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Abstract

We propose a framework for early action recognition and

anticipation by correlating past features with the future us-

ing three novel similarity measures called Jaccard vector

similarity, Jaccard cross-correlation and Jaccard Frobenius

inner product over covariances. Using these combinations

of novel losses and using our framework, we obtain state-of-

the-art results for early action recognition in UCF101 and

JHMDB datasets by obtaining 91.7 % and 83.5 % accu-

racy respectively for an observation percentage of 20. Sim-

ilarly, we obtain state-of-the-art results for Epic-Kitchen55

and Breakfast datasets for action anticipation by obtaining

20.35 and 41.8 top-1 accuracy respectively.

1. Introduction

Action anticipation ability of humans is an evolution-

ary gift that allows us to perform daily tasks effectively,

efficiently and safely. This phenomena is known as men-

tal time travel [30]. Even if humans are good at predict-

ing the immediate future, how this happens internally in-

side our brain remains a mystery. In an era where Ar-

tificial Intelligence is growing, human action anticipation

has naturally become an important problem in Computer

Vision. Various forms of action prediction problems have

been studied in the literature such as early action recogni-

tion [5, 15, 17, 18, 25, 26, 28, 36], anticipation [4, 20, 23]

and activity forecasting [1, 14, 22]. The objective of Early

Action Recognition [17] (EAR) (also known as action pre-

diction) is to classify a given video from a partial obser-

vation of the action. In this case, the observed video and

the full video contain the same action and methods observe

about 10%-50% of the full video to recognize the action.

In contrast, Action Anticipation (AA) methods [4, 20] aim

at predicting a future action δt seconds before the future

action starts and the observed video contains an action dif-

ferent from the future action. In both cases, models observe

the first part of the video and predict the ongoing action or

the future action.

Humans have the natural ability to correlate past experi-

ences with what might happen in the future. For example,

when we see someone walking toward the door inside a cor-

ridor, we can say that person will open the door with a high

confidence. Perhaps the action of walking towards the door

correlates with the future action of ”opening the door” with

a high probability and humans may learn these associations

from a very young age. In this paper, we propose to solve

the problem of action anticipation and early prediction by

correlating past features with the future. To do this, we pro-

pose a new framework and three novel loss functions.

Our framework maximizes the correlation between ob-

served and the future video representations. By doing so, at

train time our model learns to encapsulate future action in-

formation given the observed video. At test time our model

exploits this correlation to infer future temporal information

and makes accurate action predictions. Similar ideas have

been explored before in the literature. However, what re-

mains unclear is at what abstraction one should exploit this

correlation between the future and past? We argue it is bet-

ter to exploit this correlation at the higher levels of the video

representation and also at class level. The second question

is how to maximize this correlation at higher levels of the

video representation?

In this paper, we show that commonly used techniques

such as minimizing the L2 distance or maximizing the

vector correlation or the cosine similarity between future

and observed video representations is not ideal. Although

conceptually the vector correlation makes sense, it is not

bounded. The cosine vector similarity seems a relevant

choice for this problem. However, when used for deep rep-

resentation learning, there are limitations to cosine similar-

ity. We discuss these limitations in detail in section 3.3.1.

Briefly, the cosine similarity between a vector z and kz

(where k is a scalar) is always 1.0 (or -1.0) irrespective of

the value of k. This property of cosine similarity could po-

tentially hurt the learned representation. Ideally, a vector

similarity measure should take into account both the mag-

nitude and angle between vectors and the similarity should

be bounded. Inspired by Jaccard Similarity overs sets, we

propose Jaccard Vector Similarity (JVS) which has good

properties when learning representations by maximizing the

13224



vector similarities.

Furthermore, we show that Jaccard similarity can be ex-

tended to not only vectors, but also for matrices. Specif-

ically, in this paper we extend Frobenius Inner Product

(FIP) to work with covariance matrices and propose a new

similarity measure called Jaccard Frobenius Inner Product

(JFIP). We extract the covariance matrix of the observed and

future videos and make the observed covariance matrix con-

tains information about the future by maximizing JFIP be-

tween them. Unlike FIP over covariance matrices, the JFIP

similarity is bounded between -1 and 1 and smooth over

the space of covariance matrices. We also propose to ex-

ploit cross-correlations between observed and future video

representations and propose a new similarity measure based

on Jaccard similarity over cross-correlations called Jaccard

cross-correlation (JCC). By exploiting bounded similarity

measures such as JVS, JFIP and JCC, we correlate past with

the future for action anticipation and early recognition us-

ing a common framework. We use slightly different archi-

tectures for EAR and AA problems. We show the benefit of

Jaccard similarity measures to learn video representations

suitable for future prediction tasks in an end-to-end man-

ner. In a summary, our contributions are as follows:

(1) We propose a common framework for action antici-

pation and early action recognition by exploiting the corre-

lations between observed and future video representations.

We show some limitations of cosine similarity when used

for deep representation learning and propose a novel sim-

ilarity measure called Jaccard Vector Similarity. We ex-

perimentally show that JVS is better than cosine similar-

ity, vector correlation, and L2 loss for the task of correlat-

ing past features with the future for action anticipation and

early action recognition. (2) We further extend the Jaccard

Similarity for covariance matrices and cross-correlation.

We propose two novel similarity measures called Jaccard-

cross-correlation and Jaccard Frobenius Inner Product over

covariance matrices which performs better than standard

cross-correlation, Frobenius inner product, Frobenius norm

over covariance matrices, and Bregman divergence. We

show the impact of these novel loss functions for action an-

ticipation and early prediction on four standard datasets.

2. Related work

In early action recognition the objective is to classify on-

going action from partially observed action video. These

methods observe 10% - 50% of the video and then try to rec-

ognize the action [25, 15, 26]. These methods assume the

input is a well trimmed video containing a single human ac-

tion. Early action recognition models can be classified into

various groups. There are methods that aim to learn video

representations suitable for early action recognition by han-

dling uncertainty using new loss functions [26, 10, 18]. Sec-

ond group of methods generate features for the future and

then use classifiers to predict actions using generated fea-

tures [28, 32]. Third group of methods generate future

images (either RGB or motion images) and then classify

them into human actions using convolution neural networks

[37, 34, 24]. However, RGB image generation for the future

is a very challenging task, especially for a diverse video se-

quence. Similarly, some methods aim to generate future

motion images and then try to predict action for the fu-

ture [24]. Perhaps these methods may not be able to gen-

erate details of the scenes and actions and therefore not an

ideal solution for action anticipation and early action recog-

nition.

Our method is somewhat similar to those methods that

generate future features. However, we do not explicitly gen-

erate future features, rather we correlated future video rep-

resentations with the observed data so that we can encap-

sulate enough information about the future in our observed

video representation. Besides, we train our models end-to-

end to take advantage of novel loss functions. Somewhat

similar idea to ours is the work of [31] where they train two

separate action recognition and anticipation models. They

distill information from the recognition model to the antic-

ipation model using unlabeled data. In contrast, we do not

have two dedicated models for recognition and anticipation

and instead of model distillation, we directly make use of

future video representations to correlated the past observa-

tions with the future using a novel set of Jaccard similarity

losses over vectors, cross-correlations and covariance ma-

trices of past and the future features.

Authors in [20], use prediction and transitional models

for action anticipation. We also follow a similar idea for

action anticipation. However, our model makes an explicit

connection to the future features by exploiting correlations

between observed and future video representations making

both prediction and transitional models more effective. Au-

thors in [33] use a transformer like architecture to encode

observed video and then use progressive feature generation

models to generate future features and then classify them.

Interestingly, authors make use of L2 loss to minimize fea-

ture reconstruction error. Indeed, encoder-decoder type of

architecture is a natural choice for action anticipation and

shown to be very effective for action anticipation [4, 6].

Recently, an effective way to aggregate temporal informa-

tion using so-called recent and spanning features for action

anticipation is demonstrated in [27]. We believe the find-

ings of [27] is orthogonal to our work. Some other methods

forecast more than one action into the future after observing

around 10-50% of a long video [19, 1, 14, 22, 40, 21]. In

this paper, we only focus on short term action anticipation.

13225



Observed Video

Summary 

Network

𝑧𝑡
Classifier

𝑦𝑡

Summary 

Network

𝑧
Projector𝑧ℎ

Maximize 

the 

similarity

Observed Video Future Video

Full video Single Action

Figure 1. High level visual illustration of early action prediction

architecture.

3. Method

3.1. Problem statement: early action recognition

The objective of early action recognition is to predict an

ongoing action as early as possible. Typically, methods ob-

serve p% of the action and then predict the category of on-

going action. Let us define the observed video sequence

which corresponds to p% of the action by Vo = 〈I1, · · · It〉
and the video sequence which corresponds to full action by

V = 〈I1, · · · , It, · · · , IT 〉 where Ij is the jth frame of the

video containing action label y. The objective is to predict

the action y of the video V only by processing the first part

of this video denoted by Vo, i.e. observed video.

3.2. Our architecture for early action prediction.

A visual illustration of our early action prediction model

is shown in Figure 1. We extract visual features from the

observed video Vo using an end-to-end trained feature sum-

marizing network (e.g. Resnet(2D+1D) or Resnet50+GRU)

to get feature vector zt. The zt feat summarizes the spatial

temporal information of the observed video Vo. Similarly,

we extract the feat z from the entire video V using the same

summarizing network.

At test time we classify the feature vector from the ob-

served video (i.e. zt) to get the action label ŷ. Because the

observed video Vo does not contain all information about

the full action, during training we transfer information from

the full video V to the observed feature vector zt. By doing

so, we aim to generate a video representation zt that entails

information about the future unseen video. To do that we

train our model by maximizing the similarity between zt

and z. However, directly maximizing the similarity is not

effective as obviously the zt and z are obtained from dif-

ferent sources of information. In-fact, z from the full video

contains more information and our objective is to transfer

maximum amount of information to the observed feature

vector zt from z. To do that we use a linear projection on

z to obtain zh and then maximize the similarity between

zh and zt. We experimentally validate different forms of

non-linear functions to map z → zh and found that linear

mapping is the best.

We maximize the similarity between zt and zh by func-

tion φ(zh, zt) that measures some notion of similarity be-

tween zh and zt. Therefore, during training, we minimize

the following objective function.

LCE(y, ŷ) + λexp(−φ(zh, zt)) (1)

Here LCE(y, ŷ) is the cross-entropy loss and λ is a scalar

hyper-parameter.

3.3. Suitable loss functions

It is important to select suitable loss function for

φ(zh, zt). Typically, natural choices would be to use co-

sine similarity or simply the vector correlation. However,

we argue that a combination of vector similarity, cross-

correlation and covariance measure are more suitable as

these measures provide a comprehensive way of maximiz-

ing similarity between zh and zt. Next, we present novel

similarity measures which are more suitable for the tasks.

3.3.1 Jaccard Vector Similarity Loss

We argue that measures such as cosine similarity between

vectors are not ideal when we want to learn representation

by maximizing the similarity between pairs of data points.

For example, the cosine similarity between a vector z and

kz would be 1 even if the scalar k is infinitely large. This

has an implication on the learning process as two vectors

that have very different magnitudes are similar with respect

to the cosine similarity due to small angle. On the other-

hand measures such as L2 distance are unbounded and

harder to optimize and usually do not generalize to the test-

ing data. To overcome this limitation of cosine-similarity,

we propose a novel vector similarity measure called Jac-

card Vector Similarity. Typically, the Jaccard similarity is

only defined over sets by computing the fraction of the car-

dinality of intersection set over the cardinality of the union

of sets. We extend this concept somewhat analogically over

vectors and define the Jaccard Vector Similarity as follows.

φ(zh, zt) =
2zh · zt

zh · zh + zt · zt
(2)

For a given pair of vectors z and kz (where k is a scalar),

we observe the following differences in cosine similarity

and the Jaccard Vector Similarity (JVS) as summarized in

Table 1. Illustration of the behavior of Jaccard Vector Sim-

ilarity is shown in Figure 2. In this figure, you observe the

behavior of Jaccard Vector Similarity for different k values.
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Property Cosine Jaccard

k → ∞ 1 0.

k → 0 Not defined 0.

k → −∞ -1 0.

Functional Form sign(K)× 1. 2k
k2+1

Table 1. Properties of Jaccard Vector Similarity for two vectors z

and kz where k is a scalar.

Figure 2. The behavior of Jaccard Vector Similarity (left) vs Co-

sine Similarity (right) for two vectors z and kz where k is a scalar.

The cosine similarity between z and kz will be +1.0 or -1.0 irre-

spective the value of k and cosine similarity is not smooth.

Both cosine and JVS is based on the vector correlation, i.e.

zh · zt. However the normalization of them is different.

Now imagine δk is a small vector and the cosine similar-

ity between z and k(z+ δk) will be closer to 1.0 irrespec-

tive of the values of scalar k, where (k > 0.). We believe

this behavior of cosine similarity is not ideal for learning

representations in the context of deep learning, especially

because it is not a smooth function and similarity does not

depend on the magnitude. In contrast, Jaccard Vector Simi-

larity considers both angle and the magnitude of two vectors

to determine the bounded similarity. Especially, the JVS is

fully differentiable and a smooth function over the entire

vector space.

We argue that JVS is a better option than cosine similar-

ity, especially, for deep representation learning methods and

we propose to use it for training our action prediction mod-

els where the term φ(zh, zt) in Equation 1 is obtained by

JVS. Therefore, we maximize the similarity between fea-

ture vectors derived from the observed and future videos

using JVS. This allows us to transfer information from full

video to the observed video during training. In other words,

we correlate future information with past observations to

make effective future predictions.

3.3.2 Jaccard Cross-Correlation Loss.

Furthermore, we extend the similarity maximization to

cross-correlations and covariances. In this case, the input to

similarity function φ(·, ·) is either a cross-correlation matrix

or a covariance matrix obtained from the batch data. For a

given batch of n videos, we obtain observed data matrix Zt

and the full feature matrix Z where each row in these ma-

trices are obtained from the corresponding feature vectors

(zt, z) of each video in the batch. As before, we project the

full video features z to zh by linear mapping and construct

matrix Zh.

Then the cross-correlation matrix of Zh and Zt is ob-

tained by E[ZT
h ×Zt] [7] where E[] is the expectation. Then

we define the similarity loss based on the cross-correlation

matrices and the Jaccard similarity as follows:

∥

∥

∥

∥

exp(−2
E[ZT

h × Zt]

E[ZT
h × Zh] + E[ZT

t × Zt]
)

∥

∥

∥

∥

mean

(3)

where ||C||mean is the mean norm of the matrix define by
1
n2

∑n

i=1

∑n

j=1 Ci,j . We call this measure as the Jaccard

Cross-Correlation (JCC) loss. The objective of this JCC

loss is to maximize the cross-correlation between observed

and future data and therefore to transfer more (future) infor-

mation to the observed video representation.

3.3.3 JFIP: Jaccard Frobenius Inner Product Loss.

Finally, we also propose a new similarity measure by ex-

tending the Frobenius inner product using Jaccard similar-

ity. For this we use covariance information of observed and

future videos. Let us define the covariance matrix of Zh by

Ch and the covariance matrix of Zt is Ct. The new Jaccard

Frobenius Inner Product of covariance matrices is defined

as follows:

φ(Zh, Zt) =
2 〈Ch, Ct〉F

〈Ch, Ch〉F + 〈Ct, Ct〉F
(4)

where 〈Ca, Cb〉F denotes the Frobenius inner product be-

tween matrices Ca and Cb. Similar to Jaccard vector

similarity, the Jaccard Frobenius Inner Product (JFIP) has

bounded similarity and has a nice smoothness property

which is useful for deep representation learning tasks.

Specifically, the main idea of JFIP is to make sure that the

observed video representation contains information about

the second order statistics of the future video data. In other

words, we aim to transfer covariance information of the fu-

ture to the past representation.

We propose to make use of Jaccard vector similarity

(JVS), Jaccard cross-correlation (JCC) and Jaccard Frobe-

nius inner product (JFIP) for optimizing the representation

using the loss function in equation 1. While JVS pro-

vides a direct measure of similarity between observed and

full videos, JCC and JFIP losses use higher order statisti-

cal information between observed and full video features.

All these losses provide complementary information and

we argue that ”Jaccard” measures are bounded and smooth

and therefore effective in learning representation when we

maximize similarity. Therefore these are better than tradi-

tional measures such as vector correlation, cosine similarity,

L2 distance, traditional cross-correlation, Frobenius inner

product and Bregman divergence [8] over covariance matri-

ces. Once we define the similarity function, to transform
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Figure 3. High level visual illustration of action anticipation archi-

tecture.

them to a loss function, we use the negative exponential

exp(−φ()) function as shown in Table 2 when needed.

3.4. Action anticipation with Jaccard losses.

In this section we further extend our architecture for ac-

tion anticipation. In action anticipation the objective is to

predict an action δt seconds before action starts. Let us as-

sume that the length of the observed video is to seconds and

then the next action starts at to + δt seconds. As before,

let us denote the observed video by Vo and the future action

video by Vf . Let us also define the label of observe action

by yo and the label of the future action by yf . We predict

the next future action yf by processing the observed video

Vo which ends δt seconds before the action yf starts.

3.5. Architecture for action anticipation.

A high level illustration of our action anticipation archi-

tecture is shown in Figure 3. We obtain the feature repre-

sentation zt from the observed video and then classify it to

obtain the observe action ŷo using a linear softmax classi-

fier. We transform zt to zh using a linear projection. The

vector zh essentially simulates the feature representation for

the future action yf . In-fact, we classify zh using the same

action classifier as before to obtain ŷf .

During training, we also extract the actual feature repre-

sentation of the future video denoted by z and maximize the

similarity between z and zh using JVS, JCC and JFIP as be-

fore. If we denote the video summary network by g(), then

z = g(Vf ) and zt = g(Vo). Typically we limit the length

of Vo and Vf to be short clips of 2 seconds. The anticipa-

tion gap (δt) is usually set to 1 second. Now loss function

consists of two cross-entropy losses as follows:

LCE(yo, ŷo) + LCE(yf , ŷf ) + λexp(−φ(zh, z)) (5)

where LCE(yo, ŷo) is the cross-entropy loss for observed

action and LCE(yf , ŷf ) is the cross entropy loss for the fu-

ture action label. The term exp(−φ(zh, z)) is obtained by

JVS, JCC and JFIP.

It is intuitive to assume that there is a significant bias

when predicting next action if we know the previous action.

For example, if we observe action ”open door”, it is more

likely to see an future action such as ”turn on lights”. To

explore this bias in action transition space, we propose to

make use of a linear projection that allows us to predict the

next action from the observed action. Therefore, we also

predict the next action (denoted ˆyof ) by linearly projecting

the observed action score vector. Therefore, during training

we have the following multi-task training loss.

LCE(yo, ŷo)+LCE(yf , ˆyof )+LCE(yf , ŷf )+λexp(−φ(zh, z))
(6)

We optimize the above objective function for action antici-

pation. The loss term LCE(yo, ŷo) makes sure that the clas-

sifier in Figure 3 is well trained for observed actions. The

term LCE(yf , ˆyof ) makes sure that the future action predic-

tion obtained by linearly transforming the observed action

is accurate. The term λexp(−φ(zh, z) makes sure that zh
is highly correlated with the actual future action represen-

tation z. This correlation helps to predict both ˆyof and ŷf
accurately. At test time, we take the sum of scores ŷof and

ŷf to get the correct future action prediction score.

3.6. Alternative loss functions

Now we present some alternative loss functions that we

evaluate in our experiments to demonstrate the effective-

ness of JVS, JCC and JFIP loss. For this discussion let us

assume that observed video representation is zt and the fu-

ture representation is z. The objective of these loss func-

tions is to minimize the differences between zt and z or to

maximize the similarity. For batch wise measures such as

covariance and cross-correlation measures, we denote the

observed batch of video representation by matrix Zt where

each row represents a vector from a video. Similarly, Z is

the representation of the future video. The covariance ma-

trix of the observed batch obtained from Zt is denoted by

Ct and the covariance matrix obtained from Z is denoted

by Cz . In Table 2 we present all loss functions we compare

in our experiments.

4. Experiments

In this section we evaluate our early action prediction

and action anticipation models. First, we evaluate the im-

pact of novel loss functions for early action anticipation in

section 4.1 and then present action anticipation results in

section 4.2.
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