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Abstract

Deep Neural Networks(DNNs) require huge GPU mem-

ory when training on modern image/video databases. Un-

fortunately, the GPU memory is physically finite, which lim-

its the image resolutions and batch sizes that could be used

in training for better DNN performance. Unlike solutions

that require physically upgrade GPUs, the Gradient Check-

Pointing(GCP) training trades computation for more mem-

ory beyond existing GPU hardware. GCP only stores a

subset of intermediate tensors, called Gradient Checkpoints

(GCs), during forward. Then during backward, extra local

forwards are conducted to compute the missing tensors. The

total training memory cost becomes the sum of (1) the mem-

ory cost of the gradient checkpoints and (2) the maximum

memory cost of local forwards. To achieve maximal mem-

ory cut-offs, one needs optimal algorithms to select GCs.

Existing GCP approaches rely on either manual input of

GCs or heuristics-based GC search on Linear Computation

Graphs (LCGs), and cannot apply to Arbitrary Computa-

tion Graphs(ACGs). In this paper, we present theories and

optimal algorithms on GC selection that, for the first time,

are applicable to ACGs and achieve the maximal memory

cut-offs. Extensive experiments show that our approach not

only outperforms existing approaches (only applicable on

LCGs), and is applicable to a vast family of LCG and ACG

networks, such as Alexnet, VGG, ResNet, Densenet, Incep-

tion Net and highly complicated DNNs by Network Archi-

tecture Search. Our work enables GCP training on ACGs,

and cuts off up-to 80% of training memory1 with a moderate

time overhead (∼ 30%-50%). Codes are available2.

1. Introduction

Deep Neural Networks(DNNs) require huge GPU mem-

ory when training on modern image/video databases.

For popular backbone DNNs used for image fea-

1Cutting off 80% of training memory means one can double the input

image size or quadruple the batch size on the same GPUs.
2https://github.com/lordfjw/OptimalGradCheckpointing

Figure 1: Regular Training vs. Gradient CheckPoint-

ing(GCP) Training. (a) The regular training stores all ten-

sors during forward, and uses these tensors to compute gra-

dients during backward. (b) GCP stores a subset of ten-

sors during the first forward, and conducts extra local re-

forwards to compute tensors and gradients during back-

ward. Our approach automatically searches the optimal

set of Gradient Checkpoints (GCs) for memory cut-off.

Such that on the same physical GPU memory (e.g., in 4

RTX2080Ti GPUs), GCP training can accommodate mod-

els that require 2+ times extra GPU memory.

ture extraction, such as AlexNet [17], VGG [29]

and ResNet [14], the memory cost increases quadrat-

ically with the input image resolution and network

depth. For example, given a median size input ten-

sor of [BatchSize× Channel ×Width×Height] =
[32, 3, 224, 224], ResNet101 requires around 4 GB memory

only to store feature tensors and gradients in training (soft-

ware overheads not included). In more challenging tasks,

DNNs that detect small objects and large number of ob-
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ject categories require input image resolution of more than

600 × 600 [25, 30, 24] and can easily consume more than

30 GB with the same batch size. The memory issue is even

worse for video-based DNNs, such as CDC [28], C3D [16]

and 3D-ResNet [13]. To recognize complex activities in

video, the input video clips would be as long as 64 frames

and could easily go beyond 10 GB using a moderate net-

work. Memory issue also occurs in training DNN compo-

sitions, such as Generative Adversarial Networks (GANs),

where multiple generator and discriminator networks are si-

multaneously stored in GPU memory.

Existing efforts to address memory issues presented

three main approaches: (1) Better single GPUs. Recent

GPUs provide larger memory at the expense of exponen-

tially growing price and power consumption. For instance,

from TitanXp, Quadro P6000, RTX 3090 to Tesla V100,

for 1-2.7 times increase in memory, the prices increase

2.8-8.5 times. (2) Parallelization among multiple GPUs

[10, 27, 18, 21, 20, 34, 2, 3], which requires expensive clus-

ters, introduces substantial I/O cost, and does not reduce

the total memory cost. (3) Gradient CheckPointing (GCP)

[8, 12], which focuses on trading computation for mem-

ory and reduces the total memory cost without any upgrade

in hardware. Note that recent affordable GPUs (e.g., RTX

2080 Ti , RTX 3080), although limited in memory (around

11GB), provide exceptional improvement in GPU cores and

FLOPS. Trading computation costs for memory is a very

attractive solution that make it possible to train very heavy

DNNs with finite GPU memory.

The regular DNN training approach consists of two al-

ternated stages: forward and backward. Fig. 1 (a) illustrates

an example of feed-forward neural networks. In the for-

ward stage, the network takes an input tensor, and computes

tensors at every layer to the final output. In the backward

stage, the difference between the output and ground truth is

passed back along the network to compute the gradients at

each layer. The regular training approach saves tensors at

all layers computed during forward. The total memory cost

is the sum of cost over all these intermediate tensors.

GCP is a high-level training approach that trade extra

computation time for substantial saving of GPU memory.

Fig. 1 (b) illustrates its main idea. During GCP training,

only a subset of intermediate tensors (which are called Gra-

dient Checkpoints (GCs)) are stored in the first forward, and

the missing tensors needed during backward are computed

via extra local re-forwards. The total memory cost is the

sum of the cost at the subset of intermediate tensors and the

maximum memory cost among local re-forwards. Training

with GCP can lead to substantial memory reduction, with

the time overhead of local re-forwards. To achieve maximal

memory cut-offs, one needs optimal algorithms to search

for GCs. The GC searching algorithm is a preprocessing

step of GCP training, and only needs to be run once for

one computation graph.

In this paper, we propose sophisticate theories and effi-

cient algorithms that, for the first time, automatically find

the optimal GCs in Arbitrary Computation Graphs(ACG),

opens the gate of GCP training to a vast family of DNNs

from ResNet to the Neural Architecture Search(NAS) net-

works. Compared to existing GC searching (only applica-

ble to Linear Computation Graphs(LCG) such as VGG), the

optimality of our approach does not pose any assumption

on computation graph, thus applicable to ACGs. Our op-

timal GCs lead to the smallest memory cost in GCP train-

ing. Using our GC searching algorithm, the GCP training

can accommodate much larger models, on the same phys-

ical GPU memory (see the table in Fig. 1). For instance,

on 4 RTX2080Ti GPUs, regular training can typically train

a ResNet50 image classification model of 3 × 224 × 224
input size with 256 batch size.

2. Related Work

To alleviate the memory pressure from a single GPU pro-

cessor, many researchers utilized the well-established tech-

niques for distributed computation [10, 27, 18, 21, 20, 34,

2, 3]. These techniques distribute memory pressure to pos-

sibly infinite GPUs or server clusters, but do not reduce the

total memory cost of DNNs.

Some researchers reduced the memory usage by opti-

mizing computation graph of DNN and performing live-

ness analysis. The computation graph of DNNs describes

the dependencies of tensors among layers. Liveness anal-

ysis recycles garbage to manage memory. These ideas

were originated from compiler optimization [4] and has

been widely adopted by deep learning frameworks: Theano

[5, 6], MXNet [7], Tensorflow [1] and CNTK [33]. Some

other techniques efficiently swap data between CPU and

GPU [32, 26]. These techniques usually cost extra I/O time

and still do not actually reduce the total memory cost.

Other approaches focus on trading computation for

memory with the idea of Gradient CheckPointing. Popu-

lar deep learning frameworks such as Pytorch [22] and Ten-

sorflow [1] provide functions for users to manually define

GCs in computation graph and perform gradient checkpoint

training. These functions are user-dependent and their per-

formance highly relies on the selected GCs.

There are also algorithms to search for GCs automati-

cally. Early in 2000, Griewank and Walther[11] propose

an optimal algorithm for linear computation graph assum-

ing identical memory cost for each layer. Later, Chen et al.

[8] develop a greedy algorithm to search for GCs for linear

computation graph (LCG), based on a heuristic that each

segment has similar memory cost. Chen’s algorithm is also

adopted by OpenAI [9]. However, it is only applicable and

not optimal for linear computation graph, and it’s not appli-

cable for non-linear computation graph, such as Inception
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net [31] and Dense net [15].

Gruslys et al. [12] targets at Gradient CheckPointing

for recurrent neural network (RNN). In recurrent neural

network, the hidden state of each time step has the same

size and thus has identical memory cost. Gruslys utilizes

this characteristic and develops dynamic programming al-

gorithm to solve for optimal GCs for RNN given a memory

budget. Gruslys’s approach is restrictive to RNN and can

not generalize to network with arbitrary computation graph.

The main contribution of this paper is proposing algo-

rithms to solve optimal GCs for arbitrary computation

graph (ACG). The difference between our approach and

other approaches is summarized in Table.1.

3. Overview

GCP training consists of a pre-processing and a training

step. In the pre-processing step, a GC searching algorithm

is run to select GCs. Then in the training step, only tensors

at the GCs are stored in memory during the first forward.

During backward, the missing tensors and gradients are re-

covered by local re-forwarding. Like other GC searching

algorithm [11, 8, 12], our algorithms focus on solving op-

timal GCs in the pre-processing step and is thus an one-

time effort, which is only conducted before training.

In section 4, we start with the Linear Computation Graph

(LCG) and formulate the optimization problem of solving

GCs. We first discuss a special case of LCGs, where we

can easily compute an optimal solution in analytic form and

understand the effectiveness of GCP. Then we present our

algorithms to solve for optimal GCs in arbitrary LCGs.

In section 5, we present our approach on Arbitrary Com-

putation Graphs (ACGs). We first introduce all the basic

components, including definitions and sub-algorithms, and

then the final solver based on these components.

In section 6, we present extensive experiments on net-

works with both linear and non-linear computation graphs.

Due to space limit, we cannot put all illustrative examples

in the paper. Extra illustrative examples are included in the

”Extra Examples” section of the supplementary material.

In section 7, we present our conclusion for this paper.

4. Linear Computation Graph (LCG)

We denote a computation graph of a DNN as an acylic

directed graph G =
(

E, V
)

. E = {ei} and V = {vi} are

the edges and vertices in the graph respectively. The ver-

tices represent the intermediate tensors and the edges rep-

resent DNN operations, such as convolution, matrix mul-

tiplication, etc. We denote function l(·) as a measure of

memory cost. In practice for a single tensor vi, l(vi) can be

measured by the size of the tensor. We denote V R as the

subset of vertices selected as GCs. l(vRi ) is defined as the

memory cost of the ith gradient checkpoint in V R. For two

adjacent gradient checkpoint vRi and vRi+1 in set V R, sup-

pose the ith gradient checkpoint vRi corresponds to vertex

vj in the original computation graph, and vRi+1 corresponds

to vk, the memory cost during re-forwards from vRi to vRi+1

is defined as l(vRi , v
R
i+1) =

∑k−1
t=j+1 l(vt), which is the sum

of cost over all the vertices between vj and vk in the com-

putation graph. Using these notations, solving the optimal

GCs is formulated as an optimization problem:

min
V R

(
∑

i

l(vRi ) + max
i

l(vRi , v
R
i+1)), (1)

where the
∑

i l(v
R
i ) is the sum of the memory cost over all

the GCs, and max
i

l(vRi , v
R
i+1)) is the maximal cost among

the local re-forwards. Eqn. 1 describes the peak memory

during gradient checkpoint training. Solution to Eq. 1 pro-

duces the optimal GCs in V R.

For easy illustration, we start by solving Eqn. 1 on Linear

Computation Graphs (LCG) (Fig. 2 (a)). For LCGs, Eqn. 1

can be solved in two cases.

Figure 2: (a) Linear Computation Graph (LCG). “s” denotes

the source vertex,“t” denotes the target vertex. (b) Arbitrary

Computation Graph (ACG). The structure between “s” and

“t” may contain arbitrary branches and connections.

Case(1) LCG with Identical Vertex Cost: Suppose a

LCG has N vertices, each of which has identical cost as

l(vi) = 1 and the total cost of these N vertices is N . Obvi-

ously, the optimal solution is reached when GCs in V R are

distributed evenly in the LCG, i.e. splitting the computation

graph into equal length segments. Suppose the number of

vertices in V R is k. The total cost is then k + N
k

. The op-

timal solution of Eqn. 1 is achieved when k =
√
N , and the

optimal total cost is 2
√
N .

From Case(1), we can get a sense of the effectiveness of

Gradient CheckPointing. The original memory cost is N ,

and can be reduced to 2
√
N at the time overhead of extra

local forwards. When the network is deep, i.e. N is large,

huge amount of memory cost can be cut off. For example,

when N = 100, we can reduce the memory cost to 20% of

the original cost. Chen’s algorithm [8] is developed exactly

from this observation and thus is only optimal in this case.

Case (2) LCG with Non-identical Vertex Cost: When

the assumption of identical cost does not hold, the solu-

tion to Eqn. 1 does not have an analytic form. Denote

the maximal Re-forward cost max
i

l(vRi , v
R
i+1)) as a con-

stant C, and the solution to Eqn. 1 is reduced to solving
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Table 1: ✓✓is both applicable and optimal, ✓✗is applicable but not optimal, ✗✗is not applicable nor optimal.

Approach
applicable & optimal in

identical cost LCG

applicable & optimal in

arbitrary cost LCG

applicable & optimal in

ACG
automatic with budget

manual input ✓✗ ✓✗ ✓✗ ✗ ✗

Griewank&Walther’s[11] ✓✓ ✗✗ ✗✗ ✓ ✗

Chen’s[8] ✓✓ ✓✗ ✗✗ ✓ ✗

Gruslys’s[12] ✓✓ ✗✗ ✗✗ ✓ ✓

ours ✓✓ ✓✓ ✓✓ ✓ ✗

for min
V R

∑

i l(vi), such that all the re-forward memory costs

satisfy the constraint l(vRi , v
R
i+1)) ≤ C.

Given a constant C as the constraint, we can solve the

reduced problem by constructing a new graph, called Ac-

cessibility Graph GA =
(

EA, V
)

. The edges of GA, called

Accessibility Edge eAjk, exists between vertex vj and vk if

and only if l(vj , vk) ≤ C, which means that vj and vk can

be selected as adjacent GCs under the constraint.

Now the constraints are all encoded in the accessi-

bility graph, we can solve the unconstrained problem

min
V R

∑

i l(v
R
i ), which is equivalent to finding the shortest

path from the source vertex and the target vertex in the Ac-

cessibility Graph. Notice that in the optimal solution of

Eqn. 1, max
i

l(vRi , v
R
i+1)) = C = l(vj , vk). C would be

the cost l(vj , vk) of a vertex pair. Therefore, to determine

C, we can simply traverse all possible C by using the cost

of every vertex pair, and find optimal solution under each

C as constraint. The best of it would then be the optimal

solution of Eqn. 1. Algorithm 1 summarizes the steps for

searching an optimal solution for LCGs. For a computation

graph with |V | vertices and |E| edges, the time complexity

of Algorithm 1 is O(|V |2|E|+ |V |3 log |V |).

Algorithm 1 Linear Computation Graph (LCG) Solver

Input: a linear computation graph G

Output: optimal GCs V R

1: for each vertex pair (vj , vk) in G do

2: Set the maximal term C = l(vj , vk)
3: Construct Accessibility Graph GA

4: Find the shortest path in the Accessibility Graph as a

candidate solution V R

5: Compute the total cost of candidate solution V R

6: Save the solution V R if the total cost is smaller.

5. Arbitrary Computation Graph(ACG)

As the generalization of LCGs, we present theory and

algorithms for DNNs with Arbitrary Computation Graphs

(ACG), in particular the acyclic directed graphs (Fig. 2 (b)).

5.1. Independent Segment(IS)

GCs break the computation graph into different seg-

ments, where we can perform re-forward and backward

independently. We call it Independent Segment (IS). For

LCGs, any set of GCs naturally break the computation

graph into linearly arranged IS. But for ACGs, this prop-

erty may not hold.

Figure 3: Letter represents index of the vertex in the com-

putation graph. vi and vt can form an independent segment

while vk and vj can not.

For example, in Fig. 3, GCs {vk, vj} is not feasible be-

cause vt depends on vi. Thus vk and vj cannot form an

IS. vi and vt can form an IS because vertices in the segment

(just vk for this example) do not depend on any vertices out-

side the segment. Thus GCs {vi, vt} is a feasible solution.

We investigate the properties of IS to better understand

the solution space of GCs. Therefore, we formally define

Independent Segment as following.

Definition 1 Independent Segment(IS): Independent Seg-

ment sij = (Eij , V ij) is a subgraph of the computation

graph G = (E, V ), with vi being the source vertex and vj
being the target vertex. The vertices inside sij has no con-

nections with the vertices outside sij , i.e. 6 ∃ekt, s.t.vk ∈
(Vij − {vi, vj}), vt ∈ (V − Vij).

Given IS sij and vi, vj as GCs, the reforwarding and

backward memory cost for this segment is the sum over

cost of all the vertices inside this segment, i.e. l(sij) =
∑

k l(vk), vk ∈ (Vij −{vi, vj}). We can then derive objec-

tive function for ACG similar as in LCG Eqn. 1.

min
V R

(
∑

i

l(vRi ) + max l(sRij)), (2)

where the second term is the maximum cost over all the

IS formed by GCs in V R
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Figure 4: The first row is the computation graph of IS. The

second row is the division of IS as colored sub-graphs. The

third row is the hyper-graph of IS with the division folded

into bold colored segments, associated with their memory

costs. Letters represent vertex indices and numbers repre-

sent the memory cost of vertices. (Best viewed in colors.)

5.2. IS Type and Division

Similar to Algorithm 1, we also define C = max l(sRij)

and try to solve min
V R

∑

i l(v
R
i ) under constraint C.

Given an IS sij , if l(sij) > C and breaks constraint, we

need to break down sij and find more GCs inside sij . In

other words, sij is too big to satisfy constraint C and we

need to break it down into smaller segments so that each

segment confines with the constraint.

Another question rises: how to divide an IS into a set of

smaller IS? We categorize IS into different types and pro-

pose divisions for them respectively.

Definition 2 Linear Splitting Vertex: A vertex vt ∈ sij is

a linear splitting vertex of sij if and only if sit is valid IS,

stj is valid IS and sij = sit ∪ stj and sit ∩ stj = {vt}

Definition 3 Linear IS: An IS with at least one linear split-

ting vertex.

The definition of Linear Splitting Vertex is to describe

whether an IS can be divided into two linearly arranged IS.

We categorize an IS as Linear IS if it has at least one linear

splitting vertex. The division of Linear IS is naturally all of

the linear segments separated by its linear splitting vertices.

An example of Linear IS and its division can be viewed in

the first column of Fig. 4. In this example, the division of

Linear IS sij is {sik, skj}. If we represent member IS of

the division sik, skj as edges with memory cost, then the

computation graph will be a simple linear graph.

Algorithm 2 gets the division of Linear IS sij . For each

vertex vt ∈ V ij , we judge whether it’s a Linear Splitting

Vertex with Definition 2. If it is, we break down sij into

two segments and try to find more Linear Splitting Vertex

in each segment recursively. At the end of Algorithm 2,

we can find all the Linear Splitting Vertices in sij , and get

the division of sij formed by IS separated by the Linear

Splitting Vertices. Suppose there are |V ij | vertices in sij ,

the time complexity of Algorithm 2 is O(|V ij |3).

Algorithm 2 Get the division of Linear IS

{s} ← func(sij)

Input: IS sij = (V ij , Eij)
Output: division of sij (a set of IS)

1: for each vertex vt ∈ V ij do

2: Let {vin} be the vertices of all the vertices within sij
that have paths to vt. Let {vout} be the vertices of all

the vertices within sij that have paths from vt.

3: if {vin}∪{vout}∪{vt} = V ij and {vin}∩{Vout} =
∅ and 6 ∃v1 ∈ {vin}, v2 ∈ {vout}, v1, v2 have con-

nections then

4: Return func(sit) ∪ func(stj)
5: Return {sij}

Definition 4 Branch IS: an IS sij with 0 linear splitting

vertex and can be divided into branches: multiple IS with

source vertex vi and target vertex vj , i.e. sij = s1ij ∪ s2ij ∪
... ∪ snij and s1ij ∩ s2ij ∩ ... ∩ snij = {vi, vj}.

For IS with no linear splitting vertex, we categorize the

one formed by branches as Branch IS. The division of a

Branch IS is simply its branches. An example of Branch

IS and its division can be viewed in the second column of

Fig. 4. In this example, the division of Branch IS sij are its

branches {s1ij , s2ij , s3ij}.
Algorithm 3 gets the division of Branch IS sij . If sij has

edge eij , we treat the edge eij itself as a branch, add it into

the division and look for more branches in the remaining

graph recursively. Otherwise, we initialize an IS sb with a

random vertex vk, and do BFS to gradually add vertices and

edges into sb. If sij has no branch, the edges Eb of sb will

end up being Eij . Otherwise, sb will be a branch of sij . We

add sb into division and look for more branches in the re-

maining graph recursively. Suppose there are |Vij | vertices

in sij , the time complexity of Algorithm 3 is O(|Vij |2).

Definition 5 Complicate IS: A Complicate IS is an IS hav-

ing 0 linear splitting vertex and 0 branch.

For the remaining IS with no linear splitting vertex and

no branch, we categorize it as Complicate IS, because it’s

not very straight forward to get the division of this type of

IS. For Complicate IS, we don’t want a trivial division such
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Algorithm 3 Get the division of Branch IS

{s} ← func(sij)

Input: IS sij = (V ij , Eij)
Output: division of sij (a set of IS)

1: if |Vij − {vi, vj}| >= 1 then

2: if eij ∈ Eij then

3: sb = ({vi, vj}, {eij})
4: s′ij = (V ij , Eij − {eij})
5: Return {sb} ∪ func(s′ij)
6: else

7: Initialize an IS sb = (V b, Eb). V b = {vk}, vk is a

randomly chosen vertex in V ij−{vi, vj}, Eb = ∅.

8: Initialize an empty queue q, add vk to q

9: while |q| > 0 do

10: pop vq from q

11: for each vt that has edge etq or edge eqt con-

nects to vq do

12: if vt 6∈ V b and vt ∈ (V ij − {vi, vj}) then

13: Add vt to q, add vt to V b, and add etq or

eqt to Eb

14: if Eb = Eij then

15: Return {sij}
16: else

17: s′ij = (V ij − V b + {vi, vj}, Eij − Eb)
18: Return {sb} ∪ func(s′ij)
19: else

20: Return {sij}

that each member IS is formed by a single vertex. Instead,

we want the member IS is as large as possible. Therefore,

we define the division of Complicate IS as following.

Definition 6 Division of Complicate IS: {spq} is the divi-

sion of Complicate IS sij . For each member IS spq ∈ {spq},
there doesn’t exist another skt, such that spq $ skt $ sij

We prove that the Division of Complicate IS is unique

and details of proof can be viewed in supplementary ma-

terial. An example of Complicate IS and its division can

be viewed in the third column of Fig. 4. In this example,

the division of Complicate IS sij are {sik, sit, skt, skj , stj}.
For any member IS, sik for example, there cannot exist an

IS in sij that can contain it.

Algorithm 4 gets the division of Complicate IS sij . First

we get all the possible IS within sij and put them into a set

S. Then for each IS skt ∈ S, if there is no other IS sab ∈ S

containing skt, i.e. skt is already as large as possible, we

put skt into the division. Suppose there are |V ij | vertices

and |Eij | edges in sij , the time complexity of Algorithm 4

is O(|V ij |2|Eij |+ |V ij |3).

Algorithm 4 Get the Division of Complicate IS sij
{s} ← func(sij)

Input: IS sij = (V ij , Eij)
Output: the Division of sij(a set of IS)

1: Initialize an empty IS set S = ∅.
2: Initialize an empty set D = ∅ for division.

3: for each vertex pair (vk, vt) except (vi, vj) in sij do

4: For all the vertices {v} that have paths from vk and

have paths to vt.

5: if 6 ∃vp 6∈ {v} ∪ {vk, vt}, vp has connection to a

vq ∈ {v} then

6: Vertex vk and vt can form an IS. Add IS skt to S

7: for each IS skt ∈ S do

8: If there doesn’t exist a sab ∈ S such that skt $ sab $
sij , put skt into D.

9: Return D

5.3. Division Tree and ACG Solver

Figure 5: Division tree of a computation graph. The root

node is the whole computation graph (largest IS). All the

leaf nodes are single tensors (smallest IS). Children of a

non-leaf node are the member IS in its division.

With the definition of three types of IS and their divi-

sions, we can build a division tree from the computation

graph (Figure 5) where a non-leaf node would be an IS and

its children would be its corresponding division. The root

node of the whole computation graph is the largest IS, and

the leaf nodes are single tensors in the computation graph.

Theorem 1 The division tree of a computation graph is

unique and complete.

We prove that the division tree of a computation graph

is unique and complete. The uniqueness indicates that an

ACG can only have one division tree. The completeness

indicates that the division tree represents the whole solution

space for optimal GCs searching, which means finding the

optimal solution in division tree is equivalent to finding the

optimal solution in computation graph.

With the division tree, we can search for optimal GCs

recursively. The recursion starts at the biggest IS (the whole

computation graph, root node of division tree) and ends at

the smallest IS (single vertex).
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Algorithm 5 tries to find optimal GCs in the division tree

recursively given constraint C. The main idea is that for an

IS, if its cost satisfies the constraint C, there’s no need to

find more GCs inside the IS. If an IS breaks the constraint

C, then we will have to find more GCs inside the segment.

For Branch IS and Complicate IS, once it’s broken down,

we add the connecting vertices of all its member IS to GCs.

For Branch IS sij , the connecting vertices are simply vi and

vj . For Complicate IS, it can be more. For example, in third

column of Fig. 4, the connecting vertices are vi, vk, vt, vj .

For Linear IS, it can be redundant to add all the connect-

ing vertices of member IS into GCs. For example, in Fig. 6,

given C = 25, the cost of member IS is 10, 5, 10, 10, 30, 10
respectively. The member IS with cost 30 needs to be fur-

ther broken down to find more GCs inside. And it splits the

whole graph into two linear graphs (folding the member IS

as edge). For the linear graph on the left, we can further run

our LCG Solver to find optimal GCs out of the vertices.

Figure 6: Running LCG Solver on Linear IS.

Finally we can put together our ACG Solver (Algorithm

6) with all the components we have discussed before. First

we get a list of possible max term C from all possible

IS in the computation graph, similar to the LCG Solver.

Then we build the division tree with Algorithm 2-4. For

each max term C, the recursion function in Algorithm 5 is

called with the whole computation graph (the largest IS)

as the input. The optimal GCs set is the one with the

lowest overall memory cost across all the max terms C.

Suppose there are |V | vertices and |E| edges in computa-

tion graph, the overall time complexity of Algorithm 6 is

O(|V |2|E| + |V |3 log |V |). Note that given an ACG, ACG

Solver is a pre-procession step and only needs to run once

before the Gradient CheckPointing training.

6. Experiment

We evaluated our approach on (1) networks with LCGs,

such as Alexnet [17] and Vgg [29]. (2) networks with non-

linear computation graphs, such as ResNet [14], Densenet

[15] and Inception net [31], and three highly non-linear

networks from NAS, NASNet[35], AmoebaNet [23] and

DARTS [19]. In Table 2, We compared our approach with

Chen’s algorithm [8] and a random baseline and the regu-

Algorithm 5 Find GCs in division tree recursively given

constraint C:

V R ← recur(s, V R, C)

Input: an IS sij , current GCs V R, max term C

Output: new GCs V R with GCs inside sij added

1: if cost of s smaller or equal than C then

2: Return V R

3: if sij is Linear IS then

4: Sort the division topologically. Suppose division of

sij is {s12, s23, ..., s(n−1)n}, and v1 = vi, vn = vj .

5: Set starting index p = 1
6: for each member IS skt in the division do

7: if cost of skt breaks constraint: l(skt) > C then

8: Build a linear graph G′, with ver-

tices as {vp, vp+1, ..., vk}, and edges as

{ep(p+1), ...e(k−1)k}, with costs of edges as

{l(sp(p+1)), ..., l(sk−1)k)}
9: Solve G′ with LCG Solver with constraint

C and add GCs to V R: V R = V R +
LCGSolver(G′, C)

10: V R = recur(skt, V
R, C)

11: else

12: for each member IS skt in the division of sij do

13: Add vk and vt to V R

14: if cost of skt breaks constraint: l(skt) > C then

15: V R = recur(sij , V
R, C)

16: Return V R

Algorithm 6 Arbitrary Computation Graph (ACG) Solver

Input: an arbitrary computation graph G

Output: optimal GCs V R

1: Get all possible IS and their costs. Use their costs to

form the max term list {c}.
2: Build the division tree from computation graph: from

the root node (the computation graph), build its children

from its division, until all leaf nodes are single tensors.

3: for each possible max term C in max term list {c} do

4: Set V R empty

5: V R = recur(G, V R, C)
6: Summarize the total loss, save the current solution

V R if it’s better.

7: Return V R
best

lar training approach. Note that Chen’s algorithm only

works on LCGs and is not applicable to non-linear com-

putation graphs. Our approach directly works on arbitrary

computation graphs. For random baseline, we randomly se-

lect 1-5 GCs among all vertices in the computation graph.
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Table 2: Training memory cut-offs and time overheads of GCP training with respect to regular training. The GCs used in

GCP training are provided by Random (baseline), Chen’s [8] and our GC algorithm, respectively. Note that the ”Random”

baseline reports the best number over 10 random trials. [8] is not applicable to non-linear networks (or ACGs). The random

strategy is not applicable to three networks from NAS because it cannot find a valid solution after 100 trials. Although using

different GCs from random, Chen’s and our GC algorithm, GCP training always conducts one extra forwarding, therefore

share the same “GCP Time” and “GCP Time Overhead” columns in the table.

Linear network

Regular

Memory

(MB)

Random

Memory

(MB)↓

Chen’s[8]

Memory

(MB)↓

Ours

Memory

(MB)↓

Ours

Memory

Cut-offs↑

Regular

Time

(Sec)

GCP

Time

(Sec)↓

GCP

Time

Overhead↓

Alexnet batch 1024 4955 4408 4408 3287 34% 0.388 0.519 34%

Vgg11 batch 64 3577 2781 2781 2781 22% 0.266 0.356 34%

Vgg13 batch 64 5136 3565 3565 3565 31% 0.418 0.558 33%

Vgg16 batch 64 5136 4352 3957 3565 31% 0.503 0.666 32%

Vgg19 batch 64 5189 4548 3957 3565 31% 0.581 0.774 33%

Non-linear network

Regular

Memory

(MB)

Random

Memory

(MB)↓

Chen’s[8]

Memory

(MB)↓

Ours

Memory

(MB) ↓

Ours

Memory

Cut-offs↑

Regular

Time

(Sec)

GCP

Time

(Sec)↓

GCP

Time

Overhead↓

ResNet18 batch 256 5635 4069 N/A 3677 35% 0.422 0.548 30%

ResNet34 batch 128 4079 2231 N/A 1838 55% 0.364 0.493 35%

ResNet50 batch 64 5323 2714 N/A 1973 63% 0.394 0.516 31%

ResNet101 batch 32 3934 2541 N/A 1024 74% 0.356 0.482 35%

ResNet152 batch 16 2767 1464 N/A 526 81% 0.241 0.331 37%

Densenet121 batch 32 4027 1629 N/A 898 78% 0.218 0.292 34%

Densenet161 batch 16 3751 1432 N/A 666 82% 0.252 0.341 36%

Densenet169 batch 32 4862 1774 N/A 897 82% 0.270 0.357 32%

Densenet201 batch 16 3146 1242 N/A 474 85% 0.200 0.306 53%

Inceptionv3 batch 32 3074 1336 N/A 881 71% 0.291 0.374 29%

NASNet batch 64 5832 N/A N/A 1129 81% 0.408 0.535 31%

AmoebaNet batch 64 4944 N/A N/A 1058 79% 0.331 0.450 36%

DARTS batch 64 5627 N/A N/A 1115 80% 0.318 0.494 55%

We repeat this random selection for 10 times and report the

best solution (i.e. the solution with minimal memory con-

sumption) among 10 trials. For non-linear networks, ran-

dom selection can yield invalid solution (unable to do inde-

pendent forward and backward between GCs). In this case,

we repeat random selection process until we have 10 valid

solutions and report the best results among them.

All experiments were conducted in Pytorch 1.5. GPU

memory costs (MB) are measured in Float32. The reported

memory costs have excluded the stationary cost, such as

model weights and Pytorch CUDA interface. The input to

Inceptionv3 is [BatchSize, 3, 300, 300], the input to three

NAS networks is [BatchSize, 3, 32, 32], and the input to all

other networks is [BatchSize, 3, 224, 224]. Although us-

ing different GCs from the random, Chen’s and our GC al-

gorithm, GCP training always conducts one extra forward-

ing, therefore costs the same “GCP Time” and “GCP Time

Overhead” in Table. 2. We report the GCP training time per

iteration (in seconds ”Sec”) averaged over 100 iterations.

Table. 2 shows that our approach cuts down the most

amount of memory from the regular approach. For instance,

for linear network Vgg19, 31% memory was cut down, en-

abling the GCP training that costs 33% time overhead. Due

to our optimal GC solution on computation graphs, GCP

training using our GCs outperforms Chen’s approach and

also constantly outperforms the best solution of 10 random

trials. For non-linear networks, Chen’s approach does not

apply, while our approach can still give substantial memory

cut and constantly outperform the best solution of 10 ran-

dom trials. On the deepest ResNet (ResNet152), 81% mem-

ory cut was achieved, enabling the GCP training that costs

only 37% time overhead. For Densenet series and networks

from NAS, more than 80% memory cut were achieved with

around 40% time overhead.

7. Conclusion

Gradient CheckPointing (GCP) is a fundamental train-

ing approach that makes it possible to train very heavy

DNNs on finite GPU memory. Automatic Gradient Check-

point(GC) searching is the key to GCP, whereas existing

efforts are stagnant at heuristic GC searching and LCGs. To

our knowledge, our theoretical and algorithmic results are

the first top-down work that achieves an optimal memory

GC solution for DNNs with arbitrary computation graphs.

Our advance of GCP is general and can be further integrated

with any low-level techniques such as distributed comput-

ing, GPU/CPU swapping, computation graph optimization

and liveness analysis.
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