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Abstract

Most existing video text detection methods track texts

with appearance features, which are easily influenced by the

change of perspective and illumination. Compared with ap-

pearance features, semantic features are more robust cues

for matching text instances. In this paper, we propose an

end-to-end trainable video text detector that tracks texts

based on semantic features. First, we introduce a new

character center segmentation branch to extract semantic

features, which encode the category and position of char-

acters. Then we propose a novel appearance-semantic-

geometry descriptor to track text instances, in which se-

mantic features can improve the robustness against appear-

ance changes. To overcome the lack of character-level an-

notations, we propose a novel weakly-supervised character

center detection module, which only uses word-level anno-

tated real images to generate character-level labels. The

proposed method achieves state-of-the-art performance on

three video text benchmarks ICDAR 2013 Video, Minetto

and RT-1K, and two Chinese scene text benchmarks CA-

SIA10K and MSRA-TD500.

1. Introduction

Video text detection aims to localize and track text in-

stances in videos. It has attracted much attention in re-

cent years, due to its wide application in video analysis and

multimedia information retrieval. Although previous meth-

ods [34, 41, 52] have made significant efforts in both text

detection and tracking, it is still a challenging task because

of motion blur and illumination changes.

Most existing methods [56, 46, 34] treat text detection

and tracking separately, where a single frame is detected

first, then text tracking methods are applied based on detec-

tion results. However, these methods ignore the temporal

contexts and the information interaction between detection
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Figure 1. (a) The text appearance changes dramatically from dif-

ferent perspectives, which makes the tracking branch failed to

match text instances. (b) The category and position of characters

can help the tracking branch to match text instances more accu-

rately. Boxes with the same color belong to the same trajectory,

and dots represent the character centers.

and tracking. Recently, Yu et al. [52] proposed an end-

to-end trainable framework to integrate text detection and

tracking, in which the appearance-geometry descriptor is

used to track text instances. However, the proposed descrip-

tor is mainly based on the text appearance, which is easily

influenced by the change of perspective and illumination.

In contrast to appearance features, semantic features are ro-

bust cues for matching text instances. For example, most

text instances fail to match due to large perspective changes

as shown in Fig 1 (a). However, the character position and

category of the same text instance from different perspec-

tives are similar. When there are priori semantic features,

wrong matching results could be corrected as shown in Fig 1

(b). Although both word-level and character-level annota-

tions provide semantic information, character-level annota-

tions contain more detailed structure information, which are

1695



more powerful references for text tracking. Unfortunately,

character-level annotations of real datasets are too costly.

To generate character-level annotations of real datasets

automatically, some methods [1, 44] were proposed in a

weakly-supervised learning way. In these methods, a char-

acter detector is first trained on synthetic datasets, then the

trained detector detects characters of real images. There are

two main disadvantages of these methods. On one hand,

there is a large domain gap between synthetic and real im-

ages, which makes the performance of character detector on

real images unsatisfactory. On the other hand, the widely

used synthetic datasets only focus on English, so it is dif-

ficult to transfer these methods to other languages without

synthetic datasets.

To exploit the semantic information in video text detec-

tion while overcome the lacking of character-level anno-

tated data, we propose a semantic-aware video text detec-

tion framework as shown in Fig 2, in which character-level

annotations are directly generated from word-level anno-

tated real datasets. Specifically, a ConvLSTM [30] block

is used to propagate frame-level information, which makes

full use of the temporal contexts in videos. Then, a char-

acter center segmentation task in the mask head of Mask

R-CNN [9] is designed to encode the position and category

of characters as semantic features. Based on appearance

features and newly added semantic features, appearance-

semantic-geometry descriptors (ASGD) are introduced to

robustly represent text instances, which are matched with

stored ASGD of previous frames to achieve text track-

ing. Although the proposed framework needs character-

level annotations, we adopt a sliding-window based text rec-

ognizer [38, 49] to detect character centers automatically,

which only needs word-level annotated real images to train.

This makes our framework easy to apply to multiple lan-

guages, such as Chinese which is typical of large character

set. To the best of our knowledge, this is the first video

text detector to introduce semantic features into text detec-

tion and tracking, which only uses word-level annotated real

images to generate character-level labels.

Our contributions are in three folds: (1) We propose a

novel end-to-end video text detector, which unifies text and

character detection, and text tracking. (2) An appearance-

semantic-geometry descriptor is proposed, in which the se-

mantic features help improve the robustness to appearance

changes. (3) Character-level annotations are generated in

a weakly-supervised way, which improves the practicabil-

ity of our method. The proposed method is effective for

both text detection and tracking, and has achieved state-

of-the-art performance on three video text datasets ICDAR

2013 Video [16], Minetto [25] and RT-1K [27], and two

Chinese scene text datasets CASIA10K [11] and MSRA-

TD500 [47].

2. Related Work

Text detection in videos usually combines a single frame

text detector and some specific tracking techniques. There-

fore, we review related works including single frame text

detection and video text detection. For more details, please

refer to the surveys of [51, 48, 55].

2.1. Single Frame Text Detection

Traditional methods [33, 10, 2] detect components of

text first, then aggregate components into final detection

results. The disadvantages of these methods lie in the er-

ror accumulation and inefficiency. Regression based meth-

ods [18, 12, 54] adopt similar ideas to generic object detec-

tion with some text-specific modifications. To detect arbi-

trary shaped text, some methods [39, 40, 23, 5] first detect

local units, and then aggregate them into final results.

Recently, some methods use character-level annotations

to provide detailed semantic information for text detection.

Baek et al. [1] detected text instances by exploring each

character and affinity between characters. Xing et al. [44]

detected bounding boxes of words and characters directly

in one pass. Liao et al. [17] added a character segmentation

branch on the basis of Mask R-CNN. However, these meth-

ods need synthetic datasets to pre-train the character detec-

tor. Different from these methods, the proposed method

generates character-level labels directly from real datasets,

which has much more practical values.

2.2. Video Text Detection

Most video text detection methods are based on track-

ing with single frame detection results. Zuo et al. [56] pro-

posed a multi-strategy text tracking method, which fuses the

advantages of several tracking techniques. Tian et al. [34]

proposed a unified tracking based text detection system with

dynamic programming. Yang et al. [46] tracked proposals

in adjacent frames with a motion-based method. However,

these methods ignore the temporal contexts in the video.

To capture spatial-temporal information, Wang et al. [37]

made use of the temporal correlation of text cues across suc-

cessive frames. Yu et al. [52] used ConvLSTM to catch

long-term spatial-temporal information. Although these

methods have made great progress, the tracking branch is

mainly based on text appearance features, which are sen-

sitive to the changes in appearance. The proposed method

adopts an appearance-semantic-geometry descriptor, mak-

ing the framework robust to appearance changes.

3. Methodology

An overview of the proposed end-to-end video text de-

tector is illustrated in Fig 2. After extracting visual features

by the stem network, a ConvLSTM block is used to extract
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Figure 2. An overview of the proposed framework. A character center segmentation task is embedded in the mask head of Mask R-CNN

to extract semantic features, making appearance-semantic-geometry descriptors (ASGD) robust to appearance changes.

spatial-temporal information. Then, we embed a charac-

ter center segmentation task in the mask head to localize

and recognize characters, which can extract semantic fea-

tures. Finally, the text tracking head generates appearance-

semantic-geometry descriptors, which are matched with de-

tected text instances of previous frames. In addition, a

sliding-window based text recognizer is introduced to pro-

vide character-level labels for the character center segmen-

tation task. The text recognizer can localize character cen-

ters in a weakly-supervised way. In the following, we will

describe the details of text detection, text tracking, weakly-

supervised character detection and inference procedure.

3.1. Text Detection

Different from scene images, videos always contain

abundant temporal information. Therefore, we adopt a Con-

vLSTM block to integrate long-term temporal information.

Denote the visual features extracted by the stem network at

t-th frame as Vt. The output Ft of the ConvLSTM block

can be formulated as:

(Ft, ht) = ConvLSTM(Vt, h(t−1)), (1)

where ht and h(t−1) represent the hidden states at time t
and t − 1, respectively. In this way, features can propagate

frame-level information in a long time range.

After integrating temporal information, we adopt Mask

R-CNN to predict axis-aligned rectangular bounding boxes

and the corresponding instance segmentation masks, which

consists of two stages. First, a region proposal network

(RPN) [28] is used to propose a set of candidate text regions

of interest (RoIs). Second, the RoIAlign [9] operation ex-

tracts features from Ft within each RoI, then the extracted

features are used to perform classification, bounding box

regression and instance segmentation. As Mask R-CNN

can detect arbitrary shaped texts in an instance segmenta-

tion manner, we fit a minimum enclosing rotated rectangle

to each mask for oriented texts.

To enhance the detection performance and extract se-

mantic features for the following tracking head, we add a

character center segmentation branch on the basis of Mask

R-CNN. This branch has two convolution layers with 3×3

filters and a upsample layer with stride 2. Then the fea-

ture maps are used to generate final segmentation maps with

channel S, where S is the number of character classes plus

background category. For each character center, we regard

pixels around the center within a distance r as positive.

The parameter r is proportional to the shortest side of text

boundaries by a ratio of 0.2. Then, we generate the ground

truth map C∗ by drawing the expanded character center re-

gions on a zero-initialized mask and filling the regions with

their corresponding category indexes. Denote the number

of pixels in C∗ as N . The loss function of character center

segmentation is a weighted spatial softmax loss, which can

be formulated as:

Lchar = −
1

N

∑

n∈N

Wn

∑

s∈S

C∗

n,slog(
eCn,s

∑
k∈S eCn,k

), (2)

where C represents output maps and W is a weighted ma-

trix to balance the positive and negative loss. Denote the

number of positive and negative pixels as Npos and Nneg .

The weight of positive pixels is 1, and the weight of nega-

tive pixels is Npos/Nneg .
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Combining the character center segmentation loss, the

loss function of text detection can be calculated as:

Ldet = Lrpn + α1Lrcnn + α2Lmask + α3Lchar, (3)

where Lrpn, Lrcnn and Lmask represent loss functions of

RPN, Fast R-CNN [28] and instance segmentation, respec-

tively. α1, α2 and α3 are set to 1 in our experiments.

Mask TextSpotter v1 [24] and v2 [17] also combine char-

acter segmentation task with the original Mask R-CNN.

However, these methods need character-level annotated

synthetic and real images for training. Different from Mask

TextSpotter, the character-level annotations used in our de-

tector are all generated from only word-level annotated real

data, which will be described in Section 3.3.

3.2. Text Tracking

Previous methods perform text tracking with appearance

features extracted from text RoIs. However, the rough ap-

pearance features make text tracking easily influenced by

the change of perspective and illumination. Instead of only

considering text appearance features, we argue that seman-

tic features could provide robust prior information for text

tracking. Therefore, we encode the position and category

of characters as part of input for the text tracking task.

To represent text instances robustly, we propose a novel

appearance-semantic-geometry descriptor (ASGD), which

consists of three parts as shown in Fig 3. First, we employ

RoIAlign layer to extract features from Ft within text RoIs,

then two fully connection layers are used to project the ex-

tracted features into new ones. We call the new features

as text appearance features fa
t . Second, we also use two

fully connection layers to project the intermediate features

from the second convolution layer of character segmenta-

tion branch into semantic features fs
t , which encode the po-

sition and category of characters. Third, the coordinates of

text RoIs are embedded as geometry features fg
t . Finally,

these three parts are concatenated to generate the descriptor

ASGDt, which can be formulated as follows:

ASGDt = Concat([fa
t , f

s
t , f

g
t ]). (4)

To train the text tracking branch, we use a pair of frames

in which one frame is picked as the query frame and the

other is the reference frame. For the query frame, we extract

features within text RoIs which have at least 70% IoU with

ground truth boxes. For the reference frame, we directly

use ground truth boxes to extract features without generat-

ing text RoIs. To match text instances belonging to the same

object, we follow the similar idea in [52], which makes de-

scriptors close for positive pairs and far for negative pairs.

However, the distances between positive pairs are difficult

to approach 0 because of the difference caused by motion.

Therefore, we adopt a smoothed double-margin loss based

on the contrastive loss [8]. Denote the distances between

ASGD of query and reference frames as d. The loss func-

tion of text tracking can be formulated as:

Ltrack = y(R(d−mp))
2 + (1− y)(R(mn − d))2, (5)

where R denotes the ReLU function. mp and mn are the

margins for positive pairs and negative pairs, respectively.

We set mp as 0.3 and mn as 1.0 in our implementation.

Moreover, y is the pairs label whose value is 1 for positive

pairs and 0 for negative pairs.

For end-to-end training of text detection and tracking,

the whole loss function can be written as:

L = Ldet + βLtrack, (6)

where β is the hyper-parameter to control the balance be-

tween detection and tracking. We set it as 0.5 in our exper-

iments.

3.3. Weakly­Supervised Character Detection

As character-level annotations require much more hu-

man labeling efforts, previous methods usually generate

character-level labels using synthetic datasets. However,

synthetic datasets are mainly focused on English, and there

is a large domain gap between synthetic and real images.

Therefore, we propose a weakly-supervised character de-

tection module to provide character-level labels for the char-

acter center segmentation task, which only needs word-level

annotated real images. The pipeline of generating character-

level labels on the training set is shown in Fig 4. First,

we use the RoIRotate [22] operator to transform text in-

stances into axis-aligned ones. Then we adopt a sliding-

window based text recognizer [38, 49] to classify each win-

dow. When characters are located in the center of sliding
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Figure 4. The pipeline of generating character-level labels. In the recognition results, the first item is the classification result, and the

second item is the score. “-” means blank. We only show part of sliding windows for better visualization.

Table 1. The architecture of the sliding-window based text recog-

nizer. Each convolution layer is followed by a batch normalization

layer and a ReLU layer. S is the number of character classes,

which is 37 for English datasets and 7357 for Chinese datasets.

Type Configurations

Input N×32×32

3×Conv bn relu 3×3, 100, stride 1×1

Max Pooling 2×2, stride 2×2

3×Conv bn relu 3×3, 150, stride 1×1

Max Pooling 2×2, stride 2×2

3×Conv bn relu 3×3, 300, stride 1×1

Max Pooling 2×2, stride 2×2

3×Conv bn relu 3×3, 400, stride 1×1

Max Pooling 2×2, stride 2×2

Fully Connection 256, drop: 0.5

Fully Connection 256, drop: 0.0

Fully Connection S

windows, the text recognizer can recognize the character

with high scores. When the centers of sliding windows and

characters are misaligned, the text recognizer will output

the blank labels or low scores. Finally, we conduct Non-

Maximum Suppression (NMS) on the sliding windows, and

transform the picked sliding window centers back to the in-

put image as character center labels.

To train the text recognizer, we first transform text in-

stances of the training set into axis-aligned ones, whose

height is normalized as 32. Then we slide windows on the

transformed text instance with stride l. We set l as 2 for En-

glish datasets and 4 for Chinese datasets. Finally, a VGG-

like [32] network takes the sliding windows as input, and

classifies each window. The architecture of text recognizer

is shown in Table 1. To decode the label distribution to the

final sequence, we adopt the Connectionist Temporal Clas-

sification [7] (CTC) decoder and assume that each sliding

window represents a time step. Denote the CTC path as π
and the mapping function as B. The conditional probability

of the ground truth y∗ is the sum of the probabilities of all

the paths by B:

P (y∗|X) =
∑

π∈B−1(y∗)

P (π|X). (7)

The objective is to maximize the log likelihood of Eq.7.

The loss function of text recognition is formulated as:

Lrec = −log p(y∗|X). (8)

Although the text recognizer is easy to fit small datasets,

it is hard to achieve satisfactory performance on large

datasets, especially when the distribution of character

classes is unbalanced. Therefore, we propose an iterative

training process to improve the performance on the training

set. We utilize a simple rule that identifies character center

detection results as “correct” if the text recognition result is

the same as the ground truth. The proposed iterative train-

ing process is described as follows.

(i) We first train an initial text recognizer on the whole

training set until the loss becomes stable. Then we test the

trained model on the same training set.

(ii) According to the previous rule, we collect text in-

stances with correct recognition results to build character-

level labels, and remove them from the training set. The

trained text recognizer continues to be trained on the re-

duced training set.

(iii) This training process is performed iteratively to im-

prove the character center detection results. As the number

of iterations increase, the text recognizer can pay more at-

tention to hard samples and rare characters as shown in the

experiments.

3.4. Inference

The proposed method generates text detection results

and matches the detected text instances in an online fash-

ion. Given a frame of time step t, we first detect all text

instances and obtain the corresponding ASGDt as Eq.4.

Then, we calculate the similarity matrix between ASGDt

and the stored ASGD of previously detected text instances.

Finally, we use Kuhn-Munkres algorithm with threshold

value θm to get the matching pairs. If the text instance finds

a matching text instance, we update this tracklet set and cor-

responding ASGD stored in the memory. Note that we only

save the latest ASGD for one tracklet set. For no-matching

text instances, we build new trajectories for them, and in-

sert their ASGD to the memory. Altogether, the proposed

method can reach 9.6 fps on ICDAR 2013 Video dataset.
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Figure 5. Examples of text detection and tracking results. First and second rows: video text detection. Boxes with the same color belong

to the same trajectory. Third row: single frame text detection.

4. Experiments

We evaluate the text detection and tracking performance

on three English video datasets. Since there is no public

non-English video dataset, we evaluate our method on two

Chinese scene image datasets to verify the applicability of

our method on non-English datasets.

4.1. Datasets

ICDAR 2013 Video. This dataset contains 13 videos for

training and 15 videos for testing, which are harvested from

indoors and outdoors scenarios. The resolution ranges from

720×480 to 1280×960. Besides, each text is labeled as a

quadrangle with 4 vertexes in word-level.

Minetto. The Minetto dataset has 5 videos in outdoor

scenes. The resolution is fixed as 640×480. Each text is

labeled in the form of axis-aligned bounding box. As all

videos are for testing, we use the model trained on ICDAR

2013 Video to evaluate on this dataset directly.

RT-1K. The RT-1K dataset contains 1000 videos in road

scenes, including 700 for training and 300 for testing. We

evaluate our method on this dataset to verify the superiority

of the proposed method on large scale video text datasets.

CASIA10K. This dataset is a large scale Chinese scene text

dataset, which contains 7000 training images and 3000 test-

ing images. As there is no widely used Chinese synthetic

datasets, previous methods are difficult to obtain character-

level labels.

MSRA-TD500. The MSRA-TD500 dataset consists of 300

training images and 200 training images. This dataset is

focused on Chinese and English texts, where each text in-

stance is labeled in line-level.

4.2. Implementation Details

The proposed method is implemented in PyTorch, and

runs on a regular workstation with Nvidia Titan Xp. We

Table 2. Video text detection results on ICDAR 2013 test set. “W/o

sf” represents without semantic features.

Method Precision Recall F-measure

Epshtein et al. [4] 39.80 32.53 35.94

Zhao et al. [53] 47.02 46.30 46.65

Yin et al. [50] 48.62 54.73 51.56

Khare et al. [14] 57.91 55.90 51.70

Wang et al. [37] 58.34 51.74 54.45

Shivakumara et al. [31] 61.00 57.00 59.00

Wang et al. [42] 71.90 58.67 62.65

Wu et al. [43] 63.00 68.00 65.00

Yu et al. [52] 82.36 56.36 66.92

Our two-stage 66.81 63.92 65.33

W/o sf 67.53 65.58 66.54

Proposed 75.46 64.08 69.31

adopt ResNet-50-FPN [9] as the stem network, which is

pre-trained on ImageNet dataset [15]. The configuration

of Mask R-CNN follows the public implementation on MS

COCO [21]. We train the model in 12 epochs. The initial

learning rate is set to 0.03, then the learning rate is decayed

to a tenth at epoch 8 and 11. At test time, the shorter sides

of input images are resized to 800 pixels.

The input images of sliding-window based text recog-

nizer are scaled to height of 32 pixels with the aspect ratio

unchanged. Then the width is padded to 512 for parallel

training. We train the text recognizer with the initial learn-

ing rate as 0.1, and decrease the learning rate by ×0.3 at

epoch 50 and 80. In the iterative training stage, we fix the

learning rate as 0.009, and finish the training when the loss

becomes stable. The number of training stages is three.

1700



Table 3. Video text detection results on Minetto test set. “W/o sf”

represents without semantic features.

.

Method Precision Recall F-measure

Minetto et al. [25] 61.00 69.00 63.00

Zuo et al. [56] 84.00 68.00 75.00

Tian et al. [33] 85.00 77.00 81.00

Wang et al. [42] 83.03 84.22 83.30

Yang et al. [46] 89.00 84.00 86.00

Wang et al. [37] 88.80 87.53 88.14

Yu et al. [52] 91.27 89.38 90.32

Our two-stage 91.77 88.68 90.19

W/o sf 93.21 89.53 91.34

Proposed 96.90 91.32 94.02

Table 4. Video text detection results on RT-1K test set. “W/o sf”

represents without semantic features. Results other than ours are

obtained from [27].

Method Precision Recall F-measure

CTPN [35] 0.44 0.41 0.42

EAST [54] 0.42 0.30 0.35

FOTS [22] 0.45 0.36 0.40

W/o sf 0.73 0.42 0.53

Proposed 0.76 0.43 0.55

Table 5. Video text tracking results on Minetto test set. “MOTP”

and “MOTA” represent Multi-Object Tracking Precision and

Multi-Object Tracking Accuracy, respectively. “W/o sf” repre-

sents without semantic features.

.

Method MOTP MOTA

Zuo et al. [56] 73.07 56.37

Pei et al. [26] 73.07 57.71

Geometry descriptor [52] 76.66 74.04

Matching AGD with AGD [52] 74.70 75.62

Matching AGD with EAGD [52] 75.72 81.31

Our two-stage 75.32 78.71

W/o sf 75.33 80.26

Proposed 76.78 83.53

Table 6. Detection results on CASIA10K test set. “W/o sf” rep-

resents without semantic features. Results other than ours are ob-

tained from [11].

Method Precision Recall F-measure

EAST [54] 77.71 53.27 63.21

SegLink [29] 72.75 69.67 71.18

He et al. [11] 81.28 70.48 75.50

Feng et al. [6] 86.34 72.60 78.88

W/o sf 75.42 81.22 78.21

Proposed 76.55 84.10 80.15

4.3. Comparison with the State­of­the­art

We compare the performance with previous works on

several datasets to verify the superiority of our method.

Table 7. Detection results on MSRA-TD500 test set. “W/o sf”

represents without semantic features.

Method Precision Recall F-measure

PixelLink [3] 83.0 73.2 77.8

RRD [20] 87.0 73.0 79.0

Xue et al. [45] 83.0 77.4 80.1

CRAFT [1] 88.2 78.2 82.9

Tian et al. [36] 84.2 81.7 82.9

DB [19] 91.5 79.2 84.9

W/o sf 87.8 79.4 83.3

Proposed 89.2 81.5 85.2

Table 8. Detection results on ICDAR 2015 test set. “P”, “R”, “F”

represent “Precision”, “Recall”, “F-measure”, respectively.

Method P R F

Mask TextSpotter v1 [24] 91.6 81.0 86.0

CRAFT [1] 89.8 84.3 86.9

Mask TextSpotter v2 [17] 86.6 87.3 87.0

CharNet [44] R-50 88.3 91.1 89.7

Proposed 88.5 85.8 87.1

4.3.1 Video Text Detection

Our method achieves state-of-the-art performance on three

video text datasets as shown in Tables 2, 3, 4 and 5. With

the help of semantic features, our method is robust to the

change of perspective and illumination, and outperforms

previous methods in both text detection and tracking tasks.

It should be noticed that character-level annotations used

in the training stage are generated in a weakly-supervised

manner, which owns more practical values. Some qualita-

tive results are shown in Fig 5.

4.3.2 Single Frame Text Detection

Our method also reaches state-of-the-art performance on

two Chinese scene text datasets as shown in Tables 6 and 7.

The single frame detector is built by removing the ConvL-

STM block and the text tracking loss. As the proposed

method only needs word-level annotated real images, it is

easy to apply on non-English datasets. We also compare

the detection performance on an English scene text dataset

ICDAR 2015 [13] with other character based methods as

shown in Table 8. Our method achieves competitive re-

sults to the state-of-the-art approaches, which need syn-

thetic datasets to generate character-level labels. This shows

the superiority of our method. Some single frame text de-

tection results are shown in Fig 5.

4.4. Ablation Studies

We conduct some comparison experiments to verify the

benefits of semantic features, iterative training process and

end-to-end training.
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Figure 6. Iterative training process can improve character center detection performance on large scale datasets. From left to right: initial

and final detection results. Yellow dots show character center detection results. Red dashed boxes show that the initial text recognizer is

difficult to detect noisy, obscure and rare characters.

Table 9. Iterative training improves character detection perfor-

mance. “Line accuracy” is evaluated on the whole training set of

CASIA10K, and “Detection accuracy” is evaluated on 500 images

labeled by ourself. At the step 0, the text recognizer is trained in

100 epochs, and 20 epochs for other steps.

Step Line accuracy Detection accuracy Epochs

0 77.2 70.1 100

1 82.3 83.1 20

2 96.4 95.2 20

4.4.1 Effect of Semantic Features

The position and category of characters can provide robust

semantic features for text tracking and detection. Without

semantic features, text tracking may be influenced by the

appearance changes. Meanwhile, the text detector may ig-

nore text instances that are not salient. To demonstrate the

benefits of semantic features, we evaluate a variant of our

method which removes the character center segmentation

loss, and the descriptors in text tracking branch only con-

sist of appearance and geometry features. As shown in Ta-

bles 2, 3 4 and 5, the proposed method outperforms the one

without semantic features in both text detection and track-

ing. We also report the performance without semantic fea-

tures on Chinese datasets as shown in Tables 6 and 7, which

verifies that semantic features are beneficial for both Chi-

nese and English.

4.4.2 Effect of Iterative Training

The proposed iterative training process aims to enhance

the character center detection performance gradually, es-

pecially when the character distribution is unbalanced. To

demonstrate the importance of iterative training, we la-

bel the character centers of 500 images from CASIA10K

dataset, and evaluate the character detection performance

of each iteration. As shown in Table 9, the initial line ac-

curacy and character detection performance are poor due to

large and unbalanced character categories. As the number

of iterations increases, the line accuracy and character de-

tection performance increase continuously. After three iter-

ative steps, the line accuracy and character detection perfor-

mance exceed 95%, which allows us to train the character

center segmentation branch with only word-level annotated

real images. We also show some qualitative examples in

Fig 6.

4.4.3 Effect of End-to-End Training

Most previous methods perform text detection and tracking

separately, which ignore the correlation between two tasks.

Unlike these methods, the proposed method unifies text de-

tection and tracking in an end-to-end framework. To verify

the effect of end-to-end training, we evaluate a variant of

our method which trains text detection and tracking sepa-

rately. As shown in Tables 2, 3 and 5, the proposed method

outperforms our two-stage method by a large gap, which

demonstrates that these two tasks can benefit each other.

5. Conclusion

In this paper, we propose a novel semantic-aware video

text detector, by incorporating semantic information to im-

prove detection and tracking performance. The text detec-

tor detects text instances and character centers simultane-

ously, which can extract semantic features. With the help

of semantic features, the text tracking branch is more ro-

bust to the appearance changes. Furthermore, we propose a

sliding-window based text recognizer to generate character-

level labels from word-level annotated real datasets, which

avoids the requirement and disadvantages of synthetic data.

Experiments on several datasets have demonstrated the ef-

fectiveness of our method. A future improvement would

be to combine multi-level semantic features for coping with

more complicated scene videos.
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