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Abstract

We propose a novel Siamese Natural Language
Tracker (SNLT), which brings the advancements in vi-
sual tracking to the tracking by natural language (NL)
descriptions task. The proposed SNLT is applicable to a
wide range of Siamese trackers, providing a new class
of baselines for the tracking by NL task and promis-
ing future improvements from the advancements of
Siamese trackers. The carefully designed architecture
of the Siamese Natural Language Region Proposal Net-
work (SNL-RPN), together with the Dynamic Aggrega-
tion of vision and language modalities, is introduced to
perform the tracking by NL task. Empirical results over
tracking benchmarks with NL annotations show that the
proposed SNLT improves Siamese trackers by 3 to 7
percentage points with a slight tradeoff of speed. The
proposed SNLT outperforms all NL trackers to-date and
is competitive among state-of-the-art real-time trackers
on LaSOT benchmarks while running at 50 frames per
second on a single GPU. Code for this work is available
at https: // github. com/ fredfung007/ snlt .

1. Introduction

Visual and language recognition skills evolve jointly
in children from a young age. For example, it was ob-
served [33] that children at the age of twenty months
whose vocabulary size lags behind their peers have dif-
ficulty recognizing objects with sparse features (i.e.,
stylized versions of real-world objects). Conversely, a
child’s ability to engage in the play activity called object
substitution tends to be a predictor of healthy language
development [34].

By contrast, in computer vision, particularly in ob-
ject tracking, appearance-based methods [24, 25] and
tracking via natural-language (NL) descriptions [14, 26]
evolve independently, without benefiting each other.

In this paper, we derive a formulation that links
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Figure 1: The proposed Siamese Natural Language
Tracker (SNLT) improves Siamese trackers by lever-
aging predictions from two modalities: vision and lan-
guage. Our SNLT implementation runs at 50 frames
per second on an NVIDIA 2080 Ti GPU, and out-
performs best published natural language trackers, i.e.
Feng [14] and Li [26], on the LaSOT [13] test set.

the vision and language modalities in such a way
that improvements in appearance-based tracking yield
improvements in language-based tracking. Our for-
mulation applies to Siamese trackers, a broad family
of trackers that includes SiamFC [1], SiamRPN [25],
SiamRPN++ [24], etc. Siamese trackers have proven
to be successful in many tracking scenarios and have
achieved state-of-the-art performance. We show that
by bringing the advancements of these Siamese trackers
to the tracking by NL task, we can build NL trackers
that outperform all prior NL trackers and promise to
see improvements over time with the advancements of
Siamese trackers.

Hence, we present the first practical and general so-
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lution to the challenge of tracking with NL descriptions
in real-time. Firstly, we propose a Siamese Natural
Language Region Proposal Network (SNL-RPN) that
transforms an NL description into a convolutional ker-
nel and shares feature extraction layers with Siamese
trackers; the combined network can be trained end-to-
end. Secondly, we propose a novel formulation to dy-
namically aggregate the predictions of our SNL-RPN
from two modalities: vision and language, which turns
the SNL-RPN from a visual-language detector into a
real-time Siamese Natural Language Tracker (SNLT).
The overview of a realization of the proposed SNLT is
shown in Fig. 2.

We plot the frames per second (FPS) v.s. the preci-
sion on LaSOT [13] for recent Siamese trackers and our
SNLT in Fig. 11. Our proposed SNLT consistently im-
proves the performance of SiamFC [1], SiamRPN [25],
and SiamRPN++ [24] with a slight trade-off of speed.
It also outperforms all NL trackers to date. This
demonstrates that the SNLT brings the advancement
of visual tracking models to the tracking by NL task
and provides a wide range of state-of-the-art NL track-
ers.

Contributions of this paper are threefold:

1. A novel and universal Siamese Natural Language
Region Proposal Network (SNL-RPN) is proposed
for all Siamese trackers, providing a wide class of
strong tracking by NL descriptions baselines.

2. A Dynamic Aggregation of predictions from vision
and language modalities, is proposed to transform
our SNL-RPN into a real-time Siamese Natural
Language Tracker (SNLT). Prior to this work, we
are only aware of two NL trackers [14, 26].

3. Empirical results over tracking benchmarks with
NL annotations show that the proposed SNLT
improves Siamese trackers by 3 to 7 percentage
points. The SNLT outperforms all NL trackers
and is competitive with state-of-the-art real-time
trackers on LaSOT benchmarks while running at
over 50 frames per second.

2. Related Works

2.1. Visual Object Tracking

In the past two decades, tracking by detection mod-
els [3, 20] and Bayesian filtering based algorithms [4, 21]
have been thoroughly studied in the field of visual

1We use the code and weights from the original authors for
Li [26]’s tracker. As the language query “dictionary” used in
the original work is different from LaSOT [13], the performance
reported here is sub-optimal as training code is not available.

object tracking. Some deep learning based mod-
els [1, 7, 29, 35] have been introduced in recent years,
and are argued to perform better when handling occlu-
sion and appearance change. ECO [7] applies convo-
lutional filters on convolution feature maps to obtain
satisfactory performance on multiple tracking datasets.
ECO still suffers from efficiency issues [18], though its
efficiency is improved from the original convolution fil-
ter based tracker, C-COT [9]. These trackers maintain
appearance and motion models explicitly by maintain-
ing the visual features over time. ATOM [6] introduced
a classification module that is updated online to better
handle scenarios where multiple similar targets exist.
DiMP [2] aims to train an online model to distinguish
the background and foreground of the exemplar dur-
ing tracking, which further pushes the performance of
convolutional filter based trackers. PrDiMP [8] intro-
duced probabilistic regression to further improve the
DiMP tracker. KL-divergence based loss is first intro-
duced to train the regression network of the PrDiMP.

On the other hand, a series of Siamese trackers
are introduced by exploiting a siamese convolutional
neural network architecture for tracking by detection.
SiamFC [1] conducts a local search for regions with
similar regional visual features obtained by a CNN in
every frame. SiamRPN [25] and SiamRPN++ [24] per-
forms tracking as one shot detection using the Siamese
network as a region proposal network. However, these
Siamese trackers do not model the temporal appear-
ance variations of the target and therefore suffer from
model drift problems. SiamRCNN [38] is the most
recent Siamese tracker that produces state-of-the-art
tracking performance on several benchmark datasets
by performing a global search via re-detection while
trading off the speed. SiamRCNN runs at only 4 frames
per second.

2.2. Natural Language Processing in Vision Tasks

In the past decade, researchers have started to look
into exploiting natural language understanding in vi-
sion tasks. These models usually combine two compo-
nents: a language model and an appearance model to
learn a new feature space that is shared between both
NL and appearance [19, 37]. More recent object detec-
tion and vision grounding models [17, 40] jointly exploit
vision and NL using Siamese networks and depth-wise
convolutional neural networks between the NL repre-
sentations and visual representations.

Li et al . define two tracking by NL descriptions prob-
lems [26]. Feng et al . formalize the tracking by NL
in a tracking by detection framework with a Bayesian
detection formulation [14]. In their work, however,
an assumption is made that appearances and the NL

5852



 Z
7 × 7 × 256

Dynamic 

Aggregation 

Module

SNL-RPN 

3

SNL-RPN 

4

SNL-RPN 

5

 Z
7 × 7 × 256

 Z
7 × 7 × 256

 ZQ

1 × 1 × 256

 ZQ

1 × 1 × 256

 ZQ

1 × 1 × 256

 X
31 × 31 × 256

 X
31 × 31 × 256

 X
31 × 31 × 256

Bicycle …

Language 

Model

Q

SNLT

Visual Exemplar

Visual Search Patch

(a) Overview of the Siamese Natural Language Tracker.

Regression Branch

conv

conv

NL 

Classification 

Head

29 × 29 × 256

5 × 5 × 256

conv

conv

29 × 29 × 256

5 × 5 × 256

Visual 

Classification 

Head

V
is

u
a

l 

F
e

a
tu

re

25 × 25 × 256

N
L

 F
e

a
tu

re
25 × 25 × 256

NL 

Regression 

Head

Visual 

Regression 

Head

V
is

u
a

l 

F
e

a
tu

re

25 × 25 × 256

N
L

 F
e

a
tu

re

25 × 25 × 256

Classification Branch

 Z
7 × 7 × 256

E
x
e

m
p

la
r 

R
e

p
re

s
e

n
ta

tio
n

S
e

a
rc

h
 P

a
tc

h
 

R
e

p
re

s
e

n
ta

tio
n

 ZQ

1 × 1 × 256

 X
31 × 31 × 256

SNL-RPN

(b) The Siamese Natural Language Region Proposal Network.

Figure 2: 2a shows an overview of the proposed Siamese Natural Language Tracker (SNLT) and 2b shows its
key component: the Siamese Natural Language Region Proposal Network (SNL-RPN). Without loss of generality,
we use SiamRPN++ as the backbone for this example realization of the SNLT. Novel modules of our proposed
architecture are highlighted in red. The Language Model predicts representations of the input NL description
for the SNL-RPN. The three SNL-RPN modules in 2a are identical except for their inputs. The Aggregation
Module, which dynamically combines predictions from both visual and language modalities based on the entropy
of predictions, is described in Sec. 3.3. As shown in 2b, the SNL-RPN consists of two branches: a Regression branch
and a Classification branch. The SNL-RPN takes the convolution feature maps of the template Z, the convolution
feature maps of the search patch Xt, and the sentence embedding ZQ as inputs and predicts classification scores and
regressions for each of the predefined anchor boxes in the SNL-RPN. The star operator, depends on the backbone
Siamese tracker, can be cross-correlation, depth-wise cross correlation, etc.

description are conditionally independent given the
bounding boxes. By directly measuring the joint con-
ditional probability between the language network and
the visual network, in this paper, we derive a fully con-
volutional neural network (CNN) that performs track-
ing by NL description. Following Li et al ., the NL
description is defined as a declarative sentence of ar-
bitrary length for the target. Similar to Li et al .’s
work [25], we formulate the tracking with NL descrip-
tion problem as one-shot detection.

3. Siamese Natural Language Tracker

In this section, we present the Siamese Natural
Language Tracker (SNLT), which works in conjunc-
tion with a wide range of Siamese trackers includ-
ing SiamFC [1], SiamRPN [25], DaSiamRPN [41],
SiamRPN++ [24], and more recent Siam R-CNN [38].

3.1. Overview

In Fig. 2a, we present in detail how SNLT incor-
porates and enhances Siamese trackers with NL de-

scriptions of the target, using SiamRPN++ [24] as an
example backbone. Realization of the SNLT for other
Siamese trackers can be derived in a similar way.

The SNLT takes three inputs for each frame, a visual
exemplar, a visual search patch, and a language query
Q. We use convolutional neural networks (CNNs), e.g .
AlexNet [23] and ResNet-50 [16], to extract visual rep-
resentations of the visual exemplar and visual search
patch, denoted as Z and X respectively. We use a
Language Model to compute a sentence embedding of
the NL description Q. We use ZQ to denote this em-
bedding. The Language Model for the SNLT can be
any sentence embedding model, and in our experiments
we use GloVe [30], HGLMM [5] and BERT [11] based
models.

The triplet (Z,ZQ, X) is then passed on to the pro-
posed Siamese Natural Language Region Proposal Net-
work (SNL-RPN), which will predict bounding box
classification scores and regressions on a set of pre-
defined anchors for both vision and language modali-
ties. We use S and B to denote the classification scores
and regressions in our detailed derivation of the SNL-
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RPN in Sec. 3.2.
After predictions from the SNL-RPN are obtained,

a Dynamic Aggregation Module combines the predic-
tions from the vision and language modalities. The
Dynamic Aggregation Module is explained in detail in
Sec. 3.3.

Our SNLT enhances existing Siamese trackers by ex-
ploiting an NL description of the target and reducing
the chance of model drift that is common in Siamese
trackers. The SNLT significantly improves the perfor-
mance of Siamese trackers and outperforms previous
tracking by NL description approaches by a large mar-
gin.

3.2. Architecture of the SNL-RPN

The proposed SNLT is built upon a Siamese Natu-
ral Language Region Proposal Network (SNL-RPN), as
shown in Fig. 2b. The novel components are presented
in red blocks and arrows.

For each input triplet (Z,ZQ, X), the SNL-RPN
outputs two sets of different predictions, one from the
Visual Head and the other from the NL Head. Same as
an ordinary region proposal network (RPN), the SNL-
RPN has two branches for each of the Visual Head and
the NL Head: the Classification branch and the Re-
gression branch for its anchors.

For both the Classification branch and the Regres-
sion branch, a depth-wise cross correlation between X

and Z, shown as ⋆ in Fig. 2b, is used to compute visual
feature maps for the Visual Head. Another depth-wise
cross correlation between X and ZQ is used to com-
pute the RPN feature maps for the NL Head. We use
SVIS and SNL to denote the scores predicted by the
Classification branch, and BVIS and BNL to denote the
regressions predicted by the Regression branch.

The layer-wise aggregation of the SiamRPN++ is a
weighted sum between three predictions from ResNet
group 3, 4, and 5 respectively. The weights for this
group-wise aggregation are trained offline and remain
fixed during inference. For the SNL-RPN, similarly,
we train a set of weights offline that aggregates the
predictions from ResNet group 3, 4, and 5 for both the
Visual Head and NL Head independently. i.e.

SVIS =
∑

i=3,4,5

S
Group i
VIS

SNL =
∑

i=3,4,5

S
Group i
NL

BVIS =
∑

i=3,4,5

B
Group i
VIS

BNL =
∑

i=3,4,5

B
Group i
NL

(1)

Note that for a simpler backbone tracker, e.g .
SiamRPN and SiamFC, no such layer-wise aggregation
is needed.

3.3. Aggregation of the SNL-RPN Predictions

In order to jointly predict the tracking update from
both visual and language cues, we introduce another
type of aggregation beyond the layer-wise aggregation
in SiamRPN++: the aggregation between the Visual
Head and the NL Head predicted by the SNL-RPN.
We define the aggregation as

S =wVIS · SVIS + wNL · SNL;

B =wVIS · BVIS + wNL · BNL.
(2)

Intuitively, we can train the aggregation weights
wVIS and wNL offline, which is essentially an estimate
of the reliability of the predictions based on language
cues and visual cues. However, as we are taking predic-
tions from two networks that consume different inputs,
similar to online learning setups in [32], it is not ideal
to keep fixed weights between them.

Therefore, we design the aggregation between the
NL Head and the Visual Head to be dynamic based
on the predictions and the inputs. The entropies for a
predicted score map are defined as:

HVIS =−

∑
SVIS · logSVIS;

HNL =−

∑
SNL · logSNL.

(3)

Ablation studies in Sec. 4.4 show a negative correla-
tion between the entropy of S and the Intersection over
Union (IoU) between the prediction and the ground
truth bounding box. Therefore, we give less weight to
either the NL Head or the Visual Head when they have
a high entropy on their classification scores:

wVIS, wNL = σ ([α ·HNL, α ·HVIS]) , (4)

where σ is the softmax function and α is the “tempera-
ture,” i.e. a constant scalar to scale the entropies. Note
that in Eq. 4, the subscript ”VIS” and ”NL” for w are
swapped in the left hand side compared with that for
the H in the right hand side. As a result, when aggre-
gating the Visual Head and NL Head, the one with a
higher entropy will have a lower weight.

3.4. Training the SNL-RPN and Loss Functions

To construct training instances that resemble the
test-time distribution, we randomly choose two frames
at different time steps, together with the corresponding
ground truth bounding boxes. We crop and resize Z

for the visual exemplar, and X for the search patch.
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Thus, a triplet (Z,ZQ, X), is constructed as the input
for training our proposed tracker.

We follow the training process of the RPN in Faster
RCNN [15] for the SNL-RPN to sample 16 positive an-
chors and 48 negative anchors. Positive anchors have
an IoU with the ground truth bounding box greater
than 0.7, while negative anchors have an IoU less
than 0.3. We use a softmax cross entropy loss, de-
noted by Lcls, for training Classification branches and
a smoothed L1-loss, denoted by Lreg, for training Re-
gression branches. The overall training loss is

L(Z,ZQ, X) =Lcls(SNL) + Lreg(BNL)

+ Lcls(SVIS) + Lreg(BVIS).
(5)

4. Experiments

In this section, we first describe the datasets and
implementation details in our experiments. Then, we
compare our tracker with state-of-the-art visual and
NL trackers. Finally, we present ablation studies to
demonstrate the effectiveness of our proposed SNLT,
the SNL-RPN and the novel Dynamic Aggregation
Module.

4.1. Datasets

Training Datasets: The backbone networks used in
this work, AlexNet [23] and ResNet [16], are pretrained
on ImageNet [10]. We use all images and phrases from
VisualGenome [22], and frames from MSCOCO [27]
and YouTube-BoundingBox [31], together with images
and phrases from training splits of LaSOT and OTB-
99-LANG2 [26] for training the SNL-RPN. We follow
the same size of 127×127 pixels for the template patch
Z and the size of 255× 255 pixels for the search patch
X during training.

Evaluation Datasets: Given the novelty of the track-
ing by NL description setup, we are aware of only two
publicly available tracking benchmarks that are anno-
tated with NL for targets. In Li et al .’s early work
on NL tracking [26], they annotated OTB-100 [39] with
NL to produce the OTB-99-LANG dataset. In a more
recent work [13], LaSOT, a large single object track-
ing benchmark dataset annotated with NL for targets,
was introduced with 70 different categories of objects
and 20 sequences for each category, totaling at 1,400
sequences. We choose to follow protocol 2 from [13], to
evaluate our tracking by One Pass Evaluation (OPE)
on the testing split of the dataset.

2Note that this is different from OTB-100.

4.2. Implementation Details

Training Initialization: We initialize the AlexNet
[23] and the stride-reduced ResNet [24] with pretrained
weights on ImageNet [10] and randomly initialize layers
in the SiamRPN/SiamRPN++ [25, 24]. Layers other
than the sentence encoder in the proposed SNL-RPN
are initialized randomly from N(0, 1).

We use the average of the word embeddings as the
sentence embedding with HGLMM [5] and GLOVE [30]
in additional to a pretrained BERT sentence encoding
model [11] in our ablation studies. Additionally, we
fine-tune a BERT sentence embedding model [11] to
achieve the state-of-the-art tracking performance.
Learning Rates and Convergence: We train our
proposed SNL-RPN using a PyTorch implementation
on GPUs with an Adagrad [12] optimizer and an ini-
tial learning rate of 0.001. We decay the learning rate
after 5 epochs to 0.0005 and continue the training for
another 5 epochs. Batch size is set to 256/64 triplets
of Z, Q, and X per GPU. Gradients are averaged over
each batch, while the gradients for the NL Head in
SNL-RPN are omitted if Q is not present. Under these
settings, the training process takes 5 hours to converge
on 16 GPUs using the loss described in Sec. 3.4.
Inference Hyper-parameter Selection: The α

used in the Dynamic Aggregation Module between vi-
sion and language modalities is set to 300 throughout
our experiments. In addition to the introduced α, ex-
isting hyper-parameters that are standard in Siamese
trackers, e.g . sub-window attention, gating, etc., are
chosen via validation experiments. We use the val-
ues released by the original authors for all hyper-
parameters shared by SNLT and backbone Siamese
trackers. We chose hyper-parameters that are unique
to our SNLT on the training split of LaSOT. The α we
chose will not result in a hard switch. The wVIS and
wNL on LaSOT test videos range from roughly 0.13 to
0.86.

4.3. Comparison with Visual and NL Trackers

We compare the proposed SNLT with the following
state-of-the-art real-time trackers: SiamRPN++ [24],
SiamRPN [25], PrDiMP [8], DiMP [2], ATOM [6], MD-
Net [28], and VITAL [35]. For the fairness of compar-
isons, we use their released codes, model weights, and
hyper-parameters in all experiments. Success, Preci-
sion, and Normalized Precision Plots on LaSOT [13]
and OTB-99-LANG test splits are presented in Fig. 3
and Fig. 4 respectively. The SNLT tracker improves
the SiamRPN++ baseline on both the LaSOT and the
OTB-99-LANG. In OTB-99-LANG, where videos are
typically less than 300 frames, the model drift prob-
lem is much less frequent than that in the LaSOT
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Figure 3: Success, Precision, and Normalized Precision Plots on the LaSOT test set.
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Figure 4: Success, Precision, and Normalized Precision Plots on OTB-99-LANG.

Backbone NL Success Norm. Prec.
SiamRPN++ BERT 54.0 63.6

SiamRPN++ HGLMM 50.4 60.0
SiamRPN++ GLOVE 49.9 59.4
SiamRPN++ N/A 48.9 58.0
SiamRPN BERT 46.0 54.6

SiamRPN HGLMM 44.1 53.7
SiamRPN GLOVE 43.6 52.8
SiamRPN N/A 42.2 50.9

Table 1: Ablation studies of the proposed SNLT
tracker on LaSOT test split. Three different sen-
tence embedding models (BERT [11], HGLMM [5] and
GLOVE [30]) are used to train our SNL-RPN on both
SiamRPN [25] and SiamRPN++ [24] backbones. The
best and second best performances are highlighted with
bold and italic fonts.

dataset. Our SNLT improves the performance of the
SiamRPN++ by 0.8 percentage points. In the La-
SOT benchmark, as shown in Fig. 1, the SNLT con-
sistently improves the Siamese trackers by 3 to 7 per-
centage points, and the top SNLT variant based on

OTB LaSOT

Tracker Suc. Norm. Suc. Norm.
SNLT 0.67 0.80 0.54 0.64

FENG [14] 0.61 0.73 0.35 0.43
LI [26] 0.55 0.67 - -

SNLT (SEM) - - 0.40 0.48

Table 2: Comparison between LI [26], FENG [14] and
the SNLT using both bounding box and NL for initial-
ization. “SEM” stands for using the semantic class as
the NL description input to the SNLT tracker. The
best performance is highlighted with bold font.

SiamRPN++ is very competitive among state-of-the-
art real-time trackers.

Following [14], we evaluate our SNLT on the NL-
Consistent LaSOT, a subset of LaSOT test split in
which the NL descriptions uniquely describe the target
in the video (selected by crowd workers). We show that
when the NL descriptions uniquely describe targets,
the proposed SNL-RPN outperforms all prior works.
Success, Precision and Normalized Precision Plots on
NL-consistent LaSOT are presented in Fig. 5.
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Figure 5: Success, Precision, and Normalized Precision Plots on NL-Consistent LaSOT [14]. Our SNLT outperforms
siamese trackers by a large margin as the NL descriptions in the NL-Consistent LaSOT uniquely describe the
targets.

FRAME 2000 FRAME 4000 FRAME 6000 FRAME 7000

(a) The given NL uniquely describes the airplane and helps our tracker (red) stay on the target, while SiamFC [1] (purple)
and SiamRPN++ [24] (blue) suffers from model drifts.

FRAME 100 FRAME 500 FRAME 1000 FRAME 1500

(b) The given NL (goldfish swimming among other fishes in the water) does not uniquely describes the target. As multiple
goldfishes are present in the scene, the NL description does not help our tracker (red) to avoid model drifting.

Figure 6: The ambiguity of the NL description may affect our tracker.

We also compare our proposed tracker with best
published NL trackers, Feng [14] and Li [26], on LaSOT
and OTB-99-LANG for the tracking with NL task, i.e.
tracking with both the bounding box initialization and
the NL description of the target. Evaluations of [26]
on LaSOT are omitted, since no training code was re-
leased for it to guarantee a fair comparison. As shown
in Tbl. 2, the SNLT outperforms the best published
NL trackers by a large margin.

4.4. Ablation Studies

In this section, we conduct comprehensive experi-
ments and ablation studies analyzing the performance
of our proposed SNLT, SNL-RPN, and the Dynamic
Aggregation Module.

OTB-99-LANG and LaSOT are the only available
single object tracking benchmarks with NL annota-

tions that are publicly available. Only one NL descrip-
tion is provided for each sequence. Leveraging such
NL descriptions to consistently improve visual track-
ing ends up very challenging. In Fig. 6, we show one
case when the NL description would help our tracker
recover from model drift, and another case when the
given NL description does not uniquely describe the
target and eventually makes our tracker drift away to
another object that also matches the NL description.
This showcase explains why our SNLT has an even fur-
ther advantage on the NL-Consistent LaSOT.

We evaluate the correlation coefficient between the
entropies defined in Eq. 3 and the IoU between the
predicted bounding boxes and ground truth bounding
boxes for each video. We plot the distribution of the
correlation coefficient on the LaSOT test split in Fig. 7.
The negative correlation between the entropies and the
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Figure 7: Distribution of the correlation coefficient be-
tween the entropies defined in Eq. 3 and IoU of the
predicted and ground truth bounding box.

predicted IoU motivates our Dynamic Aggregation, in
Eq. 4, of the NL Head and the Visual Head in the
SNL-RPN.

Additionally, an example frame from the airplane-13
video is visualized together with the score maps from
the NL Nead and the Visual Head in Fig. 8. The pro-
posed Dynamic Aggregation between the two modal-
ities give higher weights to the modality with lower
entropy, resulting in a more stable tracker.

We test the SNLT with different Language Models,
including sentence embedding model that takes average
of word embeddings from GloVe [16] and HGLMM [5],
and a BERT sentence embedding model [11]. The
SNLT were individually trained with the same proce-
dure as discussed in Sec. 4.2. Comparisons of these
trackers are shown in Tbl. 1. The proposed SNL-
RPN and the Dynamic Aggregation between vision
and language modalities, effectively boost the track-
ing performance of both SiamRPN and SiamRPN++.
HGLMM, a more recent sentence embedding model
trained for vision tasks, further pushes the SNLT to
a better performance compared to the GloVe based
sentence embedding model. The sentence embedding
models are not fine-tuned for two reasons: 1. They are
pre-trained with large corpuses of texts and the NL
tracking datasets are relatively small. 2. There are
several layers after ZQ that are trained from scratch.

The tracking by NL description problem has its
unique challenges compared to the tracking by se-
mantic information [36]. An ablation study using the
ground truth semantic class label, i.e. category label in
LaSOT (e.g . airplane, person, etc.), as the NL descrip-
tion is reported in Tbl 2. Results show that the SNLT

4

Visual Search Patch

Figure 8: Visualization of an example of the Visual
Search Patch X (left), Score Map from Visual Head
SVIS (middle) and Score Map from NL Head SNL

(right) in the airplane-13 video of LaSOT. The NL
description of the target is “white airplane flying in
the air.” The NL Head is more confident and has
a more concentrated prediction of the airplane than
the Visual Head, possibly due to the occlusion of the
target. Such difference in prediction confidence is re-
flected in the entropies computed by Eq. 3, then follow
Eq. 4, the aggregation weights for this example are
(wVIS, wNL) = (0.39, 0.61), biasing towards the predic-
tion from the NL Head, as expected for this frame.
The proposed Dynamic Aggregation that gives higher
weight to the modality with lower entropy results in a
more stable tracker.

learns more than the semantic class to outperform the
baseline SiamRPN++.

Regarding the speed of the proposed SNLT, it only
adds a small overhead to Siamese trackers (most com-
putations from ResNet are shared between Siamese
RPN and SNL-RPN). As shown in Fig. 1, the SNLTs
are around 5% to 10 % slower than their corresponding
backbones when using the NL-RPN for inference, still
achieving over 50 frames per second.

5. Conclusion and Future Work

We present a novel Siamese Natural Language
Tracker (SNLT) and Siamese Natural Language Re-
gion Proposal Network (SNL-RPN), which can track a
target in a video given an NL description of the target.
With the Dynamic Aggregation Module between vision
and language modalities, our approach enjoys better
robustness than other visual object trackers. Exper-
iments on challenging datasets demonstrate that the
SNLT outperforms its backbone trackers by a large
margin. Our SNLT and SNL-RPN are generally ap-
plicable to all Siamese trackers. Thus, we expect they
will be useful in enhancing future Siamese trackers in
pursuit of state-of-the-art.
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