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Abstract

Robust point cloud registration in real-time is an impor-

tant prerequisite for many mapping and localization algo-

rithms. Traditional methods like ICP tend to fail without

good initialization, insufficient overlap or in the presence of

dynamic objects. Modern deep learning based registration

approaches present much better results, but suffer from a

heavy runtime. We overcome these drawbacks by introduc-

ing StickyPillars, a fast, accurate and extremely robust deep

middle-end 3D feature matching method on point clouds.

It uses graph neural networks and performs context aggre-

gation on sparse 3D key-points with the aid of transformer

based multi-head self and cross-attention. The network out-

put is used as the cost for an optimal transport problem

whose solution yields the final matching probabilities. The

system does not rely on hand crafted feature descriptors or

heuristic matching strategies. We present state-of-art art ac-

curacy results on the registration problem demonstrated on

the KITTI dataset while being four times faster then leading

deep methods. Furthermore, we integrate our matching sys-

tem into a LiDAR odometry pipeline yielding most accurate

results on the KITTI odometry dataset. Finally, we demon-

strate robustness on KITTI odometry. Our method remains

stable in accuracy where state-of-the-art procedures fail on

frame drops and higher speeds.

1. Introduction

Point cloud registration, the process of finding a spatial

transformation aligning two point clouds, is an essential com-

puter vision problem and a precondition for a wide range

of tasks in the domain of real-time scene understanding or

applied robotics, such as odometry, mapping, re-localization

or SLAM. New generations of 3D sensors, like depth cam-

eras or LiDARs (light detection and ranging), as well as

multi-sensor setups provide substantially more fine-grained

and reliable data enabling dense range perception at a large

field of view. These sensors substantially increase the expec-

tations on point cloud registration and an exact matching of

feature correspondences.

State-of-the-art 3D point cloud registration employs lo-

cally describable features in a global optimization step

[43, 57, 21]. Most methods do not rely on modern machine

learning algorithms, although they are part of the best per-

forming approaches on odometry challenges like KITTI [14].

In contrast, recent research for point cloud processing, e.g.

classification and segmentation [34, 35, 18, 60], relies on

neural networks and promises substantial improvements for

registration, mapping and odometry [12, 20]. The limitation

of all none neural network-based odometry and mapping

methods is that they perform odometry estimation using a

global rigid body operation. Those approaches assume many

static objects within the environment and proper viewpoints.

However, real world measurements are generally unstable

under challenging situations, e.g. many dynamic objects

or widely varying viewpoints and small overlapping areas.

Hence, the mapping quality itself is suffering from artifacts

(blurring) and is often not evaluated qualitatively. To over-

come these limitations, we propose StickyPillars a novel

registration approach for point clouds utilizing graph neural

networks based on pillar shaped point descriptors. Inspired

by [9, 52], our approach computes feature correspondence

rather than end-to-end odometry estimations. By reducing

the registration problem to an inter-cloud correspondence

search on a sparse subset of selected key-points and utiliz-

ing a ground truth match matrix in the training process, we

are able to predict poses with a very low computation time

while being robust against the influence of dynamic objects.

We demonstrate StickyPillars’s robust real-time registration

capabilities (see Fig. 1) and its confidence under challeng-

313



ing conditions, such as dynamic environments, challenging

viewpoints and small overlapping areas. We evaluate our

technique on the KITTI odometry benchmark [14] and signif-

icantly outperform state-of-the-art frame to frame matching

approaches e.g. the one used in LOAM[57]. Those improve-

ments enable more precise odometry estimation for applied

robotics.

2. Related Work

Deep Learning on point clouds is a novel field of re-

search [7, 45, 44]. The fact that points are typically stored

in unordered sets and the need for viewpoint invariance pro-

hibits the direct use of classical CNN architectures. Existing

solutions tackle this problem by converting the point cloud

into a voxel grid [60], by projecting it to a sphere [26, 20] or

by directly operating on the set using well designed network

architectures [34, 35].

Point cloud registration aims to find the relative rigid

3D transformation that aligns two sets of points represent-

ing the same 3D structure. Most established methods try

to find feature correspondences in both point clouds. The

transformation is found by minimizing a distance metric

using standard numerical solvers. A simple but powerful

approach called iterative closest point (ICP) was exhaus-

tively investigated by [4, 59, 38] and adapted in a wide

range of applications [48, 43, 57, 21]. Here each point is

a feature which is matched to its closest neighbor in the

other point cloud in an iterative process. ICP’s convergence

and runtime highly depends on the initial relative pose, the

matching accuracy and the overlap [38]. This problem can

be avoided by using global feature matching approaches

[39, 25, 54, 1, 19] in combination with solvers like RANSAC

[13, 36] that are robust to outlier correspondences. Alter-

natively the transformation can be directly estimated using

a neural network as proposed by [20]. Scene flow based

methods pursue a different approach by estimating point-

wise translational motion vectors instead of a single rigid

transformation [10, 50, 22, 35, 16, 23]. These methods nat-

urally handle dynamic and non-rigid movements but are

computationally quite demanding.

Lidar odometry estimation is a typical task that in-

volves point cloud registration in real-time. Many of the

aforementioned methods [1, 19, 15, 2, 25], especially those

using deep neural networks, are not fast enough to deal e.g.

with lidar sensors that run at 10-15 Hz. LOAM [57], the

currently best performing approach on the KITTI odome-

try benchmark [14] uses a variant of ICP that operates on

a sparse set of feature points located on edge and surface

patches. The feature extraction exploits the special scan

structure of an rotating lidar sensor. After a rough pairwise

matching the point clouds are accurately aligned to a local

map. There exist several variants and improvements [21, 43].

In the work by [20] it is shown that the pairwise matching

step can be achieved by an appropriately sized CNN, but

their method wasn’t able to reduce the error any further.

Feature based matching is more widely used in the do-

main of image processing with prominent approaches, such

as FLANN [28] and SIFT [24]. The fundamental approach

consists of several steps, point detection, feature calculation

and matching. Such models based on neighborhood consen-

sus were evaluated by [5, 41, 49, 6] or in a more robust way

combined with a solver called RANSAC [13, 36]. Recently,

deep learning based approaches, i.e. convolutional neural

networks (CNNs), were proposed to learn local descriptors

and sparse correspondences [11, 31, 37, 56]. However, these

approaches operate on sets of matches and ignore the as-

signment structure. In contrast, [40] focuses on bundling

aggregation, matching and filtering based on novel Graph

Neural Networks.

3. The StickyPillars Architecture

The idea behind StickyPillars is the development of a

robust-point cloud registration and matching algorithm to re-

place standard methods (e.g. ICP) as most common matcher

in applied robotics and computer vision algorithms like

odometry, mapping or SLAM. The 3D point cloud features

(pillars) are flexible and fully composed by learnable param-

eters. [18] and [60] have proposed a 3D feature learning

mechanism for perception tasks. We transform the concept

to feature learning within a matching pipeline, but only using

sparse sets of key points to ensure real-time capability and

leanness. We propose an architecture using graph neural

networks to learn geometrical context aggregation of two

point sets in an end-to-end manner. The overall architecture

is composed by three important layers: 1. Pillar Layer, 2.

Graph Neural Network layer and 3. Optimal Transport layer

(see Fig. 1).

Problem description Let PK and PL be two point

clouds to be registered. The key-points of those point clouds

will be denoted as πK
i and πL

j with {πK
0 , . . . ,π

K
n } ⊂ PK

and {πL
0 , . . . ,π

L
m} ⊂ PL, while other points will be defined

as xK
k ∈ PK and xL

l ∈ PL. Each key-point with index i is

associated to a point pillar, which can be pictured as a cylin-

der with an endless height, having a centroid position πK
i

and a center of gravity π̂K
i . All points (PK

i ) within a pillar

i are associated with a pillar feature stack f
K
i ∈ R

D, with

D as pillar encoder input depth. The same applies for πL
j .

ci,j and fi,j compose the input for the graph. The overall

goal is to find partial assignments 〈πK
i ,π

L
j 〉 for the optimal

re-projection P̄ with P̄ := f
π

L

j
→π

K

i
(PL) ≈ PK.

3.1. Pillar Layer

Key-Point Selection is the initial part of the pillar layer

with the aim to describe a dense point set with a sparse

significant subset of key-points to ensure real-time capability.
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Figure 1: StickyPillars Architecture is composed by three layers: 1. Pillar Layer, 2. Graph Neural Network layer and 3.

Optimal Transport layer. With the aid of 1, we learn 3D features (pillar encoder) and spatial clues (positional encoder) directly.

In 2 Self- and Cross Multi-Head Attention is performed in a graph architecture for contextual aggregation. The resulting

matching scores are used in 3 to generate an assignment matrix for key-point correspondences via numerical optimal transport.

Most common 3D sensors deliver dense point clouds having

more than 120k points. Similar to [57], we place the centroid

pillar coordinates on sharp edges and planar surface patches

as areas of interest. A smoothness term c identifies smooth

or sharp areas. For a point cloud PK the smoothness term

cK is defined by:

cK =
1

|S| ·
∥

∥xK
k

∥

∥

·

∥

∥

∥

∥

∥

∥

∑

k′∈S,k′ 6=k

(

xK
k − xK

k′

)

∥

∥

∥

∥

∥

∥

(1)

where k and k′ being point indices within the point cloud

PK having coordinates xK
k ,x

K
k′ ∈ R

3. S is a set of neigh-

boring points of k and |S| is the cardinality of S. With the

aid of the sorted smoothness factors in PK, we define two

thresholds cKmin and cKmax to pick a fixed number n of key-

points πK
i in sharp cKk > cKmax and planar regions cKk < cKmin.

This is also repeated for the target point-set with cL on PL

selecting m points with index j.

Pillar Encoder is designed to learn features in 3D in-

spired by [34, 18]. Any selected key-point, πK
i and πL

j , is

associated with a point pillar i and j describing a set of spe-

cific points PK
i and PL

j . We sample points into a pillar using

an 2D euclidean distance function (x,y plane) assuming a

pillar alignment along the z coordinate (vertical direction)

using a projection function g → [x, y, z] = [x, y]:

PK
i := {xK

0 ,x
K
Ω , ...,x

K
z }

∥

∥

∥
g(πK

i )− g(xK
Ω)
∥

∥

∥
< d (2)

Similar equations apply for PL
j . Due to a fixed input size

of the pillar encoder, we draw a maximum of z points per

pillar, where z = 100 is used in our experiments. d is the

distance threshold defining the pillar radius (e.g. 50 cm).

To enable efficient computation, we organized point clouds

within a k-d tree [3]. Based on πK
i the z closest samples

xK
Ω are drawn into the pillar PK

i , whereas points with a

projection distance greater d were rejected.

To compose a sufficient feature input stack for the pillar

encoder fKi ∈ R
D, we stack for each sampled point xK

Ω with

Ω ∈ {1, . . . , z} in the style of [18]:

f
K
i =

{

[

xK
Ω , i

K
Ω , (x

K
Ω − π̂K

i ), ‖xK
Ω‖2, (xK

Ω − πK
i )
]

, . . .

}

(3)

xK
Ω ∈ R

3 denotes sample points’ coordinates (x, y, z)T.

iKΩ ∈ R is a scalar and represents the intensity value (e.g.
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Figure 2: The StickyPillars Tensor Graph identifies the data flow throughout the network architecture especially during self-

and cross attention, where b describes the batch-size, n and m the number of pillars, h is the number of heads and lmax the

maximum layer depth. D′ is the feature depth per node. The result is an assignment matrix P with an extra column and row

for invisible pillars.

LiDAR reflectance), (xK
Ω − π̂K

i ) ∈ R
3 being the difference

to the pillar’s center of gravity and (xK
Ω − πK

i ) ∈ R
3 is

the difference to the pillar’s key-point. ‖xK
Ω‖2 ∈ R is the

L2 norm of the point itself. This leads to an overall input

depth D = z × 11. The pillar encoder is a single linear

projection layer with shared weights across all pillars and

frames followed by a batchnorm and a ReLU layer with

an output depth of D′ (e.g. 32 in our experiments) and

f
′K
j , f

′K
i ∈ R

D′

:

f
′K
i = Wf · fKi ∀i ∈ {1, . . . , n}

f
′L
j = Wf · fLj ∀j ∈ {1, . . . ,m}

(4)

The aim of the Positional Encoder is learning geomet-

rical aggregation using a context without applying pooling

operations. The positional encoder is inspired by [34] and

utilizes a single multi-layer-perceptron (MLP) shared across

PL and PK such as all pillars including batchnorm and

ReLU. From the centroid coordinates πK
i ,π

L
j ∈ R

3, we

calculate positional features via MLP with depth of D′ and

π′

iK
,π′

jL
∈ R

D′

:

π′

iK = MLPπ(π
K
i ) ∀i ∈ {1, . . . , n}

π′

jL = MLPπ(π
L
j ) ∀j ∈ {1, . . . ,m}

(5)

3.2. Graph Neural Network Layer

The Graph Architecture relies on two complete graphs

GL and GK, whose nodes are related and equivalent to the

pillars quantity. The initial (0)nK
i ,

(0) nL
j node conditions are

denoted as:

(0)nK
i = π′K

i + f
′K
i

(0)nL
j = π′L

j + f
′L
j

(0)nK
i ,

(0) nL
j ∈ R

D′
(6)

The overall composed graph (GL,GK) is a multiplex

graph inspired by [27, 30]. It is composed by intra-frame

edges, i.e. self edges connecting each key-point within GL
and each key-point within GK respectively. Additionally,

to perform global matching using context aggregation inter-

frame edges are introduced, i.e. cross edges that connect all

nodes of GK with GL and vice versa.

Multi-Head Self- and Cross-Attention allows us to in-

tegrate contextual cues intuitively and increase its distinctive-

ness considering its spatial and 3D relationship with other

co-visible pillars, such as those that are salient, self-similar

or statistically co-occurring [40]. An attention function A
[52] is a mapping function of a query and a set of key-point
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pairs to an output, with query q, keys k, and values v being

vectors. We define attention as:

A(q,k,v) = softmax

(

qT · k√
D′

)

· v (7)

where D′ describes the feature depth analogous to the depth

of every node. We apply the multi-head attention function to

each node lnK
i , lnL

j at state l calculating its next condition l+
1. The node’s conditions l ∈ {0, l, ..., lmax} are represented

as network layers to propagate information to the graph:

(l+1)nK
i = (l)nK

i + (l)MK(qK
i ,v

Ω
α ,k

Ω
α )

(l+1)nL
j = (l)nL

j + (l)ML(qL
j ,v

Ω
β ,k

Ω
β )

(8)

We alternate the indices for α and β to perform self and

cross attention alternately with increasing depth of l through

the network, where the following applies Ω ∈ {K,L}:

α, β :=

{

i, j if l ≡ even

j, i if l ≡ odd
(9)

The multi-head attention function is defined as:

(l)MK(qK
i ,v

Ω
α ,k

Ω
α ) =

(l)W0 · (l)(headK1 ‖...‖headKh )
(10)

with ‖ being the concatenation operator. A single head is

composed by the attention function:

(l)headKh = (l)A(qK
i ,v

Ω
α ,k

Ω
α )

= (l)A(W1h · nK
i ,W2h · nΩ

α ,W3h · nΩ
α)

(11)

The multi-head attention function is also defined for (l)ML.

All weights (l)W0,
(l)W11..

(l)W3h are shared throughout all

pillars and both graphs (GL,GK) within a single layer l.
Final predictions are computed by the last layer within

the Graph Neural Network and designed as single linear

projection with shared weights across both graphs (GL,GK)
and pillars:

m
K
i = Wm · (lmax)nK

i

m
L
j = Wm · (lmax)nL

j

m
L
j ,m

K
i ∈ R

D′

(12)

3.3. Optimal Transport Layer

Following the approach by [40] the final matching is

performed in two steps. First a score matrix M ∈ R
n×m is

constructed by computing the unnormalized cosine similarity

between each pair of features:

M = (mK)T ·mL,

m
K = [mK

1 , . . . ,m
K
n ], m

L = [mL
1 , . . . ,m

L
m]

(13)

In the second step a soft-assignment matrix P ∈
R

(n+1)×(m+1) is computed that contains matching prob-

abilities for each pair of features. Each row and column of P

corresponds to a key-point in PK and PL respectively. The

last column and the last row represent an auxiliary dustbin

point to account for unmatched features. Accordingly M is

extended to a matrix M̄ ∈ R
(n+1)×(m+1) with all new ele-

ments initialized using a learnable parameter Wv. Finding

the optimal assignment then corresponds to maximizing the

sum
∑

i,j M̄i,jPi,j subject to the following constraints:

n+1
∑

i=1

Pi,j =

{

1 for 1 ≤ j ≤ m

n for j = m+ 1

m+1
∑

j=1

Pi,j =

{

1 for 1 ≤ i ≤ n

m for i = n+ 1

(14)

This represents an optimal transport problem [46, 51, 8]

which can be solved in a fast and differentiable way using

a slightly modified version of the Sinkhorn algorithm [46,

8]. Let ri and cj denote the ith row and jth column of M̄

respectively. A single iteration of the algorithm consists of 2

steps:

1. (t+1)
ri ← (t)

ri − log
∑

j e
rij

−α
, with α = logm for

i = n and α = 0 otherwise

2. (t+1)
cj ← (t)

cj − log
∑

i e
cji

−β , with β = log n for

j = m and β = 0 otherwise

After T = 100 iterations we obtain P = exp
(

(T )
M̄

)

. The

overall tensor graph is shown in Fig 2 including architectural

details from the pillar layer to the optimal transport layer.

3.4. Loss

The overall architecture with its three layer types: Pillar

Layer, Graph Neural Network Layer and Optimal Transport

Layer is fully differentiable. Hence, the network is trained

in a supervised manner. The ground truth being the set GT
including all index tuples (i, j) with pillar correspondences

in our datasets accompanied by unmatched labels (n̄, j) and

(i, m̄), with (n̄, m̄) being redundant. We consider a negative

log-likelihood loss LNLL = −∑i,j∈GT logPij . By utiliz-

ing the ground truth matrix GT characterizing fix inter-cloud

point correspondences, the network is implicitly trained to

predict close point matches and simultaneously disregarding

distant ones, making it robust against occlusions e.g. caused

by dynamic objects.

4. Experiments

We separated the experiments into two subsections. First

we validate the quality of StickyPillars in a point cloud reg-

istration task where we compare our results to geometry
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and DNN based state-of-the-art approaches. Subsequently

we show how StickyPillars can be deployed as middle-end

inside LiDAR odometry and mapping approaches by re-

placing the standard odometry estimation step to reduce

drift and instabilities. We compare the performance on the

KITTI Odometry benchmark to state-of-the-art methods like

LOAM [58] and LO-Net [20]. Finally we demonstrate the

robustness of StickyPillars simulating high speed scenarios

by skipping certain amounts of frames on scenes from the

KITTI odometry dataset.

Model configuration: For key-point extraction, we used

variable cmin and cmax to achieve n = m = 500 key-points

πi as inputs for the pillar layer. Each point pillar is sampled

with up to z = 128 points xΩ using an Euclidean distance

threshold of d = 0.5m. Our implemented feature depth

is D′ = 32. The key-point encoder has five layers with

the dimensions set to 32, 64, 128, 256 channels respectively.

The graph is composed of lmax = 6 self and cross attention

layers with h = 8 heads each. Overall, this results in 33
linear layers. Our model is implemented in PyTorch [32]

v1.6 with Python 3.7.

Training procedure: We process KITTI’s [14] odometry

training sequences 00 to 10, using our key-point selection

strategy (cp. Sec. 3.1) by computing the proposed smooth-

ness function (Eq. 1). Ground truth correspondences and un-

matched sets are generated using KITTI’s odometry ground

truth. Ground truth correspondences are either key-point

pairs with a nearest neighbor distance smaller than 0.1m or

invisible matches, i.e. all pairs with distances greater 0.5m
remain unmatched. We ignore all associations with a dis-

tance in range 0.1m to 0.5m ensuring variances in resulting

features. We trained our model for 200 epochs using Adam

[17] with a constant learning rate of 10−4 and a batch size

of 16. For the point cloud registration experiment we chose

sequence 00−05 for training and sequence 08−10 for evalu-

ation as stated in [25] and [2] with frame differences between

source and target frame of 1− 10 (frame ∆ = [1, 10]). For

the LiDAR odometry estimation we used sequence 00− 06
for training and 07− 10 for evaluation similar to [20] with

frame ∆ = [1, 5].

4.1. Point Cloud Registration

Validation metrics: For point cloud registration we

adopted the experiments as stated in [25] where we sam-

pled the test data sequences in 30 frame intervals and

select all frames within a 5m radius as registration tar-

gets. We calculate the transformation error compared to

the ground truth poses provided by the KITTI dataset for

each frame pair based on Euclidean distance for translation

and Θ = 2sin−1(
‖R−R̄‖

F√
8

) for rotation, with
∥

∥R− R̄
∥

∥

F

being the Frobenius norm of the chordal distance between

estimation and ground truth rotation matrix. Finally we also

present the average runtime for registering one frame pair

for each approach.

Comparison to state-of-the-art methods: We filter

matches below a confidence threshold (e.g. 0.6) and sub-

sequently apply singular value decomposition to determine

the pose. Figure 3 shows predicted correspondences by the

network on an unseen pair of frames for different temporal

distances of the target frame. We validate the performance

of StickyPillars comparing it to state-of-the-art geometric

approaches like ICP [4], G-ICP [42], AA-ICP [33], NDT-

P2D [47] and CPD [29] and the DNN based methods 3DFeat-

Net [55], DeepVCP [25] and D3Feat [2] based on the cor-

respondences predicted by the network. We adopted the

results presented in [25] and extended the table by running

the experiments on D3Feat and StickyPillars. For D3Feat

we changed the number of key-points to 500 instead of 250

since [2] reported better performance using this configura-

tion but leaving all other parameters at default. Furthermore

according to [25] the first 500 frame of sequence 08 involve

large errors in the ground truth poses and were therefore

neglected during the experiments for point cloud registra-

tion. The final results for all methods considered are listed in

Table 1. We are reaching comparable results to all state-of-

the-art methods regarding the considered metrics. Moreover

we achieve lowest mean angular and second lowest mean

translational error for the deep learning based methods with-

out the necessity of an initial pose estimate unlike DeepVCP.

In consideration of a mean processing time of 15ms for fea-

ture extraction on CPU and an average inference time on a

Nvidia Geforce GTX 1080 Ti of 101ms for correspondence

finding, StickyPillars outperforms all methods regarding the

total average runtime.

METHOD
ANGULAR ERR(°) TRANSL. ERR(M)

T(S)
MEAN MAX MEAN MAX

ICP-PO2PO [4] 0.139 1.176 0.089 2.017 8.17

ICP-PO2PL [4] 0.084 1.693 0.065 2.050 2.92

GICP [42] 0.067 0.375 0.065 2.045 6.92

AA-ICP [33] 0.145 1.406 0.088 2.020 5.24

NDT-P2D [47] 0.101 4.369 0.071 2.000 8.73

CPD [29] 0.461 5.076 0.804 7.301 3241

3DFEAT-NET [55] 0.199 2.428 0.116 4.972 15.02

DEEPVCP [25] 0.164 1.212 0.071 0.482 2.3

D3FEAT [2] 0.110 1.819 0.087 0.734 0.43

OURS 0.109 1.439 0.073 1.451 0.12

Table 1: Point cloud registration results: Our method shows

comparable results to state-of-the-art methods and depicting

a much lower average runtime.

4.2. LiDAR Odometry

Validation metrics: For validation on LiDAR Odom-

etry, we are using the KITTI Odometry dataset provided

with ground truth poses calculating the average transla-

tional RMSE trel (%) and rotational RMSE rrel (°/100m)
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Figure 3: Qualitative Results from two point clouds with increasing frame ∆, i.e., increasing difficulty, of ∆ = 1 (blue - top

row), ∆ = 5 (red - middle row), and ∆ = 10 (purple - bottom row) frames. The figure shows samples of the validation sets

unseen during training. Green lines highlight correct matches, while red lines highlight incorrect ones.

on lengths of 100m-800m errors per scene according to [14].

Comparison to state-of-the-art methods: We evaluate

the performance of StickyPillars in combination with a sub-

sequent mapping step. For this purpose we utilize the A-

LOAM 1 algorithm which is an advanced version of [58] and

exchange the simple point cloud registration step prior to the

mapping with StickyPillars. For our experiments we changed

the voxel grid size of the surface features in the mapping

step to 1.0m but leaving all other parameters at their default

value. In order to achieve real-time capability for LiDAR

Odometry, we infer StickyPillars on a Nvidia Geforce RTX

Titan resulting in a mean runtime of 50ms per frame. For all

following experiments A-LOAM was processed sequentially,

neglecting all kinds of parallel implementations by ROS to

ensure a reliable baseline for benchmark comparisons. We

compare our results based on the KITTI odometry bench-

mark to different versions of the ICP algorithm [4] [42],

CLS [53] and LOAM [58] which is widely considered as

baseline in terms of point cloud based odometry estimation.

Furthermore we validate against LO-Net [20] which is using

a similar hybrid approach consisting of a Deep Learning

method for point cloud registration and subsequent geom-

etry based mapping. We adopted the values stated in [20]

and extended the table with our results as shown in Table 2.

We outperform the considered methods in the majority of

sequences regarding trel and in almost every scene with re-

spect to rrel, leading to best results for average translational

error on par with LO-Net and lowest average rotational error

among all compared approaches.

In order to demonstrate the robustness of our method we

also compared the standard A-LOAM implementation to

our approach where we replaced the point cloud registration

module with StickyPillars in the context of simulating higher

speed scenarios and frame drops respectively. This is done

by skipping a certain amount of frames of the particular

sequence e.g. ∆ = 3 means providing every third consec-

utive frame to the algorithm. For evaluation we again use

1https://github.com/HKUST-Aerial-Robotics/A-LOAM

Figure 4: Trajectory plots for A-LOAM and A-LOAM +

StickyPillars (Ours) for different frame ∆ with ground truth.

the relative translational and rotational errors. For ∆ = 1,

which equals to common processing of a sequence, stan-

dard A-LOAM provides some minor improvements to trel
and also rrel in selected scenes where average speed lev-

els are lower, thus leading to large cloud overlap. In such

cases the ordinary frame matching algorithm shows good

performance. For other sequences like 02 with a more dy-

namic environment, the standard implementation fails and

the robust transformations provided by StickyPillars help

to correct the induced drift leading to much lower average

transformation errors. The robustness of our approach in the

context of varying vehicle velocities can also be observed by

taking a look at the results for higher frame ∆ where, with

one exception, our approach outperforms standard A-LOAM

in all considered scenes and also depicting comparable aver-

age errors to the ones of ∆ = 1. Furthermore we observed

partially better results for larger frame ∆ compared to the

smaller ones on certain scenes (e.g. sequence 03) for our

approach which probably is related to a reduction of drift

effects caused by close frame to frame matchings. Figure 4

shows qualitative results of the estimated trajectories for the
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SEQ.
ICP-PO2PO [4] ICP-PO2PL [4] GICP [42] CLS [53] LOAM [58]1 LO-NET+MAP [20] OURS

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00† 6.88 2.99 3.80 1.73 1.29 0.64 2.11 0.95 1.10 (0.78) 0.53 0.78 0.42 0.65 0.26

01† 11.21 2.58 13.53 2.58 4.39 0.91 4.22 1.05 2.79 (1.43) 0.55 1.42 0.40 1.82 0.45

02† 8.21 3.39 9.00 2.74 2.53 0.77 2.29 0.86 1.54 (0.92) 0.55 1.01 0.45 1.00 0.34

03† 11.07 5.05 2.72 1.63 1.68 1.08 1.63 1.09 1.13 (0.86) 0.65 0.73 0.59 0.91 0.45

04† 6.64 4.02 2.96 2.58 3.76 1.07 1.59 0.71 1.45 (0.71) 0.50 0.56 0.54 0.53 0.17

05† 3.97 1.93 2.29 1.08 1.02 0.54 1.98 0.92 0.75 (0.57) 0.38 0.62 0.35 0.46 0.23

06† 1.95 1.59 1.77 1.00 0.92 0.46 0.92 0.46 0.72 (0.65) 0.39 0.55 0.33 0.56 0.25

07* 5.17 3.35 1.55 1.42 0.64 0.45 1.04 0.73 0.69 (0.63) 0.50 0.56 0.45 0.43 0.24

08* 10.04 4.93 4.42 2.14 1.58 0.75 2.14 1.05 1.18 (1.12) 0.44 1.08 0.43 1.02 0.29

09* 6.93 2.89 3.95 1.71 1.97 0.77 1.95 0.92 1.20 (0.77) 0.48 0.77 0.38 0.67 0.24

10* 8.91 4.74 6.13 2.60 1.31 0.62 3.46 1.28 1.51 (0.79) 0.57 0.92 0.41 1.00 0.41

MEAN 7.36 3.41 4.74 1.93 1.92 0.73 2.12 0.91 1.28 (0.84) 0.51 0.82 0.43 0.82 0.30

1: The results on KITTI dataset outside the brackets are obtained by running the code, and those in the brackets are taken from [58].

†: KITTI Odometry dataset sequences used for training

*: KITTI Odometry dataset sequences used for testing

Table 2: LiDAR Odometry results on the KITTI Odometry dataset. We get comparable results regarding trel and outperfom

state-of-the-art methods with respect to rrel.

SEQ.

A-LOAM A-LOAM+STICKYPILLARS

∆ = 1 ∆ = 3 ∆ = 5 ∆ = 1 ∆ = 3 ∆ = 5

trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

00† 0.70 0.27 0.97 0.38 31.16 12.10 0.65 0.26 0.79 0.31 1.29 0.48

01† 1.86 0.46 4.30 0.96 96.04 10.36 1.82 0.45 2.14 0.59 2.55 0.56

02† 4.58 1.43 5.29 1.61 26.74 8.72 1.00 0.34 0.91 0.37 1.04 0.42

03† 0.95 0.47 1.36 0.50 15.04 4.39 0.91 0.45 0.83 0.47 0.77 0.51

04† 0.54 0.18 89.48 0.27 102.35 0.21 0.53 0.17 0.63 0.25 0.65 0.23

05† 0.47 0.24 0.53 0.24 12.47 4.21 0.46 0.23 0.52 0.24 0.57 0.27

06† 0.55 0.24 1.75 0.24 42.18 12.32 0.56 0.25 0.57 0.26 0.58 0.28

07* 0.42 0.26 0.45 0.28 11.04 3.38 0.43 0.24 0.43 0.24 0.49 0.35

08* 0.96 0.30 1.85 0.62 31.41 12.39 1.02 0.29 0.92 0.30 1.16 0.38

09* 0.66 0.24 0.78 0.30 36.67 12.03 0.67 0.24 0.72 0.28 0.69 0.31

10* 0.87 0.34 1.34 0.46 29.10 12.16 1.00 0.41 0.89 0.38 1.41 0.57

MEAN 1.14 0.40 9.83 0.53 39.47 8.39 0.82 0.30 0.85 0.34 1.02 0.40

Table 3: Extensive experiments demonstrating performance under simulated higher speed / frame drop scenarios with various

frame ∆. Our approach shows very high robustness in terms of large environment changes compared to the standard point

cloud registration used in A-LOAM.

two methods for different frame ∆ on sequence 08 which

was not seen during the training process of StickyPillars.

For ∆ > 1 there are large odometry drifts for the standard

implementation of A-LOAM whereas the trajectories for the

extended version by StickyPillars are almost identical.

5. Conclusion

We present a novel model for point-cloud registration in

real-time using deep learning. Thereby, we introduce a three

stage model composed of a point cloud encoder, an attention-

based graph and an optimal transport algorithm. Our model

performs local and global feature matching at once using

contextual aggregation. Evaluating our method on the KITTI

odometry dataset, we observe comparable results to other ge-

ometric and DNN based point cloud registration approaches

but showing a significantly lower runtime. Furthermore we

demonstrated our capability for robust odometry estimation

by adding a subsequent mapping step on the KITTI odometry

dataset where we outperformed the state-of-the-art methods

regarding rotational error and showing comparable results

on the translational error. Finally we proved the robustness

of our approach in cases of higher speed scenarios and frame

drops respectively, by providing the point clouds with vari-

ous frame ∆. We showed that even by providing every fifth

frame of a sequence StickyPillars is still able to predict ac-

curate transformations thus stabilizing pose estimation when

used inside LiDAR odometry and mapping approaches.
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