 2019.

2, 3, 6

[37] Connor Shorten and Taghi M Khoshgoftaar. A survey on

image data augmentation for deep learning. Journal of Big

Data, 6(1):60, 2019. 2, 3

[38] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In In-

ternational Conference on Learning Representations, 2015.

1

[39] Zhiqiang Tang, Xi Peng, Tingfeng Li, Yizhe Zhu, and Dim-

itris N Metaxas. Adatransform: Adaptive data transforma-

tion. In Proceedings of the IEEE International Conference

on Computer Vision, pages 2998–3006, 2019. 2

[40] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer.

Squeezeseg: Convolutional neural nets with recurrent crf for

real-time road-object segmentation from 3d lidar point cloud.

In 2018 IEEE International Conference on Robotics and Au-

tomation (ICRA), pages 1887–1893. IEEE, 2018. 2

[41] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and

Kurt Keutzer. Squeezesegv2: Improved model structure and

unsupervised domain adaptation for road-object segmenta-

tion from a lidar point cloud. In 2019 International Confer-

ence on Robotics and Automation (ICRA), pages 4376–4382.

IEEE, 2019. 1, 2

[42] Chenfeng Xu, Bichen Wu, Zining Wang, Wei Zhan, Peter

Vajda, Kurt Keutzer, and Masayoshi Tomizuka. Squeeze-

segv3: Spatially-adaptive convolution for efficient point-

cloud segmentation. In European Conference on Computer

Vision, pages 1–19. Springer, 2020. 1, 2

[43] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. Sensors, 18(10):3337, 2018. 2,

3, 5, 6

[44] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-

time 3d object detection from point clouds. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recog-

nition, pages 7652–7660, 2018. 3

[45] Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, and

Ruigang Yang. Lidar-based online 3d video object detec-

tion with graph-based message passing and spatiotemporal

transformer attention. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

11495–11504, 2020. 3

[46] Xiangyu Yue, Bichen Wu, Sanjit A Seshia, Kurt Keutzer,

and Alberto L Sangiovanni-Vincentelli. A lidar point cloud

generator: from a virtual world to autonomous driving. In

Proceedings of the 2018 ACM on International Conference

on Multimedia Retrieval, pages 458–464, 2018. 2

[47] Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto

Sangiovanni-Vincentelli, Kurt Keutzer, and Boqing

Gong. Domain randomization and pyramid consistency:

Simulation-to-real generalization without accessing target

domain data. In Proceedings of the IEEE International

Conference on Computer Vision, pages 2100–2110, 2019. 2

[48] Hongyi Zhang, Moustapha Cissé, Yann N. Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. In 6th International Conference on Learning Represen-

tations, ICLR 2018, Vancouver, BC, Canada, April 30 - May

3, 2018, Conference Track Proceedings. OpenReview.net,

2018. 2, 3

[49] Dingfu Zhou, Jin Fang, Xibin Song, Chenye Guan, Junbo

Yin, Yuchao Dai, and Ruigang Yang. Iou loss for 2d/3d ob-

ject detection. In 2019 International Conference on 3D Vi-

sion (3DV), pages 85–94. IEEE, 2019. 3

[50] Dingfu Zhou, Jin Fang, Xibin Song, Liu Liu, Junbo Yin,

Yuchao Dai, Hongdong Li, and Ruigang Yang. Joint 3d

instance segmentation and object detection for autonomous

driving. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 1839–

1849, 2020. 3

4719



[51] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4490–4499, 2018. 3

4720


