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Abstract

Recently, referring image segmentation has aroused

widespread interest. Previous methods perform the multi-

modal fusion between language and vision at the decoding

side of the network. And, linguistic feature interacts with

visual feature of each scale separately, which ignores the

continuous guidance of language to multi-scale visual fea-

tures. In this work, we propose an encoder fusion network

(EFN), which transforms the visual encoder into a multi-

modal feature learning network, and uses language to re-

fine the multi-modal features progressively. Moreover, a co-

attention mechanism is embedded in the EFN to realize the

parallel update of multi-modal features, which can promote

the consistent of the cross-modal information representa-

tion in the semantic space. Finally, we propose a bound-

ary enhancement module (BEM) to make the network pay

more attention to the fine structure. The experiment results

on four benchmark datasets demonstrate that the proposed

approach achieves the state-of-the-art performance under

different evaluation metrics without any post-processing.

1. Introduction

Referring image segmentation aims to extract the most

relevant visual region (object or stuff) in an image based on

the referring expression. Unlike the traditional semantic and

instance segmentation, which require to correctly segment

each semantic category or each object in an image, refer-

ring image segmentation needs to find a certain part of the

image according to the understanding of the given language

query. Therefore, it can be regarded as a pixel-wise fore-

ground/background segmentation problem, and the output

result is not limited by the predefined semantic categories

or object classes. This task has a wide range of potential

applications in language-based human-robot interaction.

†Corresponding Author

(a).  Decoder fusion for referring image segmentation

(b).  Encoder fusion for referring image segmentation

Query: child in red

Query: child in red

Visual feature Multi-modal feature Linguistic progressive guidance

Figure 1: Two multi-modal fusion mechanisms. Existing meth-

ods achieve the fusion between language and vision in the decoder,

while the proposed method does it in the encoder.

The key of this task is to realize the cross-modal match-

ing between visual and linguistic features. The deep-

learning community has rapidly improved the results of

vision-language tasks over a short period of time. The

rapid development of convolutional neural network (CN-

N) and recurrent neural network (RNN) have made a qual-

itative leap in the ability of understanding vision and lan-

guage, thereby they can solve more complex pixel-level

cross-modal prediction tasks. Early referring image seg-

mentation methods [14, 26, 23, 33] mainly rely on the pow-

erful learning ability of deep learning model. They directly

concatenate linguistic features with visual features of each

region, and then use the combined multi-modal features to

generate the segmentation mask. Due to the lack of suf-

ficient interaction between two modalities, such solutions

can not meet the requirements of real-world applications.

Recently, some works [36, 38, 1, 16, 17, 19] began to con-

sider the linguistic and visual attention mechanisms to bet-

ter aggregate these two kinds of features.

Although some referring image segmentation methods

have been proposed in the last few years, there are still many

problems that have not been explored. On the one hand,

for the cross-modal fusion of vision and language. Previ-
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ous methods usually adopt the decoder fusion strategy, in

which the RGB image and the referring expression are fed

into CNN or RNN to generate their own feature representa-

tions separately, and then fuse these features in the decod-

ing stage. However, this fusion strategy at the output side

of the network either only considers the interaction between

linguistic and highest-level visual features [26, 23] or com-

bines the linguistic features with the visual features of each

level independently (as shown in Fig. 1 (a)) [38, 16, 19].

They do not investigate the deep guidance of language to

multi-modal fused features. Besides, some works utilize

visual and linguistic attention mechanisms for cross-modal

feature matching. But they update the linguistic and visual

features in a serial mode [36, 1, 16, 17, 19], that is, they

only update the feature of one modality at a specific time,

which will lead to the update delay of the features between

different modalities and eventually weaken the consistency

of the representation of multi-modal information. On the

other hand, in CNNs, the repeated stride and pooling oper-

ations may lead to the loss of some important fine-structure

information, but few referring image segmentation methods

explicitly consider the problem of detail recovery.

To resolve the aforementioned problems, we propose

an encoder fusion network with co-attention embedding

(CEFNet) for referring image segmentation. Instead of the

cross-modal information fusion at the output side, we adopt

the encoder fusion strategy for the first time to progressive-

ly guide the multi-level cross-modal features by language.

The original visual feature encoder (e.g., ResNet) is trans-

formed into a multi-modal feature encoder (as shown in

Fig. 1 (b)). The features of two modalities are deeply in-

terleaved in the CNN encoder. Furthermore, to effectively

play the guiding role of language, we adopt the co-attention

mechanism to simultaneously update the features of differ-

ent modalities. It utilizes the same affinity matrix to project

different features to the common feature subspace in a par-

allel mode and better achieve the cross-modal matching to

bridge the gap between coarse-grained referring expression

and highly localized visual segmentation. We implement

two simple and effective co-attention mechanisms such as

vanilla co-attention and asymmetric co-attention, which of-

fer a more insightful glimpse into the task of referring image

segmentation. Finally, we design a boundary enhancement

module (BEM), which captures and exploits boundary cues

as guidance to gradually recover the details of the targeted

region in the decoding stage of the network.

Our main contributions are as follows:

• We propose an encoder fusion network (EFN) that us-

es language to guide the multi-modal feature learning,

thereby realizing deep interweaving between multi-

modal features. In the EFN, the co-attention mecha-

nism is embedded to guarantee the semantic alignment

of different modalities, which promotes the represen-

tation ability of the language-targeted visual features.

• We introduce a boundary enhancement module (BE-

M) to emphasize the attention of the network to the

contour representation, which can help the network to

gradually recover the finer details.

• The proposed method achieves the state-of-the-art per-

formance on four large-scale datasets including the

UNC, UNC+, Google-Ref and ReferIt with the speed

of 50 FPS on an Nvidia GTX 1080Ti GPU.

2. Related Work

Semantic and Instance Segmentation. The former aims at

grouping pixels in a semantically meaningful way without

differentiating each instance. The latter requires to separate

all instances of objects rather than the stuff. In recent years,

many semantic segmentation methods adopt fully convolu-

tional network (FCN) [29] for end-to-end prediction. On

this basis, the multi-scale context [43, 3, 4, 8, 10] and at-

tention mechanisms [44, 11, 45, 18] are deeply examined.

Some works [34, 8] leverage the encoder-decoder structures

to alleviate the loss of details caused by continuous down-

sampling. Also, RGB-D based methods [12, 5] introduce

depth prior to improve the performance. These methods

provide inspirations for referring image segmentation.

In instance segmentation, Mask-RCNN [13] is a clas-

sical framework, which uses two-stage design to sequen-

tially generates proposals and classify/segment them. In

the follow-up works, feature pyramid [25], top-down and

bottom-up [28], iterative optimization [2] and boundary-

aware mechanisms [7] are explored. The success of bound-

ary refinement strategy provides us with an important clue

to solve the problem of referring image segmentation.

Referring Image Comprehension. This task has two

branches: localization and segmentation. For referring im-

age localization, previous methods are mainly composed

of two separate stages. They firstly use object detector to

extract candidate regions, and then rank these regions ac-

cording to the referring expression. Pioneering method-

s [15, 32, 31] use the CNN-LSTM structure to select the ob-

ject with the maximum posterior probability of the expres-

sion, and other works [27, 41] optimize the joint probabil-

ity of the target object and the expression. Recently, some

methods [37, 35, 24] use a one-stage framework. Instead

of generating excessive candidate boxes, they directly pre-

dict the coordinates of the targeted region in an end-to-end

manner. The above methods all implement the multi-modal

fusion in the decoder.

For referring image segmentation, early methods [14,

26, 23, 33] directly concatenate language and visual fea-

tures and then completely depend on a fully convolution-

al network to infer the pixel-wise mask. These methods
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Figure 2: The overall architecture of our model. It mainly consists of the Bi-GRU encoder, ResNet-101 encoder (E1 ∼ E5), co-attention

module (CAM), decoder blocks (D1 ∼ D5) and boundary enhancement module (BEM) assembled at the decoding end. The CAM is used

to realize the matching between multi-modal features. The BEM captures the boundary cues and uses them to recover the details of the

image, which produces a more accurate segmentation mask. The details of the proposed method are introduced in Sec. 3

do not explicitly formulate the intra-modal and inter-modal

relationships. Some recent works [36, 38, 1, 16, 17, 19]

consider the self-attention and cross-attention mechanism-

s of linguistic and visual information. For example, Shi et

al. [36] adapt the vision-guided linguistic attention to learn

the adaptive linguistic context of each visual region. Ye

et al. [38] employ multiple non-local modules to update

each pixel-word mixed features in a fully-connected man-

ner. Hu et al. [16] design a bi-directional relationship in-

ferring network to model the relationship between language

and vision, which realizes the serial mutual guidance be-

tween multi-modal features. Huang et al. [17] firstly per-

ceives all the entities in the image according to the entity

and attribute words, and then use the relational words to

model the relationships of all entities. LSCM [19] utilizes

word graph based on dependency parsing tree to guide the

learning of multi-modal context. Similarly, these methods

also use the decoder fusion strategy. In addition, they do not

update linguistic and visual features in parallel, which may

weaken the consistency of language and vision in the se-

mantic space. Different from the previous works, we design

a parallel update mechanism to enhance the compatibility

of multi-modal representation, and the multi-modal feature

matching is performed in the encoder. We also propose a

boundary enhancement module to guide the progressive fu-

sion of multi-level features in the decoding stage.

3. Proposed Method

The overall architecture of the proposed method is illus-

trated in Fig. 2. In this section, we mainly introduce the

co-attention based encoder fusion network and the bound-

ary enhanced decoder network.

3.1. Encoder Fusion with Co­Attention

Encoder fusion network. For a input image, we use

ResNet101 [42] to extract visual features. The ResNet101

is composed of five basic blocks: conv1, res2, res3, res4,

and res5. The feature maps from these five blocks are rep-

resented as {Ei}
5
i=1. To avoid losing excessive spatial de-

tails, the stride of the last block is set to 1. Unlike previous

method that performs multi-modal fusion in the decoder,

we insert language features after res3, res4, and res5 re-

spectively. ResNet is converted into a multi-modal feature

extractor. This design takes full advantage of the data fitting

ability of deep CNN model and realizes the deep interleav-

ing of cross-modal features. The experimental comparison

between encoder fusion network (EFN) and decoder fusion

network (DFN) is implemented, and the results on the UNC

dataset are shown in Tab. 3.

Multi-modal feature representation. For a given expres-

sion, we feed the word embeddings {et}
T
t=1 into the Bi-

GRU to generate the linguistic context {ht}
T
t=1, where T

represents the length of the language. Besides, we adopt a

simple concatenation strategy to generate the initial multi-

modal feature and denote it as:

mp = w[epi , hT , s
p
i ], (1)

where e
p
i is a feature vector of Ei at position p. s

p
i represents

8-D spatial coordinates, which follows the design in [16]. w

is the learnable parameters. Then we use mp to calculate the

position-specific linguistic context lp:

αp,t = mp
⊤ · et,

lp =

T∑

t=1

et ·
exp(αp,t)∑T

t=1 exp(αp,t)
.

(2)
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Figure 3: Two co-attention modules. M: Initial multi-modal features. L: Adaptive linguistic context. S: Softmax. PPM: Pyramid pooling

module. C©: Concatenation. ×©: Matrix multiplication. +©: Element-wise summation. C, H and W are channel number, height and width

of feature maps, respectively.

lp treats each word differently. It can suppress the noise

in the language expression and highlight the desired region.

Next, the feature maps M = [mp] and L = [lp] go through

the co-attention module to achieve the multi-modal fusion.

Vanilla co-attention. We design a co-attention scheme,

which can model the dependencies between multi-modal

features and project the multi-modal features to the com-

mon feature subspace. For the convenience of description,

the size of M is defined as C ×H ×W , where H , W and

C represent its height, width and channel number, respec-

tively. The feature L has the same dimension as the M.

At first, the features M and L are flattened into matrix rep-

resentations with size C × (HW ). Their affinity matrix

A ∈ R
HW×HW is calculated as follows:

A = (WmM)⊤(WlL), (3)

where Wm,Wl ∈ R
C1×C are the learnable parameters.

The element ai,j of A represents the similarity between the

ith position of M and the jth position of L.

Then, we use the softmax function to normalize the sim-

ilarity matrix as follows:

A1 = softmax(A),

A2 = softmax(A⊤),
(4)

where A1 and A2 are the results of the row-wise and

column-wise normalization, respectively. Thus, the feature

maps M and L can be updated through weighted summing:

M̃ = MA1
⊤,

L̃ = LA2
⊤.

(5)

We concatenate M̃ and L̃ along channel dimension and fol-

low with a 3×3 convolution to get the multi-modal features

F ∈ R
C2×H×W . The F is normalized and added to the en-

coder feature E. Thus, the embedding of the multi-modal

feature in the encoder is finished. This mechanism can pro-

vide extra complementary cues according to the information

of the other modality to implement the mutual guidance be-

tween these two modalities. Fig. 3 (a) shows the detailed

structure of vanilla co-attention module (VCM).

Asymmetric co-attention. Furthermore, we propose an

asymmetric co-attention module (ACM) to reduce the com-

putational cost. Inspired by [45], we employ pyramid pool-

ing module (PPM) to sample the feature maps M and L.

The PPM is composed of four-scale feature bins, which are

then flattened and concatenated to form a matrix of size

C1×N , N ≪ HW . Here, the sizes of the feature bins

are set to 1×1, 3×3, 6×6 and 8×8, respectively. Thus, the

self-affinity matrixes of M and L can be calculated as:

SAm = (PPM(W1
mM))⊤(W2

mM),

SAl = (PPM(W1
l L))

⊤(W2
l L),

(6)

where SAm and SAl denote the modality-specific similar-

ity matrixes. Their sizes are fixed to N×(HW ) through

the PPM, which is asymmetric. W1
m, W2

m, W1
l and W2

l in-

dicate the learnable parameters. We further combine these

two matrices as follows:

A3 = softmax((SAm + SAl)
⊤). (7)

Then, the row-wise normalized matrix A3 ∈ R
(HW )×N is

used to assist the update of multi-modal features:

M̃ = A3(PPM(W3
mM))⊤,

L̃ = A3(PPM(W3
l L))

⊤.
(8)

Similarly to the vanilla co-attention, M̃ and L̃ is concate-

nated to generate the final multi-modal output. The whole

structure of ACM is shown in Fig. 3 (b).

15509



3.2. Boundary Enhancement Module

In CNNs, the repeated stride and pooling operations

lead to the loss of fine structure information, which may

blur the contour of the predicted region. Previous work-

s [38, 1, 16, 17, 19] do not explicitly consider the restoration

of details when performing multi-scale fusion in decoder. In

this work, we design a boundary enhancement module (BE-

M), which uses boundary features as a guidance to make

the network attend to finer details and realize the progres-

sive refinement of the prediction. Its structure is shown in

Fig. 2. Specifically, for the decoder features {Di}
5
i=1, we

first compute the boundary-aware features:

Bi = Si − STN(Si), (9)

where STN represents a spatial transformer networks [20].

Here, we utilize it to sample the high-level abstract semantic

information from Si. Thus, the residual Bi describes the

fine structure. The prediction process of the boundary map

can be written as:

B̃i−1 = Conv(Cat(Bi,Di−1)),

BMi−1 = Sig(Conv(B̃i−1)),
(10)

where Cat(·, ·) is the concatenation operation along the

channel axis. Conv and Sig denote the convolutional layer

and sigmoid function, respectively. BMi−1 is supervised

by the ground-truth contour of the targeted region.

Next, we exploit boundary feature B̃i−1 to refine the seg-

mentation mask as follows:

Si−1 = Conv(Cat(B̃i−1 + STN(Si), Si)),

SMi−1 = Sig(Conv(Si−1)),
(11)

where Si−1 actually combines the information of decoder

features Di and Di−1. SMi−1 denotes the refined mask,

which is supervised by the ground-truth segmentation. The

SM1 from the last decoder block is taken as the final pre-

diction map, as illustrated in Fig. 2.

4. Experiments

4.1. Datasets

To verify the effectiveness of the proposed method, we

evaluate the performance on four datasets, which are the

UNC [40], UNC+ [40], Google-Ref [32] and ReferIt [21].

UNC: It contains 19,994 images with 142,209 language

expressions for 50,000 segmented object regions. These da-

ta are selected from the MS COCO dataset using a two-

player game [21]. There are multiple objects with the same

category in each image.

UNC+: It is also a subset of the MS COCO, which con-

tains 141,564 language expressions for 49,856 objects in

Table 2: IoU for different length referring expressions on

Google-Ref, UNC, UNC+ and ReferItGame.

Length 1-5 6-7 8-10 11-20

G-Ref

R+LSTM [26] 32.29 28.27 27.33 26.61

R+RMI [26] 35.34 31.76 30.66 30.56

BRINet [16] 51.93 47.55 46.33 46.49

Ours(VCM) 57.96 52.19 48.78 46.67

Ours(ACM) 59.92 52.94 49.56 46.21

Length 1-2 3 4-5 6-20

UNC

R+LSTM [26] 43.66 40.60 33.98 24.91

R+RMI [26] 44.51 41.86 35.05 25.95

BRINet [16] 65.99 64.83 56.97 45.65

Ours(VCM) 68.18 66.14 56.82 46.01

Ours(ACM) 68.73 65.58 57.32 45.90

Length 1-2 3 4-5 6-20

UNC+

R+LSTM [26] 34.40 24.04 19.31 12.30

R+RMI [26] 35.72 25.41 21.73 14.37

BRINet [16] 59.12 46.89 40.57 31.32

Ours(VCM) 60.87 48.88 43.79 29.45

Ours(ACM) 61.62 52.18 43.46 31.52

Length 1 2 3-4 5-20

ReferIt

R+LSTM [26] 67.64 52.26 44.87 33.81

R+RMI [26] 68.11 52.73 45.69 34.53

BRINet [16] 75.28 62.62 56.14 44.40

Ours(VCM) 77.73 66.02 59.74 45.75

Ours(ACM) 78.19 66.63 60.30 46.18

19,992 images. However, the referring expression does not

contain the words that indicate location information, which

means that the matching of their language and visual region

totally depend on the appearance information.

Google-Ref: It includes 104,560 referring expressions

for 54,822 objects in 26,711 images. The annotations are

based on Mechanical Turk instead of using a two-player

game. The average length of referring expressions in this

dataset is 8.43 words.

ReferIt: It is collected from the IAPR TC-12 [9]. It is

composed of 130,525 referring expressions for 96,654 ob-

ject regions in 19,894 natural images. In addition, their an-

notations contain objects or stuff, and the expressions are

usually shorter and more succinct than the other datasets.

4.2. Implementation Details

The proposed framework is built on the public pytorch

toolbox and is trained on an Nvidia GTX 1080Ti GPU for

200,000 iterations. Our network is trained by an end-to-

end strategy and using the SGD optimizer with an initial

learning rate of 0.00075 and divided by 10 after 100,000

iterations. All input images are resized to 320×320. The
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Table 1: Quantitative evaluation of different methods on four datasets. -: no data available. DCRF: DenseCRF [22] post-processing.

*
ReferIt UNC UNC+ G-Ref

test val testA testB val testA testB val

LSTM-CNN16 [14] 48.03 - - - - - - 28.14

RMI+DCRF17 [26] 58.73 45.18 45.69 45.57 29.86 30.48 29.50 34.52

DMN18 [33] 52.81 49.78 54.83 45.13 38.88 44.22 32.29 36.76

KWA18 [36] 59.19 - - - - - - 36.92

RRN+DCRF18 [23] 63.63 55.33 57.26 53.95 39.75 42.15 36.11 36.45

MAttNet18 [39] - 56.51 62.37 51.70 46.67 52.39 40.08 -

lang2seg19 [6] - 58.90 61.77 53.81 - - - -

CMSA+DCRF19 [38] 63.80 58.32 60.61 55.09 43.76 47.60 37.89 39.98

STEP19 [1] 64.13 60.04 63.46 57.97 48.19 52.33 40.41 46.40

CGAN20 [30] - 59.25 62.37 53.94 46.16 51.37 38.24 46.54

BRINet+DCRF20 [16] 63.46 61.35 63.37 59.57 48.57 52.87 42.13 48.04

LSCM+DCRF20 [19] 66.57 61.47 64.99 59.55 49.34 53.12 43.50 48.05

CMPC+DCRF20 [17] 65.53 61.36 64.54 59.64 49.56 53.44 43.23 49.05

Ours(VCM) 66.06 62.53 65.36 59.19 50.24 55.04 41.68 51.22

Ours(ACM) 66.70 62.76 65.69 59.67 51.50 55.24 43.01 51.93

OurscocoVCM - 69.27 70.56 66.36 57.46 61.75 50.66 57.51

OurscocoACM - 68.97 71.13 66.95 57.48 61.35 51.97 57.49

Image dish in top right corner bowl of carrots
white dish in the top

right corner carrots front bowl with carrots in it

Image red white shirt pink shirt top pink shirt guy in back guy in pink shirt woman front row

Image water Image trees top left corner Image bottom half of the picture

Figure 4: Visual examples of referring image segmentation by our method.

weight decay and batch size are 0.0005 and 12, respectively.

And when training G-ref, we use the UNC model as a pre-

training model to avoid over-fitting. During the inference

phase, the prediction map is resized to the same resolution

as the original image. The binary cross entropy loss is used

to supervise the boundary map and segmentation map, In

addition, we also use the ground-truth segmentation (GT)

to supervise the output of the STN.

Evaluation Metrics: Following previous works [16, 17,

19], we employ Overall Intersection-over-Union (Overal-

l IoU) and Prec@X to evaluate the segmentation accuracy.

The Overall IoU metric represents the ratio of the total in-

tersection regions and the total union regions between the

predicted mask and the ground truth for all the test samples.

The Prec@X metric calculates the percentage of the IoU s-

core of the prediction mask in the test set that exceeds the

threshold X, where X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

4.3. Performance Comparison

To verify the effectiveness of the proposed model, we

compare it with thirteen methods, which are the LSTM-

CNN [14], RMI [26], DMN [33], KWA [36], RRN [23],

MAttNet [39], lang2seg [6], CMSA [38], STEP [1], C-

GAN [30], BRINet [16], LSCM [19], and CMPC [17].

Performance Evaluation: Tab. 1 shows the perfor-

mance (IoU) comparison of different methods on four

datasets, in which Our(VCM) and Our(ACM) represent the

results of using vanilla co-attention module and asymmet-
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Table 3: Ablation study on the UNC val, testA and testB datasets.

DFN EFN VCM ACM BEM prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 overall IoU

val

X 57.30 50.40 42.00 28.42 9.00 52.86

X 64.16 58.45 51.16 37.53 13.39 55.87

X X 68.61 63.02 54.55 40.20 13.67 59.65

X X 69.22 64.11 56.33 41.67 15.32 60.09

X X X 74.07 68.84 61.76 48.74 20.06 62.53

X X X 73.95 69.58 62.59 49.61 20.63 62.76

testA

X 61.66 54.30 44.55 31.09 9.32 55.98

X 67.03 61.59 53.92 40.13 13.31 58.07

X X 72.14 66.80 58.21 43.03 13.19 62.10

X X 72.95 67.90 59.98 45.04 14.46 62.46

X X X 77.53 73.18 66.02 52.11 18.88 65.36

X X X 77.66 73.73 66.70 52.75 19.66 65.69

testB

X 52.31 45.48 37.51 26.85 10.40 49.66

X 58.61 52.62 45.67 34.56 15.03 52.48

X X 64.53 57.96 50.54 37.94 16.39 56.76

X X 65.02 58.33 50.34 38.74 16.31 57.09

X X X 69.74 63.75 56.90 45.20 22.51 59.19

X X X 69.66 65.14 58.31 46.18 22.43 59.67

Query: “tall suitcase”

Query: “chair on right man with white shirt sitting in it”

Image DFN EFN EFN+ACM EFN+ACM+BEM GT

Figure 5: Visual examples of the proposed modules.

ric co-attention module, respectively. The proposed model

consistently outperforms these competitors on most dataset-

s except the UNC+ testB. Some methods like LSCM and

CMPC apply DenseCRF [22] to refine their final masks

while our model does not need any post-processing. In par-

ticular, we achieve the gain of 5.9%, 3.4% and 3.9% over

the second best method CMPC [17] on the G-Ref, UNC+

testA and val, respectively. In addition, because the UNC,

UNC+ and G-Ref are all collected from the MS COCO

dataset, we combine their training data into a larger train-

ing set. The results of the model trained on it are denoted as

Ourscoco

VCM
and Ourscoco

ACM
, which show that sufficient training

data can yield better results. We give some visual examples

in Fig. 4. It can be seen that our method can accurately seg-

ment the specific regions (object or stuff) according to the

query expression. Following [26, 16], we analyze the rela-

tionship between language length and segmentation accura-

cy. The results are demonstrated in Tab. 2, which indicate

that our method achieves the state-of-the-art performance.

Runtime and Memory Statistics: We implement all the

tests on a NVIDIA GTX 1080 Ti GPU. The comparison of

running time is reported in Tab. 4. Our method runs the

fastest with a speed of 50 FPS. The GPU memory usage is

shown in Tab. 5. From Tab. 4 and Tab. 5, we can find that

although the VCM has advantages in speed, the large input

size causes the memory usage to sharply increase. On the

contrary, the VCM is not sensitive to the input size. There-

fore, it is widely applicable.

4.4. Ablation Study

we conduct a series of experiments on the UNC dataset

to verify the benefit of each component.

Comparison of DFN and EFN: We first remove the co-

attention module and boundary enhancement module from
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Table 4: Runtime analysis of different methods. The time of post-processing is ignored.

LSTM RMI RRN CMSA BRINet CMPC Ours(VCM) Ours(ACM)

Time(ms) 58ms 72ms 43ms 79ms 117ms 60ms 17ms 20ms

Table 5: GPU memory (MB) comparisons between VCM

and ACM. The lower values are the better.

Input size 512×20×20 512×40×40 512×96×96

VCM 9.93 54.35 1308.00

ACM 6.92 14.29 61.11

the CEFNet in Fig. 2. Then, we achieve the multi-modal

fusion in the encoder by Eq. (1), and the decoder adopts the

FPN [25] structure. This network is taken as the baseline

network (EFN) of encoder fusion. In addition, similar to

previous works, we realize the multi-modal fusion in the

FPN decoder by Eq. (1) to build the baseline (DFN) for

decoder fusion. We evaluate the two baselines in Tab. 3,

from which we can see that EFN is significantly better than

DFN. With the help of ResNet, the encoder fusion strategy

achieves more powerful feature coding without increasing

additional computational burden.

Effectiveness of Co-Attention: We evaluate the per-

formance of the vanilla co-attention module (VCM) and

asymmetric co-attention module(ACM). Compared with the

baseline EFN, the VCM brings 6.8%, 6.9% and 8.2% IoU

improvement on the UNC-val, UNC-testA, and UNC-testB,

respectively. Similarly, the ACM achieves the gain of 7.6%,

7.6% and 8.8% on the same datasets, respectively. The

ACM performs slightly better than the VCM. We attribute it

to the modality-specific affinity learning, which focuses on

important regions within the modality and achieves better

contextual understanding of the modality itself. It is con-

ducive to cross-modal alignment in the next stage.

Effectiveness of BEM: Tab. 3 presents the ablation re-

sults of boundary enhancement module (BEM), which show

that the special consideration of boundary refinement can

significantly improve the performance. BEM can bring

about 2%∼3% performance improvement (Overall IoU))

to the final prediction result. Some visual results in Fig. 5

demonstrate the benefits of BEM. These figures show that

the prediction mask can fit the object boundary more closely

after the refinement of BEM.

4.5. Failure Cases

We visualize some interesting failure cases in Fig. 6. One

type of failure occurs when queries are ambiguous. For ex-

ample, for the top left example, the misspelling of a word

(roght → right) causes part of the semantics of the sen-

tence to be lost. Also, for the top right example, there are

two horse butts on the left. Another case is that when the

query contains low-frequency or new words (e.g. in the

bottom left example, cop rarely appears in the training da-

ta), our method sometimes fails to segment out the core re-

Query: “second guy roght” Query: “left brown horse butt”

Image Result GT Image Result GT

Query: “the grass to the left of

Query: “middle cop” the red shirt green pant man”

Image Result GT Image Result GT

Figure 6: Visual examples of the failure cases.

gion accurately. This problem may be alleviated by using

one/zero-shot learning. Finally, we observed that some-

times small objects cannot be segmented completely (the

bottom right example). This phenomenon can be alleviat-

ed by enlarging the scale of input images. Fortunately, the

ACM is insensitive to the size (Tab. 5 for details).

Through the analysis of successful (Fig. 4) and failure

cases, we think that the co-attention module can learn the

high-order cross-modal relationships even in some compli-

cated semantic scenarios. It enables the network to pay

more attention to the correlated, informative regions, and

produce discriminative foreground features.

5. Conclusion

In this paper, we propose an encoder fusion network

with co-attention embedding (CEFNet) to fuse multi-modal

information for referring image segmentation. Compared

with the decoder fusion strategy, our strategy adequately u-

tilizes language to guide multi-model feature learning with-

out increasing computational complexity. The designed

co-attention module can promote the matching between

multi-modal features and strengthen their targeting ability.

Moreover, a boundary enhancement module is equipped to

make the network pay more attention to the details. Exten-

sive evaluations on four datasets demonstrate that the pro-

posed approach outperforms previous state-of-the-art meth-

ods both in performance and speed. In future, we can ex-

tend our co-attention module to the one-stage grounding to

promote the integration of language and vision.
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