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Figure 1. Removing Diffraction Artifacts from Under-Display Camera (UDC) images. The major degradations caused by light diffrac-

tion, e.g., flare, blur, and haze, could significantly affect the visual quality of UDC images. Our method effectively restores fine details and

suppresses the diffraction effects of UDC images.

Abstract

Recent development of Under-Display Camera (UDC)

systems provides a true bezel-less and notch-free viewing

experience on smartphones (and TV, laptops, tablets), while

allowing images to be captured from the selfie camera em-

bedded underneath. In a typical UDC system, the mi-

crostructure of the semi-transparent organic light-emitting

diode (OLED) pixel array attenuates and diffracts the in-

cident light on the camera, resulting in significant image

quality degradation. Oftentimes, noise, flare, haze, and blur

can be observed in UDC images. In this work, we aim to an-

alyze and tackle the aforementioned degradation problems.

We define a physics-based image formation model to bet-

ter understand the degradation. In addition, we utilize one

of the world’s first commodity UDC smartphone prototypes

to measure the real-world Point Spread Function (PSF) of

the UDC system, and provide a model-based data synthesis

pipeline to generate realistically degraded images. We spe-

cially design a new domain knowledge-enabled Dynamic

Skip Connection Network (DISCNet) to restore the UDC

images. We demonstrate the effectiveness of our method

through extensive experiments on both synthetic and real

UDC data. Our physics-based image formation model and

proposed DISCNet can provide foundations for further ex-

ploration in UDC image restoration, and even for general

diffraction artifact removal in a broader sense. 1

1. Introduction

The consumer demand for smartphones with bezel-free,

notch-less display has sparked a surge of interest from the

phone manufacturers in a newly-defined imaging system,

Under-Display Camera (UDC). Besides smartphones, UDC

also demonstrates its practical applicability in other scenar-

ios, i.e., for videoconferencing with UDC TV, laptops, or

tablets, enabling more natural gaze focus as they place cam-

eras at the center of the displays [16]. As Figure 2 shows,

a typical UDC system has the camera module placed un-

derneath and closely attached to the semi-transparent Or-

ganic Light-Emitting Diode (OLED) display. Although the

display looks partially transparent, the regions where the

light can pass through, i.e. the gaps between the display pix-

els, are usually in the micrometer scale, which substantially

diffracts the incoming light [23], affecting the light propa-

1Codes and data are available at https://jnjaby.github.io/projects/UDC.
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Figure 2. (a) A close-up shot of the UDC OLED on the ZTE Axon

20 phone. The UDC OLED panel has reduced pixel density in the

area above the camera, allowing for more transparency. (b) The

schematic of the UDC system. The light emitted from a point light

source is modulated by the OLED and camera lens, before being

captured by the sensor. (c) A simulated example of our image for-

mation model with a real-captured PSF. The 2D PSF is brightened

in the figure to visualize the structured sidelobe patterns.

gation from the scene to the sensor. The UDC systems intro-

duce a new class of complex image degradation problems,

combining strong flare, haze, blur, and noise (see top row

in Figure 1). In the first attempt [47] to address the UDC

image restoration problem, the authors proposed a Monitor-

Camera Imaging System (MCIS) to capture paired data and

used the image formation to synthesize the Point Spread

Function (PSF) of two types of OLED display. However,

there are several drawbacks of this pioneer work, includ-

ing 1) inaccurate PSF due to a mismatch between the ac-

tual and the synthetic PSF, 2) lacking proper high dynamic

range (HDR) in the MCIS-captured data, missing realistic

UDC degradation, 3) prototype UDC differs significantly

from actual production UDC, 4) missing real-world evalua-

tion on non-MCIS data, and 5) proposed network does not

fully utilize domain knowledge. We examine the drawbacks

in further details in Section 2.

In this work, we aim to address the aforementioned is-

sues. We first present a realistic image formation model and

measurement protocol considering proper dynamic range

for the scenes and camera sensor, and restore the real-world

degradation in the actual UDC images. To this end, we

experiment with one of the world’s first production UDC

device, ZTE Axon 20, which incorporates a UDC system

into its selfie camera. Note that we aim to analyze and in-

vestigate the artifacts caused by diffraction effects, rather

than propose a product-ready solution for ZTE phone cam-

era. Our method is versatile and applicable to other UDC

device, or more generally, other diffraction-limited imag-

ing systems, e.g., microscopy imaging, pinhole camera. We

devise an imaging system to directly measure the PSF of

the UDC device (see Section 3.2) with a point source. As

shown in Figure 2, due to the diffraction of the display, the

resulting PSF has some special characteristics: it has large

spatial support, strong response at the center, and long-tail

low-energy sidelobes. With the measured PSF, we refor-

mulate the image formation model to account for realistic

flare, haze, and blur, which were missing [46, 47] due to the

limited dynamic range of scenes. Then, we develop a data

simulation pipeline based on the image formation model by

using HDR images to approximate real scenes. Addition-

ally, we capture real images using the UDC phone’s selfie

camera to validate our simulated data and evaluate the per-

formance of our restoration network. As shown in Figure 1,

our simulated and real data reveal similar degradation, espe-

cially in those high-intensity regions. Specifically, flare can

be observed nearby strong light sources, where highlights

are spread into neighboring low-intensity areas in structured

diffraction patterns.

To restore the UDC images, we propose a DynamIc Skip

Connection Network (DISCNet) that incorporates the do-

main knowledge of the image formation model into the net-

work designs. In particular, sensor saturation breaks the

shift-invariance of the single-PSF-based convolution, lead-

ing to spatially-variant degradation. This motivates us to

design a dynamic filter network to dynamically predict fil-

ters for each pixel. In addition, due to large support of PSF,

we propose a multi-scale architecture and perform dynamic

convolution in the feature domain to obtain a larger recep-

tive field. Also, a condition encoder is introduced to utilize

the information of PSF.

In summary, our contributions are as follows:

• We reformulate the image formation model for UDC

systems by considering dynamic range and saturation,

which takes into account the diffraction flare com-

monly seen in UDC images.

• We utilize the first UDC smartphone prototypes to

measure the real-world PSF. The PSF is used as part

of a model-based data synthesis pipeline to generate

realistic degraded images.

• We devise a DynamIc Skip Connection Network (DIS-

CNet) that incorporates the domain knowledge of the
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UDC image formation model. Experimental results

show that it is effective for removing diffraction image

artifacts in UDC systems.

2. Related Work

UDC Imaging. Several previous work [22, 31] character-

ized and analyzed the diffraction effects of UDC systems.

Kwon et al. [13] modeled the edge spread function of trans-

parent OLED. Qin et al. [23] discussed pixel structure de-

sign that can potentially reduce the diffraction. While all

these works provide good insights into UDC imaging sys-

tems, none of them tackles the image restoration problem.

Additionally, several works [8, 29, 28] proposed camera-

behind-display design for enhanced 3D interaction with flat

panel display. Though low-resolution images are the by-

products of those prototype interaction systems, given the

extremely poor image quality, they are unsuitable for daily

photography, which is the focus of this work.

UDC Restoration. To our best knowledge, [47] and the

subsequent ECCV challenge [46] are the only works that

directly address the problem of UDC image restoration. In

[47], the authors devised an MCIS to capture paired images,

and solve the UDC image restoration problem as a blind

deconvolution problem using a variant of UNet [25]. While

the work pioneers the UDC image restoration problem, it

suffers from several drawbacks.

First, while MCISs are commonly used in the compu-

tational imaging community [39, 1] to capture the system

PSF or acquire paired image data, most commodity monitor

lacks the high dynamic range which is a must to model re-

alistic diffraction artifacts in UDC systems. As a result, the

PSFs they used have incomplete side lobes, and the images

have less severe artifacts, e.g., blur, haze, and flare. In our

work, we consider HDR in data generation and PSF mea-

surement to allow us to tackle real-world scenes properly.

Secondly, the authors use regular OLED manually covering

a camera in their setup, instead of an actual rigid UDC as-

sembly, and perform experiments and evaluations on quasi-

realistic data. As a result, any slight movements, rotation, or

tilt of the display with respect to the sensor plane will cause

variational PSFs, preventing their network from being ap-

plied to handle variational degradations without the knowl-

edge of the PSF kernel. To minimize the domain gap, we

use one of the world’s first production UDC device for data

collection, experiments, and evaluations. Lastly, though the

authors captured and used the PSF in data synthesis, they

formulated the UDC image restoration as a blind deconvo-

lution problem through a simple UNet, without explicitly

utilizing the PSFs as useful domain knowledge. In contrast,

we leverage the PSF as important supporting information in

our proposed DISCNet.

Non-blind Image Restoration. In the context of non-

blind image restoration, a large body of works has ex-

erted great effort to tackle this ill-posed problem. Prior

to the deep-learning era, early deconvolution approaches

[24, 20, 14, 4, 35] imposed prior knowledge to constrain

the solution space since the noise model is unknown. Then,

several works [26, 36, 41] focused on establishing the

connection between optimization-based deconvolution and

a neural network for non-blind image restoration. Also,

Shocher et al. [27] employed a small image-specific net-

work to deal with various degradations of a single image.

Zhang et al. [42] proposed SRMD to handle multiple degra-

dations with one network. Gu et al. [5] proposed SFTMD

and Iterative Kernel Correction (IKC) to iteratively correct

the kernel code of degradations. Additionally, [3, 40, 44]

used Generative Adversarial Networks (GANs) to tackle

different degradations. Similar to SRMD [42], we take the

PSF kernel as an additional condition but use it in a differ-

ent way, i.e., feed it into a condition encoder to facilitate

dynamic filter generation.

Dynamic Filter Network. Recent years have witnessed

great success in dynamic filter networks employed in a wide

range of vision applications to handle spatially-variant is-

sues. Jia et al. [9] firstly exploited dynamic network to gen-

erate an individual kernel for each pixel conditioned on the

input image. Since then, this module has proven to pro-

vide significant benefits for applications, such as video in-

terpolation [18, 19], denoising [2, 17, 37], super-resolution

[10, 38, 33], and video deblurring [45]. In addition, Wang

et al. [32] proposed a kernel prediction module serving as a

universal upsampling operator. Most previous approaches,

however, can not be directly applied to UDC image restora-

tion, because they either apply predicted filters in the im-

age domain or mainly focus on a special operation. In this

work, we construct multi-scale filter generators and adopt

the dynamic convolution in the feature domain to handle

degradation with large-support and long-tail PSF.

3. Image Formation Model and Dataset

3.1. Image Formation Model

We consider a real-world image formation model for

UDC that suffers from several types of degradation, includ-

ing diffraction effects, saturation, and camera noise. This

degradation model is given by

ŷ = φ[C(x ∗ k + n)], (1)

where x represents the real scene irradiance that has a high

dynamic range (HDR). k is the known convolution kernel,

commonly referred to as the Point Spread Function (PSF), ∗
denotes the 2D convolution operator, and n models the cam-

era noise. To model saturation derived from the limited dy-

namic range of digital sensor, we apply a clipping operation

C(·), formulated by C(x) = min(x, xmax), where xmax is

a range threshold. A non-linear tone mapping function φ(·)
is used to match the human perception of the scene.
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Figure 3. Comparison of PSF energy for UDC and normal cam-

era. The PSF is brightened to visualize the structured sidelobe

patterns. Due to the finite aperture size and manufacturing imper-

fections, the PSF of a real normal camera (Bottom left) will be a

blur kernel of some size, rather than a perfect point.

3.2. PSF Measurement

In Figure 2, the optical field US(p, q) captured by the

sensor given a unit amplitude point source input can be ex-

pressed as

US(p, q) =

{[

exp

(

iπr2

λz1

)

· t(p, q)

]

∗ exp

(

iπr2

λd

)

· exp

(

−iπr2

λf

)}

∗ exp

(

iπr2

λz2

)

.

(2)

Here, (p, q) is the 2D spatial coordinates, r2 = p2 + q2, λ
is the wavelength, f is the focal length of the lens, t(p, q) is

the transmission function of the display. z1, d and z2 denote

the distance between the light source and the display, the

distance between the display and the lens, and the distance

between the lens and the sensor, respectively. ∗ denotes the

convolution, and · denotes multiplication. Finally, the PSF

of the imaging system is given by k = |US |
2.

With the exact pixel layout of a certain display, we can

theoretically simulate the PSF of an optical system mod-

ulated by the display. However, we found that although

the simulated and real-measured PSF share a similar shape,

they slightly differ in color and contrast due to model ap-

proximations and manufacturing imperfections (see Sup-

plement for light propagation model and simulated PSF).

Besides, we have no access to the transmission function

t(p, q) for the OLED display we used in this work, whose

pixel structure is unknown due to proprietary reasons.

Therefore, we follow [30] and devise an imaging system

to directly measure the PSF by placing a white point light

source 1-meter away from the OLED display. At this dis-

tance, the size of the point light source is equivalent to one

pixel of the sensor. Hence, this illuminant can be consid-

ered as an impulse input. To capture the entire PSF, includ-

ing the strong main peak and the weak sidelobes, we take

three images successively at different exposures: [1, 1/32,

1/768], which are then normalized to the same brightness

level. Subsequently we pick out all unsaturated pixel val-

ues to fuse into one HDR image. The captured PSF of the

UDC system (Figure 3 top) shows structured patterns: 1)

the response at the center, denoted as main peak, is very

strong and has greater energy with an order of magnitude.

2) Compared to the PSF of a normal camera, it has larger

spatial support (over 800× 800) and spike-shaped long-tail

sidelobes whose energy decreases exponentially. 3) In the

tail regions of the sidelobe, we can an observe obvious color

shift. To summarize, the PSF of UDC has several special

characteristics compared to regular blur kernel, which mo-

tivates a simulation based on HDR images.

Compared with the UDC image formation model de-

scribed in [47], our model is closer to the real situation in the

following two aspects. First, the objects x that we consid-

ered are real scenes with high dynamic range. Since the PSF

of UDC has a strong response at the center but vastly lower

energy at long-tail sidelobes, only when convolved with suf-

ficiently high-intensity scenes, these spike-shaped sidelobes

can be amplified to be visible (flares) in the degraded im-

age. Hence, images captured by UDC systems in real scenes

will exhibit structured flares near strong light sources. The

imaging system in [47], however, cannot model this degra-

dation, because it captures images displayed on an LCD

monitor, which commonly has limited dynamic range. We

demonstrate in Supplement that if we clip the same scene

from high dynamic range to low dynamic range, these flares

caused by diffraction become invisible. Second, due to the

high dynamic range of the input scene, the digital sensor

(usually 10-bit) will inevitably get saturated in real applica-

tions, resulting in an information loss. This factor should be

considered in the image formation model as well.

3.3. Data Collection and Simulation

Simulated Data. To generate the synthetic data, we gath-

ered 132 HDR images with large dynamic ranges from

HDRI Haven dataset2. Each HDR panorama image is a

360-degree panorama of resolution 8192×4096. We first re-

projected these panorama images back to perspective view

and then cropped them into 800× 800 patches. In this way,

we got a total of 2016 subimages for training and 360 for

testing. For each of the crops, we simulated the correspond-

ing degraded image using Eqn. 1, where the PSF calibrated

in Section 3.2 is used as the kernel k. Refer to the Supple-

mental Material for more details.

Real Data. For each real scene, we captured three images

2https://hdrihaven.com/hdris/.
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of different exposures: [1, 1/4, 1/16] using ZTE Axon 20

phone, and then combine them into one HDR image. To

ensure the linearity of the data, we directly used the raw

data after HDR fusion, without any non-linear processing.

4. Dynamic Skip Connection Network

4.1. Motivation

We treat UDC image restoration as a non-blind image

restoration problem, where a degraded image {ŷi} and the

ground-truth degradation (PSF) {ki} are given to restore the

clear image {xi}. In general, with the known convolution

kernel, non-blind restoration establishes the upper bound

for blind restoration, where the kernel needs to be estimated.

Despite claiming our method as non-blind, we note that it

can be used towards blind UDC image restoration by incor-

porating any PSF estimation algorithm.

Traditionally, non-blind image restoration is solved by

classical deconvolution, e.g., Wiener filter [20], which have

a rigorous assumption on the linearity of the system. UDC

artifacts occur in HDR scenes, where the sensor is over-

saturated in high-intensity area, breaking the linearity of

the system and losing the information within. Additionally,

traditional deconvolution do not consider extremely large

kernels (800 × 800), thus causing serious ringing and halo

artifacts (Figure 5 and Figure 6). Moreover, deep learning-

based methods could leverage more data to learn restoration

and require only one forward pass during inference. In this

regard, we use a network to reconstruct x̂i = φ(xi), which

suggests a recovery from ŷ to x̂ in the non-linear tone-

mapped domain, yielding triplet set {ŷi, ki, x̂i}. Such opti-

mization in the tone-mapped domain gives more emphasis

to darker pixels and encourages the balance of restoration

in different regions.

Moreover, the image formation model in Eqn. 1 assumes

a shift-invariant 2-D convolution. Now in the tone-mapped

domain with non-linear sensor saturation, such assumption

no longer holds, since the PSF’s shape and intensity can be

variant based on the input pixel and its neighborhood at the

corresponding location. For example, the OLED diffracting

saturated highlights into neighboring unsaturated areas mo-

tivates an adaptive recovery of clipped information from the

nearby areas. Inspired by recent success of Kernel Predic-

tion Network (KPN) [9, 17, 18, 45], we propose DynamIc

Skip Connection Network (DISCNet), which dynamically

generates filter kernel at each pixel and applies them to dif-

ferent feature spaces at different network layers with skip

connections. This network is conditioned on two inputs: 1)

the PSF that provides domain knowledge about the image

formation model, and 2) the degraded image that provides

light intensity and neighborhood context information to fa-

cilitate a spatially-variant recovery. We demonstrate the ef-

fectiveness of the coupled conditions in Section 5.2.

For dynamic convolution, directly applying the predicted

filters in the image domain like most existing KPN-based

approaches is not best suited for UDC image restoration,

because the PSF in UDC has large support and long-tail

side lobes (see Figure 3). As discussed in [36], such an

inverse convolution process with a large PSF can only be

well approximated in image domain with sufficiently large

kernels (larger than 100), while the size of dynamic filters is

typically far smaller (e.g. 5 or 7). Therefore, we propose to

apply dynamic convolution in the feature domain. On top of

that, we construct a multi-scale architecture, where the filter

generator at each scale predicts dynamic filters separately,

to further enlarge the spatial support of the learned filters.

4.2. Network Architecture

As shown in Figure 4, our network comprises a restora-

tion branch and a DynamIc Skip Connection Network (DIS-

CNet). The restoration branch learns to extract features

and restore the final clean image. DISCNet is employed

to tackle various degradations and transform and refine the

features extracted from the restoration branch.

Training with Various Degradations. Suppose the de-

graded image ŷi is of shape H × W × C, where H , W ,

C denote the height, width, and the number of channels

of images. Following [5], we project the PSF onto a b-
dimensional vector, referred to as kernel code, by Principal

Component Analysis (PCA) to reduce computational com-

plexities. The kernel code is then stretched into degradation

maps of size H×W×b and concatenated with the degraded

image to get the condition maps of size H ×W × (b+ C)
, which are then fed into the DISCNet. In this paper, we

empirically set b = 5.

Restoration Branch. This branch builds upon an encoder-

decoder architecture with skip connections to restore the

degraded images. Specifically, the encoder contains three

convolutional blocks, each of which has a 3 × 3 convolu-

tion layer with stride 2, a LeakyReLU [6] layer, and two

residual blocks [7], extracting features E1, E2, E3 at three

different scales. The extracted features are fed into DISC-

Net and transformed into R1, R2, R3, respectively. Simi-

larly, the decoder consists of two convolutional blocks, in-

cluding an up-convolution layer and two residual blocks.

Each convolutional block takes the transformed feature at

its corresponding scale as input and reconstructs the final

tone-mapped sharp images.

DynamIc Skip Connection Network. The proposed DIS-

CNet mainly consists of three designs: condition encoder,

multi-scale filter generator, dynamic convolution.

Given the condition maps as input, the condition encoder

extracts scale-specific feature maps H1, H2, H3 using 3
blocks similar to the encoder of the restoration branch. Al-

though the kernel code maps are globally uniform, the con-

dition encoder could still capture rich information from the
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Figure 4. Illustration of the proposed DISCNet. The main restoration branch consists of an encoder and a decoder, with feature maps

propagated and transformed by DISCNet through skip connections. DISCNet applies multi-scale dynamic convolutions using generated

filters conditioned on PSF kernel code and spatial information from input images.

degraded image with spatial variability and manage to re-

cover saturated information from nearby low-light regions.

Then, the extracted features at different scales are fed

into their corresponding filter generators, where each com-

prises a 3× 3 convolution layer, two residual blocks, and a

1 × 1 convolution layer to expand feature dimension. Par-

ticularly, given the size of dynamic filters s, a filter gen-

erator Gn takes in the extracted feature maps at a spe-

cific scale Hn ∈ R
h×w×c and outputs predicted filters

Fn = Gn(Hn), where the generated filters Fn is of size

h × w × cs2. The filters are then used by a dynamic con-

volution to refine features En. For each pixel (i, j, cm) of

features En ∈ h×w× c, the output feature Rn is given by

Rn(i, j, cm) = 〈Kn(i, j, cm), ϕ(En(i, j, cm))〉, (3)

where Kn(i, j, cm) is a s × s filter reshaped from

Fn(i, j, cm) ∈ R
1×1×s2 . ϕ(·) denotes a s × s patch cen-

tered at position (i, j, cm), and 〈·〉 represents inner product.

The refined feature Rn is then cast to the restoration branch.

5. Experiments

5.1. Implementation Details

Datasets. We train the proposed model with the synthetic

triplet data. To evaluate the effectiveness of DISCNet for

non-blind degradations, we consider rotating PSF, which is

analogous to rotating the display around the optical axis in

imaging systems. To account for variations in the rotation

angle, we build a kernel set in which the angles vary within

(−12, 12) where 0 radian refers to the original PSF. Under

this setting, each degraded image ŷi is simulated using Eqn.

1, with the convolution kernel ki is uniformly sampled from

the kernel set. During training, the subimages are randomly

cropped into 256 × 256 patches. More details about simu-

lation settings can be found in Supplement Material.

Training Setups. We initialize all networks with Kaim-

ing Normal [6] and train them using Adam optimizer [12]

with β1 = 0.9, β2 = 0.999 and θ = 10−8 to minimize a

weighted combination of L1 loss and VGG loss [11]. The

mini-batch size for all the experiments is set to 16. The

learning rate is decayed with a cosine annealing schedule,

where ηmin = 1×10−7, ηmax = 2×10−4, and is restarted

every 2×105 iterations. For all experiments, we implement

our models with the PyTorch [21] framework and train them

using 2 NVIDIA V100 GPUs.

5.2. Ablation Study

In this subsection, we analyze the effectiveness of each

component in DISCNet. The baseline methods (Table 1(a)

and (b)) strip DISCNet in Figure 4. In this case, the restora-

tion branch reduces to a variant of UNet architecture [25],

and E1, E2, E3 are equivalent to R1, R2, R3, respectively.

Then we gradually apply different filter generators and con-

dition maps for ablation studies. We report PSNR, SSIM,

and LPIPS [43] as the evaluation metrics. The FLOPs is

calculated by input size of 800× 800× 3.

Learning Variational Degradations. Comparing Table

1(a) and Table 1(b), we found that our baseline trained on

a dataset with only 1 kernel can easily overfit to single de-

graded dataset but fails to generalize to other degradation

types. In particular, the performance deteriorates seriously

across other datasets, due to the discrepancy between the

assumed PSF and real ones.

Type of Conditions. On top of the baseline network, we
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Table 1. Ablation results on the simulated dataset. Starting from the baseline model, we gradually add each component in our network

to validate their effectiveness. “*” indicates results evaluated on the simulation over single PSF. The best results are highlight.

Method PSF Filter Generators Conditions PSNR* PSNRavg SSIM* SSIMavg

(a) Baseline on 1 kernel Single - - 41.47 38.55 0.9850 0.9742
(b) Baseline on various kernels Variational - - 40.67 40.87 0.9823 0.9833
(c) w/ image conditions Variational Single-scale Image 41.33 41.59 0.9842 0.9851
(d) w/ PSF conditions Variational Single-scale PSF 41.95 42.14 0.9848 0.9857
(e) w/ image & PSF conditions Variational Single-scale Image + PSF 42.60 42.77 0.9861 0.9870
(f) DISCNet (Ours) Variational Multi-scale Image + PSF 43.06 43.27 0.9870 0.9877

Table 2. Results over different sizes of dynamic filters.

Filter Size s = 3 s = 5 s = 7 s = 9
PSNR 42.16 42.77 42.62 42.47
SSIM 0.9862 0.9870 0.9869 0.9868
LPIPS [43] 0.0126 0.0119 0.0119 0.0119
Params (M) 3.18 3.44 3.84 4.37
FLOPs (G) 262.10 272.59 288.32 309.29

first investigate a single-scale variant of our network, i.e.,

removing filter generators G1 and G2 from Figure 4. As

a result, feature E1 and E2 remain unchanged and are cast

back to restoration branch via skip connections. By apply-

ing different types of conditions, we observe a significant

improvement on average PSNR over the baselines. For ex-

ample, model with image condition (Table 1(c)) and the one

with the PSF condition (Table 1(d)) improve 0.72 dB and

1.27 dB, respectively. Besides, combining both PSF and

image conditions (Table 1(e)) brings additional improve-

ments (1.18/0.63 dB increase on PSF/image conditions).

This indicates even the simplest single-scale dynamic con-

volution design could benefit the feature refinement.

Single-scale vs. Multi-scale. By applying multi-scale dy-

namic filter generators to transform skip connections at all

scale, our proposed DISCNet (Table 1(f)) increase 0.5 dB

over its single-scale counterpart (Table 1(e)). This demon-

strates the effectiveness of multi-scale strategy.

Size of Dynamic Filters. To further investigate the best

trade-offs between performance and model size, we vary

the size of dynamic filters. As shown in Table 2, larger

size of filters can bring better performance. However, the

performance become even worse by increasing size after

s = 5, while the amount of parameters significantly in-

creases. Hence, we empirically choose s = 5 by default.

5.3. Evaluation on Simulated Dataset

To demonstrate the efficiency of DISCNet, we con-

duct experiments to evaluate the performance on simulated

dataset. Since UDC image restoration is a newly-defined

problem, we carefully select and modify four representative

and state-of-the-art non-blind image restoration algorithms

as baselines: Wiener Filter [20] is a classical deconvolu-

tion algorithm for linear convolution formation. Hence, we

apply Wiener deconvolution to the degraded images with

measured PSF k for each channel independently in the lin-

Table 3. Quantitative comparison on the simulated dataset. “*”

indicates blind models that do not explicitly use the information of

kernel. The best two results are highlighted in red and blue.

Method
Params

(M)

FLOPs

(G)
PSNR SSIM LPIPS

WF [20] - - 27.41 0.8392 0.3365
SRMDNF [42] 1.49 951 34.80 0.9659 0.0360
DE-UNet* [47] 9.02 169 39.81 0.9795 0.0206
SFTMD [5] 3.85 2460 42.35 0.9863 0.0123
DISCNet 3.80 364 43.27 0.9877 0.0108

ear domain. Note that the restored images are still eval-

uated and displayed in tone-mapped domain. SRMDNF

[42] is a noise-free version of SRMD, which integrates non-

blind degradation information to handle multiple degrada-

tions in a super-resolution network. The network contains

12 convolution layers, each of which produces 128 feature

maps. By conventions of network designed for low-level

tasks [34, 15], we remove BN layers to stabilize the training.

SFTMD [5]. Iterative Kernel Correction (IKC) is originally

devised for image super-resolution on blind setting. In our

experiments, we employ SFTMD network which also lever-

ages the kernel information to solve the non-blind problem.

We remove the pixel shuffle upsampling layer as the in-

put and output share the same shape in UDC restoration

task. DE-UNet [47]. Zhou et al. presents a Double-Encoder

UNet, referred to as DE-UNet in our experiments, to re-

cover UDC degraded images. We modify the first layers of

two encoders to take 3-channel RGB images as inputs.
Quantitative Comparisons. For all deep learning-based

methods, we train them using the same training settings

and data. Table 3 shows quantitative results on simulated

dataset. The proposed algorithm performs favorably against

other baseline methods. We observe that the proposed DIS-

CNet consistently outperforms all other approaches on the

simulated dataset. Even with the exact PSF kernel, Wiener

Filter [20] only achieves low image quality far below that of

deep learning-based methods. SRMDNF [42] builds upon a

plain network and uses a simple strategy to utilize the kernel

information. Therefore, it cannot adapt to degraded regions

caused by highlight sources and produces inferior results.

Compared to SFTMD [5], our network could achieve bet-

ter performance with only 15% computational cost (decline

from 2459.57 to 364.34 GFLOPs). This suggests DISCNet

is efficient and particularly fit for this task, while any other
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Figure 5. Visual comparison on a synthetic input image. Our method restores fine details and suppresses flare effects in both highlight

and dark regions and renders visually pleasing results. Refer to Supplement for more visual results. Zoom in for better view.

DE-UNet SRMDNFCamera Output

Indoor Wiener Filter SFTMD DISCNet (Ours)

Figure 6. Visual comparison on a real input image. Our method achieves the best perceptual quality while other approaches leave

noticeable artifacts and suffer from strong noise. Refer to Supplement for more visual results. Zoom in for better view.

boiler-plate network (e.g., plain net, UNet) produces unsat-

isfactory results.

Visual Comparisons. Figure 5 compares the proposed

model with existing methods on simulated dataset. As one

can see, Wiener filter produces unpleasing results and suf-

fers from serious ringing and halo artifacts. In comparison,

our DISCNet generates the most perceptually pleasant re-

sults and removes diffraction artifacts derived from high-

lights in the unsaturated regions. The presented visual re-

sults in Figure 1 and Figure 5 and additional results in the

Supplemental Material validate the performance of the pro-

posed DISCNet for various scene types, e.g., night-time ur-

ban scenes and indoor settings with strong light sources.

5.4. Evaluation on Real Dataset

Apart from the evaluation on synthetic dataset, this sec-

tion explores reconstruction performance on real dataset.

Since the ground-truth images are inaccessible, we provide

the qualitative comparisons as shown in Figure 6. We also

include the camera output of ZTE phone for comparisons.

As the real data is captured without ISP, we adopt simple

post-processing to all outputs except camera output for bet-

ter visualization. Our network achieves the best percep-

tual quality while other approaches leave noticeable arti-

facts and suffer from strong noise or flare. Post-processing

and more visual results can be found in Supplement.

6. Discussion

Limitations. Our work is only the first step towards remov-

ing diffraction image artifacts in UDC systems. Other com-

plexities, e.g., spatially-varying PSF, noise in low light, and

defocus, require more study. The proposed DISCNet some-

times will fail due to the domain gap between simulated

and real data, e.g., camera noise, motion blur, variations in

scenes. Our method currently is also too heavy-weight. See

Supplement for further discussion and failure cases.

Conclusion. In this paper, we define a physics-based im-

age formation model and measure the real-world PSF of

the UDC system, and provide a model-based data synthesis

pipeline to generate realistically degraded images. Then, we

propose a new domain knowledge-enabled Dynamic Skip

Connection Network (DISCNet) to restore the UDC im-

ages. We offer a foundation for further exploration in UDC

image restoration. Our perspective on UDC has potential to

inspire more diffraction-limited image restoration work.
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