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Abstract

Weakly supervised video anomaly detection (WS-VAD) is

to distinguish anomalies from normal events based on dis-

criminative representations. Most existing works are lim-

ited in insufficient video representations. In this work, we

develop a multiple instance self-training framework (MIST)

to efficiently refine task-specific discriminative representa-

tions with only video-level annotations. In particular, MIST

is composed of 1) a multiple instance pseudo label gener-

ator, which adapts a sparse continuous sampling strategy

to produce more reliable clip-level pseudo labels, and 2)

a self-guided attention boosted feature encoder that aims

to automatically focus on anomalous regions in frames

while extracting task-specific representations. Moreover,

we adopt a self-training scheme to optimize both compo-

nents and finally obtain a task-specific feature encoder. Ex-

tensive experiments on two public datasets demonstrate the

efficacy of our method, and our method performs compara-

bly to or even better than existing supervised and weakly su-

pervised methods, specifically obtaining a frame-level AUC

94.83% on ShanghaiTech.

1. Introduction

Video anomaly detection (VAD) aims to temporally or

spatially localize anomalous events in videos [33]. As in-

creasingly more surveillance cameras are deployed, VAD is

playing an increasingly important role in intelligent surveil-

lance systems to reduce the manual work of live monitoring.

Although VAD has been researched for years, develop-

ing a model to detect anomalies in videos remains challeng-

ing, as it requires the model to understand the inherent dif-

ferences between normal and abnormal events, especially

anomalous events that are rare and vary substantially. Pre-

vious works treat VAD as an unsupervised learning task
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Figure 1: Our proposed MIST first assign clip-level pseudo

labels Ŷ a = {ŷai } to anomaly videos with the help of a

pseudo label generator G. Then, MIST leverages informa-

tion from all videos to refine a self-guided attention boosted

feature encoder ESGA.

[29, 14, 7, 15, 13, 5, 32] , which encodes the usual pat-

tern with only normal training samples, and then detects the

distinctive encoded patterns as anomalies. Here, we aim

to address the weakly supervised video anomaly detection

(WS-VAD) problem [20, 31, 28, 34, 24] because obtaining

video-level labels is more realistic and can produce more re-

liable results than unsupervised methods. More specifically,

existing methods in WS-VAD can be categorized into two

classes, i.e. encoder-agnostic and encoder-based methods.

The encoder-agnostic methods [20, 28, 24] utilize task-

agnostic features of videos extracted from a vanilla feature

encoder denoted as E (e.g. C3D [21] or I3D [2]) to esti-

mate anomaly scores. The encoder-based methods [34, 31]
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train both the feature encoder and classifier simultaneously.

The state-of-the-art encoder-based method is Zhong et al.

[31], which formulates WS-VAD as a label noise learn-

ing problem and learns from the noisy labels filtered by a

label noise cleaner network. However, label noise results

from assigning video-level labels to each clip. Even though

the cleaner network corrects some of the noisy labels in

the time-consuming iterative optimization, the refinement

of representations progresses slowly as these models are

mistaught by seriously noisy pseudo labels at the beginning.

We find that the existing methods have not considered

training a task-specific feature encoder efficiently, which of-

fers discriminative representations for events under surveil-

lance cameras. To overcome this problem for WS-VAD,

we develop a two-stage self-training procedure (Figure 1)

that aims to train a task-specific feature encoder with only

video-level weak labels. In particular, we propose a Multi-

ple Instance Self-Training framework (MIST) that consists

of a multiple instance pseudo label generator and a self-

guided attention boosted feature encoder ESGA. 1) MIL-

pseudo label generator. The MIL framework is well ver-

ified in weakly supervised learning. MIL-based methods

can generate pseudo labels more accurately than those sim-

ply assigning video-level labels to each clip [31]. Moreover,

we adopt a sparse continuous sampling strategy that can

force the network to pay more attention to context around

the most anomalous part. 2) Self-guided attention boosted

feature encoder. Anomalous events in surveillance videos

may occur in any place and with any size [11], while in

commonly used action recognition videos, the action usu-

ally appears with large motion [3, 4]. Therefore, we utilize

the proposed self-guided attention module in our proposed

feature encoder to emphasize the anomalous regions with-

out any external annotation [11] but clip-level annotations

of normal videos and clip-level pseudo labels of anomalous

videos. For our WS-VAD modelling, we introduce a deep

MIL ranking loss to effectively train the multiple instance

pseudo label generator. In particular, for deep MIL rank-

ing loss, we adopt a sparse-continuous sampling strategy to

focus more on the context around the anomalous instance.

To obtain a task-specific feature encoder with smaller

domain-gap, we introduce an efficient two-stage self-

training scheme to optimize the proposed framework. We

use the features extracted from the original feature encoder

to produce its corresponding clip-level pseudo labels for

anomalous videos by the generator G. Then, we adopt these

pseudo labels and their corresponding abnormal videos as

well as normal videos to refine our improved feature en-

coder ESGA (as demonstrated in Figure 1). Therefore, we

can acquire a task-specific feature encoder that provides dis-

criminative representations for surveillance videos.

The extensive experiments based on two different feature

encoders, i.e. C3D [21] and I3D [2] show that our frame-

work MIST is able to produce a task-specific feature en-

coder. We also compare the proposed framework with

other encoder-agnostic methods on two large datasets i.e.

, UCF-Crime [20] and ShanghaiTech[15]. In addition, we

run ablation studies to evaluate our proposed sparse contin-

uous sampling strategy and self-guided attention module.

We also illustrate some visualized results to provide a more

intuitive understanding of our approach. Our experiments

demonstrate the effectiveness and efficiency of MIST.

2. Related Works

Weakly supervised video anomaly detection. VAD aims

to detect anomaly events in a given video and has been re-

searched for years[9, 29, 14, 7, 15, 13, 12, 32, 31, 5, 24].

Unsupervised learning methods [9, 29, 7, 30, 15, 13, 32, 5]

encode the usual pattern with only normal training sam-

ples and then detect the distinctive encoded patterns as

anomalies. Weakly supervised learning methods [20, 31,

28, 34, 24] with video-level labels are more applicable to

distinguish abnormal events and normal events. Existing

weakly supervised VAD methods can be categorized into

two classes, i.e. , encoder-agnostic methods and encoder-

based methods. 1) Encoder-agnostic methods train only the

classifier. Sultani et al. [20] proposed a deep MIL ranking

framework to detect anomalies; Zhang et al. [28] further in-

troduced inner-bag score gap regularization; Wan et al. [24]

introduced dynamic MIL loss and center-guided regulariza-

tion. 2) Encoder-based methods train both a feature en-

coder and a classifier. Zhu et al. [34] proposed an attention

based MIL model combined with a optical flow based auto-

encoder to encode motion-aware features. Zhong et al. [31]

took weakly supervised VAD as a label noise learning task

and proposed GCNs to filter label noise for iterative model

training, but the iterative optimization was inefficient and

progressed slowly. Some works focus on detecting anoma-

lies in an offline manner [23, 25] or a coarse-grained man-

ner [20, 28, 34, 23, 25], which do not meet the real-time

monitoring requirements for real-world applications.

Here, our work is also an encoder-based method and

work in an online fine-grained manner, but we use the

learned pseudo labels to optimize our feature encoder

ESGA rather than using video-level labels as pseudo la-

bels directly. Moreover, we design a two-stage self-training

scheme to efficiently optimize our feature encoder and

pseudo label generator instead of iterative optimization[31].

Multiple Instance Learning. MIL is a popular method for

weakly supervised learning. In video-related tasks, MIL

takes a video as a bag and clips in the video as instances

[20, 17, 8]. With a specific feature/score aggregation func-

tion, video-level labels can be used to indirectly supervise

instance-level learning. The aggregation functions vary, e.g.

max pooling[20, 28, 34] and attention pooling[17, 8]. In
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Figure 2: Illustration of our proposed MIST framework. MIST includes a multiple instance pseudo label generator G and

self-guided attention boosted feature encoder ESGA followed by a weighted-classification head Hc. We first train a G and

then generate pseudo labels for ESGA fine-tuning.

this paper, we adopt a sparse continuous sampling strategy

in our multiple instance pseudo label generator to force the

network to pay more attention to context around the most

anomalous part.

Self-training. Self-training has been widely investigated in

semi-supervised learning [1, 10, 6, 27, 22, 35]. Self-training

methods increase labeled data via pseudo label generation

on unlabeled data to leverage the information on both la-

beled and unlabeled data. Recent deep self-training involves

representation learning of the feature encoder and classi-

fier refinement, mostly adopted in semi-supervised learn-

ing [10] and domain adaptation [36, 35]. In unsupervised

VAD, Pang et al. [18] introduced a self-training framework

deployed on the testing video directly, assuming the exis-

tence of an anomaly in the given video.

Here, we propose a multiple instance self-training frame-

work that assigns clip-level pseudo labels to all clips in ab-

normal videos via a multiple instance pseudo label genera-

tor. Then, we leverage information from all videos to fine-

tune a self-guided attention boosted feature encoder.

3. Approach

VAD depends on discriminative representations that

clearly represent the events in a scene, while action recog-

nition datasets pretrained feature encoders are not perfect

for surveillance videos because of the existence of a do-

main gap [11, 3, 4]. To address this problem, we introduce

a self-training strategy to refine the proposed improved fea-

ture encoder ESGA. An illustration of our method shown in

Figure 2 is detailed in the following.

3.1. Overview

Given a video V = {vi}
N
i=1 with N clips, the annotated

video-level label Y ∈ {1, 0} indicates whether an anoma-

lous event exists in this video. We take a video V as a bag

Algorithm 1 Multiple instance self-training framework

Input: Clip-level labeled normal videos V n
= {vni }

N
i=1 and cor-

responding clip-level labels Y n, video-level labeled abnormal

videos V a
= {vai }

N
i=1, pretrained vanilla feature encoder E.

Output: Self-guided attention boosted feature encoder ESGA,

multiple instance pseudo label generator G, clip-level pseudo

labels Ŷ a for V a

Stage I. Pseudo Labels Generation.

1: Extract features of V
a and V

n from E as {fai }
N
i=1 and

{fni }
N
i=1.

2: Training G with {fai }
N
i=1 and {fni }

N
i=1 and their corresponding

video-level labels according to Eq. 7.

3: Predict clip-level pseudo labels for each clip of V a via trained

G as Ŷ a.

Stage II. Feature Encoder Fine-tuning.

4: Combine E with self-guided attention module as ESGA, then

fine-tune ESGA with supervision of Y n ∪ Ŷ
a.

and clips vi in the video as instances. Specifically, a neg-

ative bag (i.e. Y = 0) marked as Bn = {vni }
N
i=1 has no

anomalous instance, while a positive bag (i.e. Y = 1) de-

noted as Ba = {vai }
N
i=1 has at least one.

In this work, given a pair of bags (i.e. a positive bag Ba

and a negative bag Bn), we first pre-extract the features

(i.e. {fai }
N
i=1 and {fni }

N
i=1 for Ba and Bn, respectively)

for each clip in the video V = {vi}
N
i=1 using a pretrained

vanilla feature encoder, C3D or I3D, forming bags of fea-

tures B
a

and B
n

. We then feed the pseudo label genera-

tor the extracted features to estimate the anomaly scores of

the clips (i.e. {sai }
N
i=1, {sni }

N
i=1). Then, we produce pseudo

labels Ŷ a = {ŷai }
N
i=1 for anomalous video by perform-

ing smoothing and normalization on estimated scores to su-

pervise the learning of the proposed self-guided attention

boosted feature encoder, forming as two-stage self-training

scheme [10, 36, 35].
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Figure 3: The workflow of our multiple instance pseudo

label generator. Each bag contains L sub-bags, and each

sub-bag is composed of T continuous clips.

As shown in Figure 2, our proposed feature encoder

ESGA, adapted from vanilla feature encoder E (e.g. , I3D

or C3D) by adding our proposed self-guided attention mod-

ule, can be optimized with the estimated pseudo labels to

eliminate the domain gap and produce task-specific repre-

sentations. Actually, our proposed approach can be viewed

as a two-stage method (see Algorithm 1): 1) we first gener-

ate clip-level pseudo labels for anomalous videos that have

only video-level labels via the pseudo label generator, while

the parameters of the pseudo label generator are updated by

means of the deep MIL ranking loss. 2) After obtaining the

clip-level pseudo labels of anomalous videos, our feature

encoder ESGA can be trained on both normal and anoma-

lous video data. Thus, we form a self-training scheme to

optimize both the feature encoder ESGA and pseudo label

generator G. The illustration shown in Figure 2 provides an

overview of our proposed method.

To better distinguish anomalous clips from normal ones,

we introduce a self-guided attention module in the feature

encoder, i.e. , ESGA, to capture the anomalous regions in

videos to help the feature encoder produce more discrimi-

native representations (see Section 3.3). Moreover, we in-

troduce a sparse continuous sampling strategy in the pseudo

label generator to enforce the network to pay more atten-

tion to the context around the most anomalous part (see

Section 3.2). Finally, we introduce the deep MIL ranking

loss to optimize the learning of the pseudo label generator,

and we use cross entropy loss to train our proposed feature

encoder ESGA supervised by pseudo labels of anomalous

videos and clip-level annotations of normal videos.

3.2. Pseudo Label Generation via Multiple Instance
Learning

In contrast to [31], which simply assigns video-level la-

bels to each clip and then trains the vanilla feature encoder

at the very beginning, we introduce a MLP-based struc-

ture as the pseudo label generator trained under the MIL

paradigm to generate pseudo labels, which are utilized in

the refinement process of our feature encoder ESGA.

Even though recent MIL-based methods [20, 28] have

made considerable progress, the process of slicing a video

into fixed segments in an coarse-grained manner regardless

of its duration is prone to bury abnormal patterns as nor-

mal frames that usually constitute the majority, even in ab-

normal videos [24]. However, by sampling with a smaller

temporal scale in a fine-grained manner, the network may

overemphasize on the most intense part of an anomaly but

ignore the context around it. In reality, anomalous events

often last for a while. With the assumption of minimum du-

ration of anomalies, the MIL network is forced to pay more

attention to the context around the most anomalous part.

Moreover, to adapt to the variation in duration of

untrimmed videos and class imbalance in amount, we in-

troduce a sparse continuous sampling strategy: given the

features for each clip extracted by a vanilla feature encoder

E from a video {fi}
N
i=1, we uniformly sample L subsets

from these video clips, and each subset contains T con-

secutive clips, forming L sub-bags B = {fl,t}
L,T
l=1,t=1

, as

shown in Figure 3. Remarkably, T , a hyperparameter to be

tuned, also plays as the assumption of minimum duration

of anomalies, as discussed in the previous paragraph. Here,

we combine the MIL model with our continuous sampling

strategy, as shown in Figure 3. We feed extracted features

into our pseudo label generator to produce corresponding

anomalous scores {sl,t}
L,T
l=1,t=1

. Next, we perform average

pooling of the predicted instance-level scores sl,t of each

sub-bag score as Sl below, which can be utilized in Eq. 7.

Sl =
1

T

T
∑

t=1

sl,t. (1)

After training, the trained multiple instance pseudo la-

bel generator predicts clip-level scores for all abnormal

videos marked as Sa = {sai }
N
i=1. By performing temporal

smoothing with a moving average filter to relieve the jitter

of anomaly scores with kernel size of k,

s̃ai =
1

2k

i+k
∑

j=i−k

saj , (2)

and min-max normalization,

ŷai =
(

s̃ai −min S̃a
)

/(max S̃a −min S̃a)), i ∈ [1, N ],

(3)

we refine the anomaly scores into Ŷ = {ŷai }
N
i=1. Specifi-

cally, ŷai is in [0, 1] and acts as a soft pseudo label. Then, the

pseudo labeled data {V a, Ŷ a} are combined with clip-level

labeled data {V n, Y n} as {V, Y } to fine-tune the proposed

feature encoder ESGA.

3.3. Self­Guided Attention in Feature Encoder

In contrast to vanilla feature encoder E, which provides

only task-agnostic representations for the down-stream task,
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