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Figure 1. We propose RMA-Net for non-rigid registration. With a recurrent unit, the network iteratively deforms the input surface shape

stage by stage until converging to the target. RMA-Net is totally trained in an unsupervised manner by aligning the source and target shapes

via our proposed multi-view 2D projection loss.

Abstract

Learning non-rigid registration in an end-to-end man-

ner is challenging due to the inherent high degrees of free-

dom and the lack of labeled training data. In this pa-

per, we resolve these two challenges simultaneously. First,

we propose to represent the non-rigid transformation with

a point-wise combination of several rigid transformations.

This representation not only makes the solution space well-

constrained but also enables our method to be solved iter-

atively with a recurrent framework, which greatly reduces

the difficulty of learning. Second, we introduce a differen-

tiable loss function that measures the 3D shape similarity

on the projected multi-view 2D depth images so that our

full framework can be trained end-to-end without ground

truth supervision. Extensive experiments on several differ-

ent datasets demonstrate that our proposed method outper-

forms the previous state-of-the-art by a large margin.

1. Introduction

Surface registration, which aims to find the spatial trans-

formation and correspondences between two surfaces, is a

fundamental problem in computer vision and graphics. It

has wide applications in many fields such as 3D recon-

struction [32, 31], tracking [33, 48] and medical imag-
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ing [63, 39]. According to the type of transformation that

deforms the source surface to the target, registration algo-

rithms can be categorized as rigid [3, 2, 53, 28, 61, 12, 21]

and non-rigid [30, 51, 50, 20, 27] methods. Rigid registra-

tion estimates a global rotation and translation that aligns

two surfaces, while non-rigid registration has much more

freedoms, and thus is more complex and challenging.

Traditional optimization based methods [3, 30] usually

handle this problem by iteratively alternating a correspon-

dence step and an alignment step. The correspondence step

is to find corresponding points between the source and tar-

get surfaces, while the alignment step estimates the trans-

formation based on the current correspondences. However,

it is not easy to construct reliable correspondences solely

based on heuristics (e.g., nearest neighbor search) or hand-

crafted features like SHOT [45] and FPFH [36].

Recently, learning based methods have demonstrated

promising results by leveraging the strong representation

learning abilities of neural networks, but most of them are

limited to rigid registration [2, 53, 28, 61, 12, 21]. Only a

few learning based non-rigid registration methods [50, 51]

exists and they are only applicable to small-scale non-rigid

deformations that are synthesized by the thin plate spline

(TPS) [5] transformation. It is not straightforward to design

a learning based non-rigid registration framework that can

produce very accurate results.

The challenges of learning non-rigid registration lie in

two aspects. First, unlike a single global rigid transforma-
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tion, the much greater freedoms in non-rigid registration in-

crease the difficulty of network training. For example, tra-

ditional methods [1, 30] estimate a local transformation for

every points on the surface. To alleviate this issue, one pos-

sible direction is to adopt the deformation graph [41] repre-

sentation, which reduces the complexity from each surface

point to each graph node. However, it is not convenient

to pass the shape-dependent deformation graphs to neural

network due to their different number of graph nodes and

topologies. Second, the lack of labeled data restricts the

training of non-rigid registration networks. It is non-trivial

to obtain dense non-rigid correspondences from real large-

scale data to serve as direct supervision. An alternative is to

train the network in an unsupervised fashion. However, ex-

isting metrics (e.g., chamfer distance and earth-mover dis-

tance) for shape similarity measurement are not effective

enough to drive the network to learn the correct solution.

To tackle these problems, we first propose a new non-

rigid representation that is suitable for network learning.

Specifically, we represent the non-rigid transformation as a

point-wise combination of K rigid transformations, where

K is much smaller than the number of surface points.

This is because the non-rigid deformation of the surface

can be well approximated by the combination of several

rigid transformations. Such a representation not only en-

ables our method to be able to approximate arbitrary non-

rigid transformation but also makes the solution space well-

constrained. To learn such a representation, we design a

recurrent neural network architecture to estimate the combi-

nation weights and each rigid transformation iteratively. At

each iteration, the network only needs to estimate a single

rigid transformation and the skinning weight for each point

which represents how important the rigid transformation in-

fluences this point. Although the iterative strategy has been

adopted in neural networks for registration [2, 37], they are

mainly used for rigid registration, while our proposed itera-

tive method is well-designed for non-rigid registration.

We further propose a multi-view loss function to train the

model in a self-supervised manner. Concretely, we project

the 3D surface to multi-view 2D depth images and measure

the visual similarity of source and target by their depths and

masks. The intuitive idea is that their projected depth maps

and masks should be identical if two surfaces are fully reg-

istered. Moreover, we adopt a soft rasterization method to

render the point clouds to depths map and masks, which

makes our loss term to be differentiable. The proposed

shape similarity loss is adopted in our self-supervised learn-

ing method, and it outperforms the commonly used Cham-

fer Distance and Earth Mover’s distance.

We conduct extensive experiments on different object

types (body, face, cats, dogs, and ModelNet40 dataset). Our

proposed RMA-Net not only outperforms previous state-of-

the-art methods by a large margin but also works well for

large-scale non-rigid registration tasks. Extensive ablation

studies also validate the effectiveness of each component in

our proposed method.

2. Related Works

Rigid Registration. A popular rigid registration method

is the Iterative Closest Point (ICP) [3] algorithm, which

searches the correspondences and estimates the transforma-

tion alternatively to solve the problem. Some ICP vari-

ants [6, 35, 38, 40] have been proposed to improve its ro-

bustness noises, outliers and incomplete scans. On the other

hand, some global optimization based methods [15, 36, 34,

22, 57] have been proposed to search for a global optimum

while at the cost of slow computation speed.

Recently, learning-based methods have also shown

promising results. 3DMatch [62] and 3DFeatNet [60]

learn local patch descriptors instead of hand-crafted features

to construct correspondences. PointNetLK [2] and PCR-

Net [37] extract global features of the input point clouds and

iteratively regresses the rigid transformation. Deep Closest

Point (DCP) [53] improves the feature extraction and cor-

respondence prediction stages, and obtains the rigid trans-

formation through SVD decomposition. PR-Net [54] and

RPM-Net [61] improve the robustness to outliers and partial

visibility. Recently, [21] proposes a semi-supervised ap-

proach based on feature-metric projection error, which also

demonstrates robustness to noise, outliers, and density dif-

ference. Some of these methods adopt recurrent structures

to update the transformation iteratively while only work for

rigid transformation. Different from our approach, most of

these methods are trained in a supervised manner or with

Chamfer distance loss.

Non-Rigid Representation. One widely used non-rigid

representations is to estimate a local transformation for ev-

ery point on the source surface [1, 30]. Although such

representation can model complex non-rigid deformations,

the large number of variables increases the difficulty of

network training. Another type is based on deformation

graph [41]. Given an input surface, the deformation graph

is constructed by sampling graph nodes on the surface. By

defining transformation variables on graph nodes, the sur-

face can be deformed based on the skinning weights which

tie between points of the surface and nodes. However, dif-

ferent surfaces have deformation graphs with a different

number of graph nodes, topologies and skinning weights.

Such a shape-dependent representation makes it difficult to

be passed into the neural network. Unlike existing meth-

ods, our proposed non-rigid representation is flexible and

applicable for different shape types, which can also be eas-

ily learned with our proposed recurrent framework.

Non-Rigid Registration. Several previous non-rigid reg-

istration methods are based on thin plate spline func-

tions [13, 23, 10, 58] and the local affine transforma-

10298



tions [1, 25, 59]. N-ICP [1] defines a rigid transformation

for each point to model the non-rigid deformation. Em-

bedded deformation-based methods [25, 41, 59] model the

non-rigid motion as transformations defined on a deforma-

tion graph. Coherent point drift (CPD) [30] is based on

the Gaussian mixture model (GMM), which implicitly en-

codes the unknown correspondences between points and

minimizes the negative log-likelihood function using the

Expectation-Maximization (EM) algorithm. Some other

GMM-based methods [24, 29, 17] are also proposed later.

Very recently, BCPD [20] formulates CPD in a Bayesian

framework, which guarantees the convergence and reduces

the computation time.

At present, learning based surface registration methods

are mainly designed for rigid registration, while only a few

exist for non-rigid registration. CPD-Net [51] extracts fea-

tures from input point cloud pairs with PointNet backbone

and predicts the point-wise displacement directly, which

is trained in an unsupervised manner with the Chamfer

loss. PR-Net [50] adopts a voxel-based strategy to extract

shape correlation tensor and predict the control points of

thin plate spine. Training is supervised with a GMM loss.

FlowNet3D [27] estimates the scene flow from a pair of

consecutive point clouds, which is trained with ground truth

supervision. Different from previous methods, we propose

a recurrent framework to learn non-rigid registration in an

unsupervised manner, and also a new loss function is pro-

posed to drive the learning process.

Metrics for Shape Similarity. The key to a success-

ful unsupervised learning framework is to design suitable

loss functions. The Chamfer Distance (CD) is a general

evaluation metric in related area, including surface genera-

tion [14, 19], point set registration [51, 21] and so on. As

CD relies on the closet point distance, it is sensitive to the

detailed geometry of outliers [43]. Earth Mover’s distance

(EMD) is another metric that is commonly used to com-

pute the distance between two surfaces [14, 52], which can

be formulated and solved as a transportation problem. As

computing EMD is quite slow, some fast numerical meth-

ods [14] have also been proposed.

Different from directly measuring the registration re-

sults in 3D, we propose to project the 3D shapes to a 2D

plane and then measure their similarity. If two surface

shapes match quite well, the rendered 2D images from dif-

ferent views will also be visually similar. For the 3D shape

retrieval task, [9] proposes a light field distance (LFD)

to measure the visual similarity between two 3D models.

Later, [16] utilizes a neural network to learn this similar-

ity metric for the guidance of deformation transfer. They

all treat LFD as a non-differentiable module and thus can

not be used as a loss term to supervise the model train-

ing. Compared with existing LFD approaches, we design

a differentiable rendering strategy to render the depths and

masks from the given surface and camera parameters, which

is similar to the method used in [26, 42]. In this way, our

proposed loss is differentiable and can thus deform the sur-

face accordingly.

3. Proposed Model

3.1. Problem Definition

Given a source point cloud S ∈ R
M×3 and a target point

cloud T ∈ R
N×3, we aim to find a non-rigid transformation

φ : RM×3 → R
M×3, such that the deformed point cloud

S̃ = φ(S) (1)

is as close as possible to the target point cloud T . The goal

of this paper is to design a learning based framework to di-

rectly predict the non-rigid transformation φwith the source

and target surfaces S and T as input.

3.2. Proposed NonRigid Representation

We propose to represent the non-rigid transformation φ
with a point-wise combination of a series of rigid transfor-

mations {ψr}
K
r=1:

φ(S) =
K
∑

r=1

wr · ψr(S), (2)

where wr ∈ R
M×1 is the point-wise skinning weight, the

· denotes the point-wise multiplication, and K is the num-

ber of rigid transformations that is much smaller than the

number of points.

For each point, we constrain the weights assigned to all

rigid transformations to satisfy the condition that their sum

equals to 1:

K
∑

r=1

wr(i) = 1, ∀i = 1, 2, · · · ,M. (3)

It degenerates to rigid transformation when K = 1, and it

can represent non-rigid transformation whenK ≥ 2 as each

surface point is influenced by more than one rigid transfor-

mation with different skinning weights. Its representation

ability is gradually enhanced when K becomes larger.

Compared with the deformation graph based representa-

tion, our method enjoys the following benefits:

• Different from deformation graph that defines local

transformation on graph nodes, our proposed model

does not need to construct deformation graph for

each specific surface as the rigid transformation ψr in

Eq. (2) is defined globally for all points on the surface.

• Different from the fixed skinning weights for a given

surface and deformation graph, the skinning weights in

Eq. (2) are learned, and they can be adaptively adjusted

according to different source and target surfaces.
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Figure 2. Illustration of RMA-Net. In the GRU-based framework, the hidden state is initialized (denoted as h0) by extracting a feature

from the source and updated (denoted as hk in the k-th stage) during the recurrent stages. In the k-th stage, we extract the correlation

Ck−1 of the current deformed surface S
k−1 and target surface T . The geometric feature fs of the source surface is extracted once, and it

is concatenated together with the correlation as the input of updating unit in each stage. One rigid transformation ψk and its corresponding

point-wise skinning weight wk

k are regressed from hk.

Such a representation can not only express complex non-

rigid representations, it can also be easily extended to rigid

registration by removing the weights and changing the ad-

dition to multiplication in Eq. (2): φ(S) = ψK ◦ ψK−1 ◦
· · · ◦ ψ1(S).

3.3. Recurrent Update Framework

However, the number of variables in Eq. (2) ({ψr}
K
r=1

and {wr}
K
r=1) is still quite large, including M × K skin-

ning weights and 6×K rigid transformations. Thus, it may

be not easy to predict all variables directly at the same time.

To handle this problem, we propose a recurrent updating

strategy to regress the rigid transformations and skinning

weights in a stage-wise manner. At the k-th stage, the de-

formed point cloud is expressed as:

Sk =
k

∑

r=1

wk
r · ψr(S), (4)

where the point-wise weight of the r-th rigid transforma-

tion at stage k is denoted as wk
r and we always keep the

constraint
k
∑

r=1
wk

r = 1 to be satisfied.

Next we introduce how we recurrently obtain the gradu-

ally deformed point cloud {Sk}Kk=1. At the 1-st stage, our

network predicts a single rigid transformation ψ1 and we

can obtain a transformed point cloud S1 = w1
1 · ψ1(S),

where w1
1 ≡ 1. At the k-th stage when k ≥ 2, the net-

work regresses ψk and wk
k . To satisfy the constraint in

Eq. (3), we can scale the predicted weights at previous

stages ({wk
r}

k−1
r=1 ) with a factor of 1 − wk

k , and thus the

following updating formula can be obtained:

wk
r = (1−wk

k) ·w
k−1
r , 1 ≤ r ≤ k − 1. (5)

It can be verified that Eq. (3) is satisfied at all stages accord-

ing to the updating formula. Accordingly, we can derive

the recurrence formula for the deformed point cloud at each

stage:

Sk = (1−wk
k) · S

k−1 +wk
k · ψk(S). (6)

Based on the above formulations, our network only

needs to predict one rigid transformation and the skinning

weights at each stage, which greatly reduces the difficulty of

learning. In this way, we iteratively deform the point cloud

such that the sequence of deformed point clouds converges

to the target gradually.

4. RMA-Net and Loss

In this section, we give details of our proposed Recur-

rent Multi-view Alignment Network (RMA-Net) and the

loss functions.

4.1. Network Architecture

We adopt a recurrent network to update the deformed

point cloud iteratively. The network includes two key com-

ponents. First, deep features of the input source and target

point clouds are extracted, and their correlations are com-

puted by the dot-product operation. Second, a recurrent

update module is used to implement the iteration process.

Fig. 2 provides an overview of our full framework.

Feature Extraction and Correlation Computation. Sim-

ilar to [53], we first extract deep features from the input

point clouds Sk−1 and T with DGCNN [55] and Trans-

former [47]. The features are of size M × C and N × C,

where C is the feature channels. Then a correlation tensor

is computed with the dot-product operation between every

feature vector in these two features. The correlation size

is M × N . A top-K operation is next performed on the

last dimension of the correlation, which removes the de-

pendence on the number of target points N . The resulting

correlation has the same dimension as the source feature.
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The concatenation of source feature, global target feature

(average-pooling and expansion of the target feature), and

the correlation is used during the update, denoted as Ck.

GRU-based Update. We adopt a GRU [11] to implement

the recurrent update process in Sec. 3.3. Although the over-

all architecture is similar to RAFT [44], a recent work for

optical flow estimation, there are several important differ-

ences. First, we focus on irregular point clouds other than

the regular pixels, and thus the same architecture is not ap-

plicable here. Second, our key contribution is a new non-

rigid representation, and the recurrent framework is only

used for ease of optimization. Besides, the updating for-

mula in Eq. (6) is clearly different from RAFT.

Before the first iteration, we also extract an initial hid-

den state h0 and a geometric feature fs from the source

point cloud with an additional DGCNN. At the k-th stage,

we concatenate the geometric feature fs and the correlation

Ck−1 together xk = [Ck−1, fs] as the input of the update

unit. The fully connect layers in GRU are replaced with

MLPs. From xk and hk−1, following [44], the GRU obtains

the updated hidden state hk−1. Then, hk is passed through

two MLPs to predict wk
k and ψk. The new deformed point

cloud Sk can be obtained according to Eq. (6).

4.2. Loss Function

The key to a successful unsupervised learning frame-

work is to design suitable loss functions. Although Cham-

fer distance (CD) and Earth Mover’s distance (EMD) are

commonly used metrics to measure the distance of surface

shapes, they depend on the closest point or the best trans-

porting flow, causing the high failure rate when deforming

the source surface to the target by minimizing CD or EMD.

One example is shown in Fig. 3, where we overfit the model

on one pair with different loss functions. Both CD and

EMD loss functions are unable to deform the source point

cloud to the target accurately.

In this paper, instead of directly searching for the clos-

est point or the best transporting flow, we construct the loss

function based on the metric of shape similarity [9, 16, 26,

42]. Similar to the Light Field Descriptor (LFD) [9], we

project the 3D shapes onto multi-view 2D planes and mea-

sure the similarity between the deformed shape and the tar-

get via the projected 2D depth and mask images. To make

the whole process trainable, we design a differentiable ren-

dering method to render the point cloud to 2D depths and

masks. Besides, we design regularization terms for the

transformation variables and skinning weights. In the fol-

lowing, for convenience, we use S̃ to denote the deformed

shape Sk at stage k.

Depth Loss. For a point cloud P and a given viewing an-

gle v, we transform P to the camera coordinate system as

Pv and compute the depth map D(Pv). We first collect

the points in Pv whose 2D projection are in the kD × kD

Source/Target          CD                     EMD                  Ours

Figure 3. Comparison of different loss functions by over-fitting

one sample pair. The results are shown in orange. From the source

(red) to the target (blue), both CD and EMD loss terms tend to pull

the left leg to the right leg, while our loss can successfully deform

to the target shape.

window of pixel pi on D(Pv), and define the set of these

points as N (pi). Then, the minimal and maximal z-value

of N (pi) are denoted as mini,maxi. As shown in (b) and

(c) of Fig. 4, we remove the points whose z-value exceeds

(mini +maxi)/2 from N (pi) since they may be from the

invisible part, and we denote the visible part of N (pi) as

V(pi). For gj ∈ V(pi), we set the weight wij as:

wij =
exp(−ρij/γ)

∑

gm∈V(pi)
exp(−ρim/γ)

, (7)

where ρij denotes the squared distance between pi and 2D

projection of gj , γ controls the sharpness of the depth map.

In this way, the depth value di of pixel pi on D(Pv) is

computed by a weighted average of the z-value of points

in V(pi):

di =
∑

gj∈V(pi)
wijg

z
j , (8)

where gzj denotes the z-value of points gj .

For point cloud S̃ and T , we compute their depth as

D(S̃v) and D(T ). The loss between these paired depth

maps is defined as

Ldepth(S̃, T ) = Ev∼V

∥

∥

∥
D(S̃v)−D(Tv)

∥

∥

∥

2

2
, (9)

where V denotes the set of camera views. During back-

propagation, the gradient ∇di at pixel pi on the depth map

D(S̃v) will influence the points in V(pi) via wij in Eq. (7).

Mask Loss. By projecting the 3D surface to the 2D plane,

we can also get its 2D binary mask M(Pv). For each pixel

on M(Pv), the mask value is 1 if its distance to the pro-

jection of Gv is less than a given threshold. Otherwise the

value is 0. After computing the mask of S̃ and T as M(S̃v)
and M(Tv), we define the mask loss as:

Lmask(S̃, T ) = Ev∼V

∥

∥

∥
M(S̃v)−M(Tv)

∥

∥

∥

1
, (10)
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(a) 3D Point Cloud      (b) 2D Projected Points      (c) 2D Visible Points                    (d) Depth Map & Mask

Another View

visibleinvisible

Min

Max

Figure 4. Illustration of the differentiable rendering process from the 3D point cloud to the 2D depths and masks. (a): the input point cloud.

(b): Given the point cloud and camera, we project all the points to the front-view and set the value of the depth map as the z-value of

the projected points. (c): We remove the invisible points around pixel pi based on the depth values of points projected in the pi-centered

window. (d): The depth value of pi is computed by a weighted average of the z-value of visible points projected in the window, and the

mask of the object can also be recovered accordingly.

The back-propagation process of global mask loss can be

computed in the following way. Let ci denotes the value of

pixel pi on M(S̃v), and ∇ci denotes the gradient of ci. The

gradient of point s̃j ∈ S̃v can be calculated as:

∇s̃zj =
∑

pi∈M(S̃v)

∇ci ·
exp(−ρ̃ij/γ̃)

∑M

m=1 exp(−ρ̃im/γ̃)
,

where ∇s̃zj denotes the gradient of z-coordinate of s̃j , γ̃
controls the sharpness of this loss and ρ̃ij denotes the

squared distance between pi and the projection (to the x0y
plane) of s̃j . Since we adopt the soft rasterization strategy,

the mask loss at one pixel can influence all points of S̃ .

As Rigid As Possible Loss. The edge length of the de-

formed point cloud should be close with the original edge

length via the following term:

Larap(S̃) =
∑

(p,q)∈E

(‖p− q‖2 − dij)
2, (11)

where E is the edge set which is constructed by KNN in the

input point cloud S , and dij is the distance of vertex pair in

the input point cloud.

Regularization Terms. Rigid transformation ψk includes

rotation matrix Rk and translation vector tk. We constrain

that the norm of translation vector as:

Ltran(tk) = ‖tk‖
2
2. (12)

Considering that the non-rigid deformation may have jumps

like the joints of human body, we add one sparsity term on

the skinning weights by:

Lsparse(w
k
k) = ‖wk

k‖1. (13)

The total loss at stage k is constituted by all above terms:

Lk =Ldepth(S
k, T ) + β1Lmask(S

k, T )

+ β2Larap(S
k) + β3Ltran(tk) + β4Lsparse(w

k
k)

(14)

The final loss function is a combination of all stages:

L =

K
∑

i=1

γK−iLi, (15)

where γ is an exponentially increasing weights for later

stages.

5. Experiments

In this section, we give the implementation details, abla-

tion studies, results, and comparisons.

5.1. Implementation Details

Dataset. We first test on a dataset including four types of

deformable objects, including clothed body, naked body,

cats, and dogs, with a total of 155474 training pairs and

7688 testing pairs. For the clothed and naked body data, we

use the HumanMotion [49] and SURREAL [46] datasets.

The cats and dogs are from the TOSCA [7] dataset. We also

test on the FaceWareHouse dataset [8] which contains face

shapes of 150 different individuals with 47 different expres-

sions. We randomly select 20000 and 500 pairs for training

and testing, where each pair of source and target are differ-

ent expressions of two randomly selected people. We also

test our method on raw scanned data in DFAUST [4] dataset

(2732 training pairs and 100 testing pairs), which contains

natural noise, outliers and incompleteness. Moreover, to

verify that our model can be generalized to the rigid regis-

tration task, we train a rigid version of our network on the

ModelNet40 dataset [56]. We split each category into 9 : 1
for training and testing. Each extracted point cloud is firstly

centered and then scaled into the sphere with radius 0.5. To

construct pairs, we use random rotation angles at the range

of [0, 45◦] and translations at the range of [−0.5, 0.5].
Implementation Details. For the non-rigid registration ex-

periments on deformable objects and human faces, the num-

ber of extracted points are 2048 and 5334, respectively. For

the raw scanned data, we sample 2048 control points to

feed into the network and then warp the whole raw scan-

ning model by Radial basis function interpolation. For the

10302



Loss #View #Stage CD EMD

Chamfer - 7 1.652 4.962

EMD - 7 3.241 4.542

Depth 52 7 0.701 0.431

Depth+Mask 52 7 0.691 0.426

Depth+Mask 72 7 0.618 0.396

Depth+Mask 92 7 0.600 0.386

Depth+Mask 112 3 10.717 12.404

Depth+Mask 112 4 4.571 5.234

Depth+Mask 112 5 2.329 3.116

Depth+Mask 112 6 1.110 0.951

Depth+Mask 112 7 0.599 0.386

Table 1. Results of the ablation study, with metrics CD(×10−4)

and EMD(×10−3).

rigid registration experiments, the number of points is 1024.

For FaceWareHouse data, we crop the front face from the

original topology and directly take the 5334 vertices as the

point cloud. In the non-rigid registration experiments, the

weights of each term in Eq. (14) are set as 0.1, 0.01, 0.1, 10
and γ = 1.0. For rigid registration, we only use the first

two terms with β1 = 0.1 and γ = 0.8. We adopt a warm-up

training strategy to train the model. At the start, the network

is trained with only 1 recurrent stage. Every 5K iterations

of training, we increase the number of recurrent stages by

1 until the number of stages reaches 7. In the three exper-

iments, the total number of training iterations are 100K,

50K, and 50K, respectively, and the batch sizes are all 4.

All the training and testing is conducted on a workstation

with 32 Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz,

128GB of RAM, and four 32G V100 GPUs. For input point

cloud with different numbers 1024, 2048 and 5334, the in-

ference time for 7 recurrent stages takes 0.14s, 0.25s and

0.55s, respectively. The camera views of the multi-view

loss terms are sampled from the spherical coordinate of the

unit sphere, as shown in Fig. 1.

Evaluation Metrics. We evaluate the registration perfor-

mance with CD and EMD. For FaceWareHouse dataset, we

further compute the point-wise mean squared error (MSE)

as they share the same topologies. For rigid registration, we

evaluate the transformation with root mean squared error

(RMSE) and mean absolute error (MAE), as in [53].

5.2. Ablation Study

We first conduct ablation studies to demonstrate the

importance of each component. Specifically, we use the

dataset of four categories of deformable objects as the

benchmark in this part. The ablation studies are designed

for the loss function, the number of views, and the number

of recurrent stages. Tab. 1 shows the quantitative results.

As the second row shows, the registration errors of Cham-

fer Distance loss and Earth-Mover Distance loss are still

quite large even it is already the best result we have tried

Source/Target      CPD         BCPD       CPD-Net      PR-Net        Ours

Figure 5. Comparison on the deformable objects. The source point

cloud, target point cloud and deformed point cloud are visualized

by red, blue and orange respectively.

with different parameters. With our proposed depth loss, the

registration result is significantly improved (the 3-rd row).

The additional mask loss (the 4-th row) brings further per-

formance gains. We also gradually increase the number of

views (the 4, 5, 6, 11-th rows) and finally choose 112 views.

With the view number fixed to 112, we show the results of

different recurrent stages in the 7 − 11-th rows. It can be

observed that the registration accuracy continues to get bet-

ter with more iterations. In order to balance the registration

accuracy and computation speed, we finally use 7 stages.

5.3. Results and Comparisons

5.3.1 Registration for deformable objects

We compare with the classic optimization method

CPD [30], its recently improved version BCPD [20], and

learning based methods CPD-Net [51] and PR-Net [50].

Dataset Metric Input CPD BCPD CPD-Net PR-Net Ours

Deform
CD 37.246 4.126 2.375 14.678 29.457 0.599

EMD 25.952 7.853 5.478 21.696 25.192 0.386

Face
EMD 1.230 1.168 0.979 1.054 1.304 0.578

MSE 21.469 9.568 8.013 13.752 14.575 5.245

Table 2. Results on the deformable objects dataset (denoted as De-

form for short, with metrics CD(×10−4) and EMD(×10−3)) and

the FaceWareHouse dataset (denoted as Face for short, with met-

rics EMD(×10−2) and MSE(×10−4)).

Tab. 2 shows the performance of different methods on

the deformable objects and the FaceWareHouse dataset.

Fig. 5 shows the qualitative comparisons. Our method sig-

nificantly outperforms previous methods, both qualitatively

and quantitatively. The optimization based methods CPD

and BCPD can not handle large-scale non-rigid deforma-

tion, and thus they can not perform well on the challeng-

ing test set. CPD-Net can not handle the deformation, ei-

ther, which should be caused by the large freedom of the
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Source        CPD      BCPD   CPD-Net   PR-Net    Ours       Target      

Figure 6. Comparison on FaceWareHouse dataset. For better visu-

alization, we display the surface model with mesh connectivities.

point-wise displacement vector. Although PR-Net reduces

the freedom, the spline-based representation can not express

the deformation well, leading to poor results. In compari-

son, our method performs best thanks to our well-designed

non-rigid representation, network structure, and loss terms.

5.3.2 Registration for human faces

Besides testing on coarse scale non-rigid deformation sam-

ples, we also test and compare with other methods on fine

scale deformation samples. We try to register one face

shape from a person with expression to another face shape

from another person with a different expression. Consider-

ing that we only deal with the front face, we put all camera

views on the front side of the face in this experiment.

Tab. 2 shows the performance of different methods on the

FaceWareHouse dataset. Fig. 6 shows the qualitative com-

parisons. Our method performs considerably better than all

previous methods, not only on EMD and MSE metrics but

also on the visual quality of the registration results. In the

first row of Fig. 6, our method is the only one that is able to

deform the open mouth to closed. Moreover, in the second

row, our result is the only one that can make the eyes open,

demonstrating that our method has a better ability to capture

the high-precision face deformation than previous methods.

5.3.3 Registration for raw scanned data

We also train and test on the raw scanned dataset DFaust [4]

and compare with 3D-Coded [18]. Fig. 7 shows one com-

parison result. The average CD (×10−4) distance between

the testing set of the source, the 3D-Coded results and

our results with the target surface are 9.02, 0.43, 0.24, re-

spectively. Although some defects are contained in this

dataset, our method still achieves satisfactory results and

better preserves the geometric structures and details than

3D-coded [18]. This experiment shows that our method still

works well for the real scanned data.

5.3.4 Rigid registration

Our full framework can also be easily extended to perform

the rigid registration task. In this experiment, we convert

our network into a rigid version by predicting a single rigid

Source            Target                  3D-Coded                         Ours

Figure 7. Comparison with 3D-Coded on the DFAUST dataset.

transformation at each stage (as discussed in Sec. 3.2) and

test the performance on the ModelNet40 dataset.

The comparison methods include local optimization

based method ICP [3], two global optimization based

method Go-ICP [57] and FGR [64], and learning based

method DCP [53]. DCP [53] is supervised by the ground

truth rotation and translation, and trained with the same

dataset in our own network. For a fair comparison with

DCP, we also train another variant of our RMA-Net that

uses ground truth as supervision except training a model

in an unsupervised manner (same as previous experiments).

Our model is trained with 7 stages, but can be used with

arbitrary stages at inference time. In our experiments, we

use 10 stages during testing. Tab. 3 shows the rigid reg-

istration performance of different methods on ModelNet40

dataset. It can be observed that our method performs better

than previous methods in the rigid case, which demonstrates

the general applicability of our proposed framework.

Metric RMSE(R) MAE(R) RMSE(t) MAE(t)

ICP [3] 19.041 7.585 0.133 0.154

Go-ICP [57] 13.086 1.891 0.060 0.026

FGR [64] 10.143 1.928 0.048 0.030

DCP [53] 2.057 1.313 0.013 0.023

Ours (unsupervised) 1.287 0.344 0.008 0.007

Ours (supervised) 0.735 0.265 0.006 0.009

Table 3. Comparison on the ModelNet40 dataset.

6. Conclusion

We have presented RMA-Net, an unsupervised learning

framework for non-rigid registration. The main contribu-

tions of RMA-Net lie in two aspects. First, We propose a

new non-rigid representation, which is learned with a recur-

rent network. Second, we designed a multi-view alignment

loss function to guide the network training without ground

truth correspondence as supervision. Extensive ablation

studies have verified the effectiveness of each component

in our full framework. We also outperform previous state-

of-the-art non-rigid registration methods by a large margin,

demonstrating the superiority of our proposed method.
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Zhuwen Li, Vladlen Koltun, and Thomas Brox. What do

single-view 3d reconstruction networks learn? In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3405–3414, 2019. 3

[44] Zachary Teed and Jia Deng. RAFT: recurrent all-pairs field

transforms for optical flow. In Computer Vision - ECCV 2020

- 16th European Conference, Glasgow, UK, August 23-28,

2020, Proceedings, Part II, pages 402–419, 2020. 5

[45] Federico Tombari, Samuele Salti, and Luigi di Stefano.

Unique signatures of histograms for local surface descrip-

tion. In Kostas Daniilidis, Petros Maragos, and Nikos Para-

gios, editors, European Conference on Computer Vision

(ECCV), volume 6313 of Lecture Notes in Computer Sci-

ence, pages 356–369, 2010. 1

[46] Gül Varol, Javier Romero, Xavier Martin, Naureen Mah-

mood, Michael J. Black, Ivan Laptev, and Cordelia Schmid.

Learning from synthetic humans. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

4627–4635, 2017. 6

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. In Annual Con-

ference on Neural Information Processing Systems, pages

5998–6008, 2017. 4

[48] Sundar Vedula, Simon Baker, Peter Rander, Robert T.

Collins, and Takeo Kanade. Three-dimensional scene flow.

IEEE Trans. Pattern Anal. Mach. Intell., 27(3):475–480,

2005. 1

[49] Daniel Vlasic, Ilya Baran, Wojciech Matusik, and Jovan

Popovic. Articulated mesh animation from multi-view sil-

houettes. ACM Trans. Graph., 27(3):97, 2008. 6

[50] Lingjing Wang, Jianchun Chen, Xiang Li, and Yi Fang. Non-

rigid point set registration networks. CoRR, abs/1904.01428,

2019. 1, 3, 7

[51] Lingjing Wang and Yi Fang. Coherent point drift networks:

Unsupervised learning of non-rigid point set registration.

CoRR, abs/1906.03039, 2019. 1, 3, 7

[52] Weiyue Wang, Duygu Ceylan, Radomı́r Mech, and Ulrich

Neumann. 3dn: 3d deformation network. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 1038–1046, 2019. 3

[53] Yue Wang and Justin Solomon. Deep closest point: Learn-

ing representations for point cloud registration. In IEEE In-

ternational Conference on Computer Vision (ICCV), pages

3522–3531, 2019. 1, 2, 4, 7, 8

[54] Yue Wang and Justin M. Solomon. Prnet: Self-supervised

learning for partial-to-partial registration. In Annual Con-

ference on Neural Information Processing Systems (NIPS),

pages 8812–8824, 2019. 2

[55] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph CNN for learning on point clouds. ACM Trans.

Graph., 38(5):146:1–146:12, 2019. 4

[56] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 1912–1920, 2015. 6

[57] Jiaolong Yang, Hongdong Li, Dylan Campbell, and Yunde

Jia. Go-icp: A globally optimal solution to 3d ICP point-

set registration. IEEE Trans. Pattern Anal. Mach. Intell.,

38(11):2241–2254, 2016. 2, 8

[58] Yang Yang, Sim Heng Ong, and Kelvin Weng Chiong Foong.

A robust global and local mixture distance based non-rigid

point set registration. Pattern Recognit., 48(1):156–173,

2015. 2

10306



[59] Yuxin Yao, Bailin Deng, Weiwei Xu, and Juyong Zhang.

Quasi-newton solver for robust non-rigid registration. In

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 7597–7606, 2020. 3

[60] Zi Jian Yew and Gim Hee Lee. 3dfeat-net: Weakly super-

vised local 3d features for point cloud registration. In Euro-

pean Conference on Computer Vision (ECCV), pages 630–

646, 2018. 2

[61] Zi Jian Yew and Gim Hee Lee. Rpm-net: Robust point

matching using learned features. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

11821–11830, 2020. 1, 2

[62] Andy Zeng, Shuran Song, Matthias Nießner, Matthew

Fisher, Jianxiong Xiao, and Thomas A. Funkhouser.

3dmatch: Learning local geometric descriptors from RGB-

D reconstructions. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 199–208, 2017. 2

[63] Shengyu Zhao, Yue Dong, Eric I-Chao Chang, and Yan Xu.

Recursive cascaded networks for unsupervised medical im-

age registration. In IEEE International Conference on Com-

puter Vision (ICCV), pages 10599–10609, 2019. 1

[64] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Fast global

registration. In European Conference on Computer Vision

(ECCV), pages 766–782, 2016. 8

10307


