
Learning to Track Instances without Video Annotations

Yang Fu1∗, Sifei Liu2, Umar Iqbal2, Shalini De Mello2

Humphrey Shi1,3†, Jan Kautz2

1University of Illinois at Urbana-Champaign, 2NVIDIA, 3University of Oregon

Abstract

Tracking segmentation masks of multiple instances has

been intensively studied, but still faces two fundamental

challenges: 1) the requirement of large-scale, frame-wise

annotation, and 2) the complexity of two-stage approaches.

To resolve these challenges, we introduce a novel semi-

supervised framework by learning instance tracking net-

works with only a labeled image dataset and unlabeled

video sequences. With an instance contrastive objective,

we learn an embedding to discriminate each instance from

the others. We show that even when only trained with im-

ages, the learned feature representation is robust to instance

appearance variations, and is thus able to track objects

steadily across frames. We further enhance the tracking

capability of the embedding by learning correspondence

from unlabeled videos in a self-supervised manner. In ad-

dition, we integrate this module into single-stage instance

segmentation and pose estimation frameworks, which sig-

nificantly reduce the computational complexity of tracking

compared to two-stage networks. We conduct experiments

on the YouTube-VIS and PoseTrack datasets. Without any

video annotation efforts, our proposed method can achieve

comparable or even better performance than most fully-

supervised methods1.

1. Introduction

In recent years, the vision community has rapidly im-

proved the performance of instance segmentation at both the

image and video levels as a core technique in autonomous

driving. The pipeline for segmenting instances from videos

commonly includes: (i) segmentation on individual frame;

and (ii) linking of each instance across frames for an en-

tire video sequence. Most existing approaches [5, 8, 23, 43]

employ fully-supervised learning that relies on dense anno-

tations of instance segmentation masks and instance asso-

∗ This work was done while Yang Fu was a research intern at NVIDIA

† corresponding author
1Project page: https://oasisyang.github.io/projects/

semi-track/index.html
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Figure 1. The annotations required for our proposed approach

vs. those for fully supervised approaches.

ciations across video frames (see Fig. 1 top). Since anno-

tation of videos, especially in a per-frame manner requires

excessive labor, the fully-supervised learning setting, how-

ever, becomes the major bottleneck for frame-wise video

processing.

To reduce the dependence on labels, self-supervised

tracking approaches have been developed to learn pixel-

level video correspondences from large-scale unlabeled

videos [17, 20, 39]. The learned correspondences can

be used to track any fine-grained attributes, e.g., segmen-

tation masks, keypoints and textures, on a per-pixel ba-

sis. However, such self-supervised approaches aim to learn

semantically-independent representations, i.e., they do not

discriminate between object instances. Such approaches

can be used for tracking only when ground truth attributes

are annotated at keyframes, e.g., the 1st frame of any se-

quence [28]; or when additional pre-trained instance seg-

mentation models are provided.

In this paper, we consider a novel semi-supervised set-

ting: we learn to track instances only with a labeled image

dataset, and optionally, unlabeled video sequences. In other

words, in addition to learning image-level instance segmen-

tation, we also learn to associate instances across frames

in a self-supervised manner. Our setting strikes a balance
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between the fully-supervised and the self-supervised ones.

With regards to it applications, our model can be seam-

lessly adapted and utilized for tracking objects on newly

captured videos, e.g., traffic scene sequences during au-

tonomous driving, without requiring any offline processing.

A typical way to learn tracking is to model instance as-

sociation as a multi-class classification problem [43]. Since

we do not have the ground truth association labels, we in-

stead learn a feature map that should be: (i) discriminative

of different instances, and (ii) robust to appearance varia-

tion caused by motion of instances in videos. Once learned,

any object instance can be tracked by utilizing its feature

embedding to search for the most similar one in the next

frame. To learn it with only labeled images, we introduce

an Instance Contrastive (IC) objective defined densely on

the embedding map. This objective encourages the pixel-

level feature embedding to be consistent when being sam-

pled from the same instance, while being less consistent

for different ones. In addition, we optimize a Maximum

Entropy (ME) regularization to enforce that each instance,

on being matched to others, exhibits a uniform distribution.

With this constraint, when a new object enters a sequence,

the model can easily detect it by comparing it with all exist-

ing instances , and thus assign it a new instance label.

In addition to using labeled images, we also discover

when leveraging unlabeled videos, tracking performance

can be further improved via self-supervised learning. In this

work, we choose to learn self-supervised video correspon-

dences. Specifically, we adopt a cycle-consistency loss by

maximizing the likelihood of pixels returning to their orig-

inal location on being propagated forward and backward

along a stack of frames [17]. Since the feature embedding

is utilized to construct the cross-frame affinity for propaga-

tion, it can be implicitly enhanced by enforcing this objec-

tive. Intuitively, video correspondence learning improves

tracking performance by potentially encouraging the net-

work to “see” more instance appearance variations in time.

To further mitigate the data distribution shifts between

labeled images, unlabeled videos, and testing videos, we in-

troduce a self-supervised test-time adaptation strategy. In-

spired by [33], we enhance the model’s tracking capabil-

ity by keeping the self-supervised objective at the inference

stage, and adapting it to any particular input sequence.

Instead of learning an independent network that sepa-

rately produces the feature embedding for tracking, we in-

tegrate it as a head in to a bottom-up instance segmenta-

tion framework, e.g., SOLO [40]. With labeled images, we

jointly train the instance segmentation and the feature em-

bedding parts of the network, enriching the original network

with the new function of tracking. We note that in addition

to introducing a semi-supervised setting, we are also pro-

pose a bottom-up framework for tracking masks of multiple

instances. Finally, we also show that similar approaches can

be generalized to the task of multiple human pose tracking,

when building on top of a bottom-up human pose estimation

network [42]. In summary, we conclude our contribution as

the following:

• A novel semi-supervised setting that can largely re-

duce the effort of labelling large-scale video datasets.

• An Instance Contrastive loss equipped with Maximum

Entropy regularization to learn a feature embedding

capable of tracking with only labeled images.

• A self-supervised video correspondence learning

method that further improves tracking performance by

leveraging unlabelled videos.

• Extensive experiments demonstrate that the proposed

method performs on par if not better than most state-

of-the-arts approaches, for both the video instance seg-

mentation and pose tracking tasks.

2. Related Work

Video Instance Segmentation is the joint task of de-

tection, segmentation and tracking of object instances in

videos. MaskTrack-RCNN [43] is the first attempt to ad-

dress the video instance segmentation problem. It proposes

a large-scale video dataset named YouTube-VIS for bench-

marking video instance segmentation algorithms. Mask-

Track RCNN extends Mask RCNN [15] with an additional

tracking branch and achieves object association by object

embedding and other cues, i.e., position and category. In

addition, several methods from the Large-Scale Video Ob-

ject Segmentation Challenge [1] achieve impressive results

with large quantities of external data and complex algorith-

mic pipelines [8, 23, 38, 10]. However, all these mentioned

approaches heavily depend on video annotations, and to the

best of our knowledge, our method is the first attempt at

video instance segmentation without any video annotations.

Contrastive Learning has recently received interest due

to its success in self-supervised representation learning in

the computer vision domain [7, 12, 14, 27]. These ap-

proaches follow a similar idea: pull together an anchor and

a positive sample, meanwhile push apart the anchor from

many negative samples. The positive sample is generated

by a sets of data augmentations and the negative samples

are randomly chosen from the mini-batch. The most widely

used objective function is the InfoNEC [27], which encour-

ages the mutual information between positive samples to

be large while for negative samples, to be small. Recently,

Khosla et al. [18] proposed a powerful contrastive loss that

allows for multiple positives per anchor and proved its su-

perior over traditional cross entropy under supervised set-

ting. We borrow the similarity idea and propose the instance

contrastive loss to effectively learn the instance embedding

from image annotations.
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Figure 2. An overview of our proposed framework, which is built upon the bottom-up instance segmentation, i.e., classification and mask

prediction heads. We propose image/video embedding heads. We train the image embedding branch with (a) an instance contrastive loss;

(b) a maximum entropy regularization term using image annotations only; and train the video embedding branch via (c) self-supervised

video correspondence learning. See Sec. 3.2, 3.3, 3.4 for more details.

Self-supervised Learning in Videos aims to learn

video-level representation by exploiting the frame redun-

dancy. Some early work focus on representation learning

from frames chronological order [24, 9, 41]. For instance,

Misra et al. [24] attempts to determine whether a sequence

of frames from a video is placed in the correct tempo-

ral order, which can be used as a pretext task to improve

some downstream tasks like action recognition. Besides,

the colorization can be also treat as the supervision signal.

Recently, several work [39, 20, 17] show that the cycle-

consistency in time can be utilized as the supervisory sig-

nal for learning visual representations from video. The key

idea is that: given any patch of an image at the first frame,

then track it forward and backward, it should return its orig-

inal position and the trajectory should be a circle. Differ-

ent from the existing methods, the correspondence module

in our framework focus on instance-level correspondence

rather than pixel-level correspondence.

3. Proposed Method

We introduce our approach in this section. The overall

framework is illustrated in Fig. 2, which is built upon the

bottom-up instance segmentation framework: SOLO [40].

SOLO converts instance segmentation into two pixel-level

classification tasks, e.g., instance classification and instance

mask prediction. Specifically, the input image is divided

into B × B grids, and if the instance’s center falls into a grid

cell, that grid cell is responsible for the above two tasks. We

integrate a head that learns the proposed tracking embed-

ding into it. The whole framework can be trained jointly

and perform both instance segmentation in each frame, as

well as tracking between frames. In this section, we mainly

focus on how to learn the instance embedding.

We define the problem in Sec. 3.1, and introduce how

to utilize labeled images to learn a embedding for instance

tracking through (i) an instance contrastive loss (IC) in

Sec. 3.2, and (ii) a maximum entropy (ME) regularization

term in Sec. 3.3. We further improve its performance with

unlabeled videos, as discussed in Sec. 3.4.

3.1. Problem Definition

In semi-supervised tracking, we have a labeled image

dataset {-Img, .Img} where each individual image G8
Img

has

its corresponding instance-level annotation H8
Img

, including

an instance category, a location (provided by a bounding

box or a keypoint), and a mask. Meanwhile, we also have

an another video dataset {-Vid} where no videos are anno-

tated. The goal of semi-supervised tracking is to learn a fea-

ture representation that can effectively associate instances in

{-Vid} by only using the supervised information present in

the image dataset.

3.2. Instance Contrastive Loss

To learn a feature representation capable of tracking,

we want to ensure that it is (i) discriminative of different

instances, and (ii) consistent regardless of the variations

present in videos. In addition, the feature representation

should (iii) focus more on appearance rather than location,

since objects can move in time. Normally, such a feature

embedding can be learned, e.g., via a side branch trained

with labelled identities across frames as the supervision sig-

nal, as is evidenced in several existing works [5, 16, 43].

Although no such annotations are accessible here, we find

that instance-level annotation on images already provides

sufficient information to achieve the above goals, i.e., to

distinguish which pixels belong to the same instance, and

which are from different ones. In the following, we propose

to learn this via a contrastive learning framework.

We illustrate our network architecture in Fig. 2: Other

than the original classification and mask prediction heads in
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SOLO [40], we integrate our embedding network for track-

ing in parallel with them, as a third head. We equip it with

the same sub-network structure and feature map resolution

as the classification head at each level in FPN [21] in order

to make the network efficient and light-weight. We denote

by ℎ(·) the tracking head’s mapping of the bottleneck rep-

resentation to the tracking embedding, and by 5 the output

feature map. We utilized the same grid-level instance la-

bels that are assigned to the classification branch in SOLO

and in several other works [19, 35, 40]: On the ground

truth instance label images, we regard one pixel (G, H) to

belong to one instance if it falls into a range, controlled

by scale factors Y : (2G, 2H, YF, Yℎ), where (2G, 2H), F,

and ℎ denote the center of mass, width and height of the

given ground truth mask. The instance assignment maps

are down-sampled and rounded to fit the resolution of each

level. More details can be found in [40]. Similar to the clas-

sification head, the feature map is much smaller in size than

the original image, e.g., 40× 40 at the most fine-grain level.

We refer to each element as a grid cell.

With grid-level instance labels, we can directly extend

the original formulation of contrastive learning [14, 34],

based on InfoNCE [27] to the instances of each image. With

slight abuse of notation, for one query grid cell G@ ∈ - with

feature 5@ from the 8th instance Ω8 , we sample another vec-

tor 5? from the same instance as the positive sample, and

all the other grid cells from different instance as the nega-

tive ones. We thus optimize for the pixel G@:

L@ = − log
exp( 5 ⊤? · 5@)∑
:∈Ω

8̄
exp( 5 ⊤

:
· 5@)

, ?, @ ∈ Ω8 (1)

where Ω8̄ is the set of cells from all the other instances 8̄.

However, we found that (1) does not perform well in our

case due to the highly long-tailed distribution of instances

w.r.t. to their number of pixels. E.g., smaller instances will

be insufficiently trained due to less positive samples.

Center-Contra Losses. We address the above issue by

proposing a novel form of the loss: a combination of cen-

ter and contrastive (Center-Contra) losses. We obtain the

center representation �8 of an instance 8 by averaging all

embedding features assigned with this instance, as �8 =
1
#8

∑
@∈Ω8

5@ . Here #8 represent the number of grid cells

in Ω8 . To force the embedding feature vectors of the same

instance to be similar, we introduce the center loss that min-

imizes the L1 distance:

Lcenter
8 =

∑

@∈Ω8

‖�8 − 5@ ‖1. (2)

Meanwhile, the embedding of different instances also

need to be distinct from each others in order for the em-

bedding to have a strong discriminative ability. Thus, we

propose a contrast term by pushing the center representa-

tion of all the instances {�8 |8 ∈ [1,  ]} further apart, where

Figure 3. An illustration of failure case when a new object appears

and the effectiveness of maximum entropy (ME) regularization.

Row (a) and (b) are results without and with ME regularization.

Best viewed in color and zoom in to see details.

 is the number of instances in an image. In particular, we

compute a dense similarity matrix:

((8, 9) =
exp(�⊤

8 · � 9 )∑ 
:=0 exp(�⊤

8
· �: )

, (3)

To push apart instances, we need to encourage the elements

on the diagonal of the matrix (8,8 to be larger than the other

off-diagonal elements (8, 9 ,∀ 9 ≠ 8. Thus, we maximize the

self-matching likelihoods, where CE is the cross-entropy

loss and � is the identity matrix:

Lcontra
= CE((, �). (4)

Finally, we enforce IC losses by summing up the center

losses of all instances, and combining them with the con-

trast term:

LIC
=

 ∑

8=0

Lcenter
8 + _Lcontra. (5)

Compared to utilizing individual feature vectors, contrastive

loss based on the center embedding in (4) effectively avoids

the issue of highly-imbalanced size of instances.

Tracking an Instance via the Embedding. Given the

learned embedding for tracking, we utilize the {�8 |8 ∈

[1,  ]} as the prototype representations of instances to per-

form tracking, i.e., grid cells of the next frame are directly

classified into  classes by comparing against these proto-

types through a softmax function, where the classification

score indicates the instance associations. In addition, track-

ing can also be improved by leveraging information from

the classification prediction branch, which is further dis-

cussed in Sec. 4.1.

3.3. Maximum Entropy Regularization

So far, our tracking approach is based on the assump-

tion that any instance in the current frame also exists in the

previous frame. It doesn’t consider newly emerged objects.

We observe that with the tracking procedure described in
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Sec. 3.2, a new object is highly likely to exhibit a peaky

distribution for its similarity score when matched to all the

instances in the previous frame. Consequently it will be in-

correctly matched to an existing instance, e.g., see the dark

black zebra in Fig. 3, top.

To resolve this issue, we apply entropy maximization so

that the model performs out-of-distribution detection [36]

– which means ideally, a new object should not bear more

resemblance to any of one existing instances in comparison

to the others. Since we do not have video labels that an-

notate new objects in time, we exploit the existing image’s

labels by adding a ME term for all the instances in it: we in-

crease the entropy measured for the similarity between the

center embedding of each instance and all other instances.

Reusing the similarity matrix (, the entropy is computed as:

� = −

 ∑

8

 ∑

9≠8

((8, 9) log(((8, 9)), (6)

where  is the number of instances and ((8, 9) is the proba-

bility of matching instance 8 to 9 . High entropy � indicates

uniform output probability. When enforced together with

the IC term (5), it encourages instances to be equally dis-

similar to all other instances, see Fig. 2 (b).

When a new object is successfully detected, we follow

the tracking strategy described in the previous section by

comparing it to the existing  objects (already detected in

previous frames). Via ME, we enforce the similarity scores

to be equally low for all existing instances as shown in Fig. 2

(b). Thus, it is easy to assign a new identity to a new object

by setting a proper threshold such that all similarity scores

are below it. Fig. 3 shows a comparison of the model with-

out and with the proposed ME term.

3.4. Self­supervised Video Correspondence

Although large-scale videos are hard to label, they are

easy to acquire. Can we further improve our model by lever-

aging these videos? The answer is positive, but non-trivial:

On the one hand, with a tracking embedding trained only

with image collections, there is no guarantee that tracking of

instances can be continuous and coherent over time. How-

ever, with videos we do not know the ground truth instance

correspondences. Moreover, with videos we also need to

address the domain gap that usually exists between image

and videos.

To this end, we leverage self-supervised video corre-

spondence learning [17, 20, 39] to regularize tracking of

the predicted instances. We determine the valid grid cells

(i.e., those belonging to any instances) through non-maxima

suppression (NMS) on the matches with higher classifica-

tion response (see inference in [40]) for more details). On

the tracking embedding, we learn grid cell-level video cor-

respondences in the valid grid cells only, i.e., within the

regions containing instances, through a cycle consistency

loss [17, 39]. In detail, given a group of frames randomly

sampled from one sequence, we compute cross-instance

affinity � ∈ R%×&, where %,& are the numbers of valid

instances in a pair of frames. Let �C+1
C (8, 9) be the transition

probability of the 8th instance at time C being matched with

the 9 th instance at time C + 1. We can formulate long-range

correspondences by the chain rule:

�̄C+:C =

:−1∏

8=0

�C+8+1
C+8 . (7)

If we reverse this sequence and track the instances from C+:

to C, ideally, the 8th instance should return back to its origi-

nal position in the first frame. Thus we have the following

objective, where � is the identity matrix:

Lcyc
= CE( �̄C+:C �̄CC+: , �). (8)

We note that differently from [17], which needs to maintain

a group of large affinity matrices (i.e., # × # where # is

the number of pixels), the dimensions of affinity in our case

(i.e., number of valid grids) is much smaller and the module

is more efficient.

In addition, we observe that when a domain gap be-

tween image and video datasets exists, e.g., COCO [22] vs

YouTube-VIS [43], adopting the video objective (8) on the

tracking embedding does not ensure convergence due the

shared normalization. Therefore, we instead learn a video

embedding using (8) with an additional head (see Fig. 2, the

dashed link is not used when domain gap exists). We found

that with a shared backbone network, both the image em-

bedding and the video embedding can be improved by self-

supervised learning. During inference, we utilize the image

embedding for tracking due to its superior performance.

3.5. Test­time Adaptation

Inspired by [32], we can further mitigate the distribu-

tion shifts during the test-time: We still adopt the video

embedding branch, and update the model weights by keep-

ing the video correspondence loss in an online adaptation

fashion. We find that the best performance can be achieved

by updating the weights from the viedo correspondence

branch as well as the backbone network (including the FPN

Head [21]).

4. Experiments

We evaluate our proposed method on two different

instance-level tracking problems: video instance segmen-

tation and multi-person pose tracking.

4.1. Datasets and Evaluation Metrics

YouTube-VIS [43] is the first and largest dataset for

video instance segmentation. In each video, objects with

bounding boxes and masks are labeled manually every five
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Methods
Video With Contrastive Max Video

AP AP0.5 AP0.75 AR1 AR10Annotations Embed Loss Entropy Correspondence

MaskTrack-RCNN [43] X X 29.0 47.5 32.2 28.7 32.4

SOLO [40] 23.9 43.3 21.5 26.7 37.3

SOLO-Track X X 28.4 50.0 30.4 27.6 34.4

SOLO Track X X X 29.7 52.8 29.9 30.7 34.9

SOLO-Track X X X X 32.9 54.4 35.0 34.1 40.8

Table 1. Ablation study with different proposed components on YouTube-VIS validation set. The best results are highlighted in bold.

# frames AP AP0.5 AP0.75 AR1 AR10

2 32.9 54.4 35.0 34.1 40.8

3 31.8 52.4 31.7 32.2 39.1

4 30.9 51.6 30.9 31.7 38.4

Table 2. The performance of video instance segmentation with dif-

ferent number of frames in video correspondence model. The best

results are highlighted in bold.

frames and the identities cross different frames are anno-

tated as well. Since only the validation set is available for

evaluation, all results reported in this paper are evaluated

on the validation set. It is important to note that for VIS,

we only test on the videos whose categories overlap with

COCO [22], which are 20 categories. We contacted the au-

thors for the annotations of that sub validation set.

PoseTrack [2] is a large-scale benchmark for multi-

person pose estimation and tracking. It contains challeng-

ing sequences of people in dense crowds performing a wide

range of activities. We conduct experiments only on Pose-

Track 2018, where each person is annotated with 15 body

joints, each one defined as a point and associated with a

unique person id cross frames.

Evaluation Metrics. For VIS, we use the metrics men-

tioned in [43], which are average precision (AP) and av-

erage recall (AR) based on a spatio-temporal Intersection-

over-Union (IoU) metric. For pose tracking, we evaluate

our model via standard pose estimation [30] and tracking

metrics [2], which are expressed by AP and multi-object

tracking accuracy (MOTA), respectively. Unlike [11, 32,

37], we report MOTA along with its corresponding AP af-

ter post-processing videos. We apply post-processing to ig-

nore some keypoints that are below a predefined confidence

score. Note that it can lower the performance on AP but

improve the performance on MOTA.

4.2. Implementation Details

Training. For both VIS and pose tracking, we first pre-

train our model on the COCO dataset with the instance em-

bedding head with the IC loss and ME regularization. In

particular, we utilize SOLO and PointSetAnchor [42] as

the base models for instance segmentation and pose esti-

mation, respectively. The details of instance and keypoint

embedding modules are described in supplementary materi-

als. Our model is implemented on MMDetection [6] and the

whole framework is trained with 8 NVIDIA TITAN V100

GPUs until convergence.

Inference. During evaluation, the testing video is pro-

cessed frame by frame in an online fashion as described

in [43]. More details can be found in supplementary mate-

rials. To keep consistent with the previous approaches and

improve the performance, we also apply a post-processing

procedure introduced in [43], which combines the initial

prediction results with: detection confidence, bounding box

IoU, category consistency, and similarity scores, etc. Dur-

ing the test-time training, each video is finetuned for 5 iter-

ations with the same hyper-parameters as the training.

4.3. Ablation Study

We conduct all ablation studies on the YouTube-VIS

dataset. We believe that similar conclusions can also be

drawn for pose tracking.

Baseline Model. To the best of our knowledge, this is

the first work to learn semi-supervised tracking using only

image annotations, and hence it is important to establish

a strong baseline model. In particular, we use MaskTrack

RCNN [43] as the fully supervised baseline. It takes the

pretrained MaskRCNN model and finetunes it on YouTube-

VIS [43] with full video annotations, including instance cat-

egories, locations, masks and identities. The MaskTrack

baseline is used to show how well our proposed semi-

supervised method performs compared to fully supervised

state-of-the-art methods. In addition, we also provide a

bottom-up baseline based on SOLO, by training the task

of instance segmentation without learning the tracking em-

bedding. The objects are associated by spatial distance and

category consistency. It is clear that the SOLO baseline is

less accurate than MaskTrack RCNN. The SOLO baseline

is used to validate the effectiveness of each proposed com-

ponent in our method.

Effectiveness of Instance Contrastive Loss. To vali-

date its effectiveness, we report the performance with, and

without the embedding branch in Table 1. With our pro-

posed IC loss, the performance is improved by 4.5%, 6.7%

and 8.9% in AP, AP0.5 and AP0.75, respectively compared

to the SOLO baseline. This improvement validates the pre-

vious claim that even only trained with labeled images, our

method can learn discriminative representation with strong

tracking capability.

Effectiveness of Maximum Entropy Regularization.

Besides strong distinguishing ability, a robust embedding

also needs to discover new objects. However, as shown in

Fig 3, the embedding feature cannot distinguish between

new and existing objects effectively by only using the IC

loss. Thus, the maximum entropy (ME) regularization term
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is proposed to address this problem. As listed in Table 1,

the model with the ME regularization term can effectively

boost performance on VIS. Specifically, it improves AP and

AP0.5 by 1.3% and 2.8%, and it achieves an AP of 29.7%,

which outperforms the fully supervised baseline of Mask-

Track RCNN [43].

Effectiveness of Video Correspondence. We also show

the effectiveness of self-supervisely learn video correspon-

dence with unlabeled videos that are fairly cheap and easy

to obtain. As listed in Table 1, the proposed video cor-

respondence model can improve performance significantly

across all evaluation metrics. For instance, the gains in

AP, AP0.5 and AP0.75 are 2.8%, 1.6% and 5.11%, respec-

tively. In addition, compared to the SOLO baseline, our

final model improves the performance by 9.0%, 11.1% and

13.5% for AP, AP0.5 and AP0.75, respectively. Furthermore,

it also outperforms MaskTrack RCNN by a large margin.

These improvements show that the video correspondence

model can significantly enhance the tracking capability of

our embedding representation.

Sequence Length. So far we have validated all our pro-

posed components. The video correspondence model es-

pecially brings a significant improvement, but the number

of frames used to compute the cycle loss can affect its per-

formance a lot. We can only perform the experiment with

2 to 4 frames due to limitations on GPU memory. From

Table 2, it can be observed that the video correspondence

model can achieve the best performance using only two

frames. With increased number of frames, the performance

on AP drops gradually from 32.9% to 30.9%. The degraded

results may be caused by inclusion of noisy sampled with

more frames. Since we do not have any annotations, we in-

stead use category-level predictions to sample several pos-

itive instances. While the predictions are not exactly accu-

rate, more frames can bring more noise, which leads to the

worse performance.

4.4. Comparison with State­of­the­Art Methods

Video Instance Segmentation. Since we test on a sub-

set of the YouTube-VIS validation set, we either evaluate

the publicly released models, or our re-implementation of

the other approaches. The comparison results are shown in

Table 3. Both the MaskTrack RCNN and SipMask have

a tracking branch to learn object embedding representa-

tion from labeled videos. Compared to them, our method,

although does not involve any annotation of videos, can

still achieve comparable performance. Furthermore, with

the video instance correspondence module, our approach

achieves the best performance across all evaluation metrics.

In addition, we compare our approach to the methods in-

volving various cues for post processing. IoUTracker+ [4]

assigns the instance label with the largest score to a candi-

date box. Since it does not leverage any visual information,

Methods AP AP0.5 AP0.75 AR1 AR10

Video + Image Annotations

MaskTrack R-CNN [43] 29.0 47.5 32.2 28.7 32.4

SipMask [5] 24.1 42.0 26.0 26.2 28.6

Only Image Annotations

Ours 29.7 52.8 29.9 30.7 34.9

Ours+ 32.9 54.4 35.0 34.1 40.8

After post-processing

Video + Image Annotations

IoUTracker+ [43] 29.4 48.5 30.6 32.1 34.2

SeqTracker [43] 31.8 52.2 35.8 32.2 34.4

MaskTrack R-CNN [43] 36.0 58.4 40.2 35.4 38.9

SipMask [5] 37.7 57.8 38.0 37.4 40.3

Only Image Annotations

Ours 34.1 58.0 37.9 33.0 39.2

Ours+ 37.4 59.7 39.1 36.4 43.8

Ours∗ 38.3 61.1 39.8 36.9 44.5

Table 3. Comparison of the our approach with the SOTA methods

on the YouTube-VIS validation set. “Ours” represents the model

with instance embedding branch trained with IC loss and ME regu-

larization. “Ours+” stands for the model with the video correspon-

dence module as well. “Our∗ is the model updated by test-time

adaptation upon “Ours+”. The best results are highlighted in bold.

Methods
MOTA

AP
Head Shou Wrist Ankle Total

Video + Image Annotations

T
o

p
d

o
w

n Miracle [44] 68.8 73.5 61.2 56.7 64.0 –

OpenSVAI [25] – – – – 62.4 69.7

LightTrack [26] – – – – 64.6 72.4

KeyTrack [31] – – – – 66.6 74.3

B
o

tt
o

m
u

p

MDPN [13] 50.9 55.5 49.0 45.1 50.6 71.7

STAF [29] – – – – 60.9 70.4

MIPAL++ [16] 76.0 76.9 56.4 52.4 65.7 74.6

Only Image Annotations

Baseline 64.9 70.9 56.3 55.0 62.0 69.2

Ours 65.8 71.6 56.3 56.6 62.8 69.3

Ours+ 67.1 72.3 58.2 57.7 64.2 69.3

Ours++ 70.4 73.3 55.9 56.3 64.7 71.4

Table 4. Comparison of our approach with the SOTA methods on

the PoseTrack2018 validation set.“Baseline” associates poses only

by the OKS metrics. “Ours” and “Ours+” have the same defini-

tions as Table 3. “Ours++” has the same structure as the “Ours+”

model, but is finetuned with the MPII data [3]. The best results

on MOTA and AP for the methods with both image and video an-

notations and only image annotations are highlighted with red and

blue color, respectively.

its performance is a little weaker. SeqTracker [43] first com-

putes instance segmentation results for all frames of a video,

and then searches all possible tracks to find the one with the

largest score. MaskTrack RCNN and SipMask perform the

post-processing proposed by [43] to have more comprehen-

sive cues for object association. By adopting a similar post-

processing strategy, our approach can achieve comparable

or even better performance versus other SOTAs. Further-

more, with the help of self-supervised Test-time adaption

strategy, we can improve the final performance by more

than 1% on AP and AP0.5. Fig. 4 (Row 1-2) shows some

qualitative results on YouTube-VIS validation set. Each

row represents the predicted results on different frames in

a video.
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Figure 4. Visualization results of our proposed semi-supervised tracking approach on video instance segmentation and pose tracking. Each

row has five sampled frames from a video sequence. Categories, bounding boxes and instance masks are shown for each object. Note that

objects with the same predicated identity across frames are marked with the same color. Zoom in to see details.

Analysis of Post-processing. We notice that similar

post-processing steps bring much more improvement to

methods that train with video annotations than our ap-

proach. For instance, the AP performance of MaskTrack R-

CNN [43] and SipMask [5] improves by 7.0% and 13.6%,

respectively, with category and spatial consistency. How-

ever, the improvement of our method is only about 4%.

This is because post-processing takes additional cues from

the instance segmentation results, i.e. category prediction,

bounding box localization and mask prediction. However,

due to the obvious domain gap between the training set

of COCO, and the testing set of YouTube-VIS, the per-

formance of both modules drops accordingly, and thus the

limited improvement after post-processing compared to the

others. We note we mainly focus on learning a tracking

embedding representation in this work. We leave domain

adaptation of the original SOLO heads to the further work.

Pose Tracking. Besides video instance segmentation,

our approach can also be extended to human body pose

tracking. We compare our approach with the SOTAs and

report results on the validation set of PoseTrack2018. The

results are summarized in Table 4. Note that since the num-

ber of joints and their definitions are different in COCO [22]

and PoseTrack [2], an additional finetuning step on MPII [3]

is employed (denoted as Our++ in Table 4). In general, our

proposed method can achieve comparable results to both

top-down and bottom-up methods. For instance, compar-

ing with the top-down methods, although our performance

on AP is slightly lower, our performance on MOTA is quite

competitive. However, the top-down methods always detect

the human body first and perform pose estimation and track-

ing on cropped person images, which are much slower than

ours. The analysis of running time is included in the supple-

mentary material. Additionally, our approach even outper-

forms most of bottom-up methods. For instance, compared

to STAF [29], the improvement is substantial: +3.8% on

MOTA and +1.0% on AP.

5. Conclusion

We introduce a novel semi-supervised framework that

can achieve instance tracking without any video annota-

tions. The Instance Contrastive loss and Maximum En-

tropy regularization are proposed to learn the discrimina-

tive representation of different instances capable of tracking

via image annotations. Furthermore, in order to leverage

the unlabeled videos, which are more accessible in the real-

world, we propose to learn video correspondence in a self-

supervised manner. Instead of learning a separated network,

we integrate all proposed components into existing bottom-

up instance segmentation or pose tracking frameworks. Ex-

tensive experiments demonstrate that our proposed method

performs on par if not better than most STOA approaches.
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