
Partial Feature Selection and Alignment for Multi-Source Domain Adaptation

Yangye Fu1, Ming Zhang1,2, Xing Xu1*, Zuo Cao2, Chao Ma2, Yanli Ji1, Kai Zuo2, and Huimin Lu3

1Center for Future Media & School of Computer Science and Engineering

University of Electronic Science and Technology of China, China 2MeiTuan
3Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Japan

Abstract

Multi-Source Domain Adaptation (MSDA), which ded-

icates to transfer the knowledge learned from multiple

source domains to an unlabeled target domain, has drawn

increasing attention in the research community. By assum-

ing that the source and target domains share consistent key

feature representations and identical label space, existing

studies on MSDA typically utilize the entire union set of fea-

tures from both the source and target domains to obtain the

feature map and align the map for each category and do-

main. However, the default setting of MSDA may neglect

the issue of “partialness”, i.e., 1) a part of the features con-

tained in the union set of multiple source domains may not

present in the target domain; 2) the label space of the tar-

get domain may not completely overlap with the multiple

source domains. In this paper, we unify the above two cases

to a more generalized MSDA task as Multi-Source Partial

Domain Adaptation (MSPDA). We propose a novel model

termed Partial Feature Selection and Alignment (PFSA) to

jointly cope with both MSDA and MSPDA tasks. Specifi-

cally, we firstly employ a feature selection vector based on

the correlation among the features of multiple sources and

target domains. We then design three effective feature align-

ment losses to jointly align the selected features by preserv-

ing the domain information of the data sample clusters in

the same category and the discrimination between differ-

ent classes. Extensive experiments on various benchmark

datasets for both MSDA and MSPDA tasks demonstrate that

our proposed PFSA approach remarkably outperforms the

state-of-the-art MSDA and unimodal PDA methods.

1. Introduction

Domain adaptation methods focus on reducing the do-

main shift [21, 30] between a single labeled source domain

and an unlabeled target domain. Recently, a more practi-

cal task termed Multi-Source Domain Adaptation (MSDA),

which dedicates to transfer the knowledge learned from

*Corresponding author.

multiple source domains to an unlabeled target domain, has

drawn much attention in the research community.

With MSDA datasets [20, 22], a variety of approaches

have been proposed aiming at different application scenar-

ios, e.g., text classification [8], semantic segmentation [33],

person re-identification [7], and visual sentiment classifica-

tion [13]. Recently, different MSDA strategies, such as ad-

versarial learning [24, 32], and source distilling [34], have

been proposed to improve the performance on target domain

using labeled source domains. However, most of the exist-

ing MSDA methods conduct feature alignment on the entire

common features, ignoring the fact that some of the source

features may not present in the target domain, which may

contribute to negative transfer especially when the target

domain only shares a part of features with distinct source

domains. More practically, the label space of the target do-

main is unknown, i.e., the label shift between the source and

the target domain is ubiquitous.

Although several partial domain adaptation (PDA) re-

searches [2, 3, 4, 31] have reported promising results, very

few previous works have paid attention to the situation

where multiple source domains are introduced while the

target domain does not share the identical label space as

the source domains. Thus, we raise a more challenging

but practical research topic named Multi-Source Partial Do-

main Adaptation (MSPDA): Leveraging multiple source do-

mains with distinct label spaces, and perform tasks on the

target domain that does not share an identical label space

with any specific source domain. As illustrated in Figure

1, we make a comparison between the problem settings of

MSDA and MSPDA tasks. In MSDA tasks, all source do-

mains and the target domain share an identical label space,

so all circles completely overlap each other. As for MSPDA

tasks, any pair of domains do not perfectly share the label

space, so some domain-specific labels can be witnessed. In

other words, the MSDA task can be considered as a special

case of the MSPDA task.

In this paper, we propose a novel end-to-end train-

able model termed Partial Feature Selection and Alignment

(PFSA) to jointly tackle both MSDA and MSPDA prob-

lems. Based on the assumption that all of the target’s in-
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Figure 1: Illustration of the different settings for the MSDA

and MSPDA tasks.

formative features are contained in the union set of multiple

source domains, we introduce a selecting vector in PFSA

to derive the refined feature map that can reduce the dis-

crepancy between the source and the target features. The

selected partial features are highly associated with the tar-

get domain and further improve the adaptation performance

with three effective feature alignment losses, which are re-

spectively derived from the class-level, domain-level, and

discrimination aspects. We conduct extensive experiments

on various benchmark datasets to exhibit its superior ca-

pability of adapting multiple domains for both MSDA and

MSPDA tasks comparing to the state-of-the-art MSDA and

PDA approaches.

We summarize our contributions in this paper as follows:

(1) We propose a general framework termed Partial Feature

Selection and Alignment (PFSA) that is capable of tackling

both MSDA and MSPDA problems. (2) We utilize the sim-

ilarity between the source and the target domain to derive

feature selection vectors, aiming at preserving the features

that are highly related to the target domain. (3) Three novel

feature alignment losses are proposed to further align the

selected features, aiming to improve the model’s capability

of generating discriminative feature representations.

2. Related Work

Multi-Source Domain Adaptation. Due to the lack of va-

riety in single-source domain adaptation and practical de-

mands, multi-source domain adaptation (MSDA) has been

raised as a novel research area, which is tougher but more

practical and valuable than single-source UDA tasks. With

theoretical analysis done by [1, 9, 18], multiple trending

strategies have been designed for MSDA tasks, such as ad-

versarial and GAN-based approaches [13, 24, 32, 33]. La-

tent space learning and domain generation are also applied

[17]. Other techniques such as source distilling [34] are pro-

posed to select related source samples as training data. In

[8], different distance-based metrics are compared and data

samples are chosen dynamically during training according

to the correlation between source and target domain. [20]

aligns features using high-order moment distance. Class

confusion is utilized as a novel metric in [11]. In our work,

we dig further into the process of feature alignment and de-

rive partial features that are related to the target domain.

Partial Domain Adaptation. Ordinary domain adaptation

stands on the assumption that source and target domains

share an identical label space, while practically, the label

space of the target domain is unknown, but the abundant

source samples can cover the entire label space of the target

domain. In recent years, partial domain adaptation (PDA)

approaches have been proposed [2, 3, 4, 31], concentrating

on tackling situations where the target domain only contains

a part of the source labels. Previous works of PDA have

been focusing on different aspects, e.g., [2] applies a selec-

tive weighting mechanism to multiple adversarial networks

and [3] uses one adversarial network and class-level weight

to judge source samples. In [31], an auxiliary domain clas-

sifier is utilized to derive the possibility that a source sample

is contained in the target label space. A domain discrimina-

tor is also introduced to qualify the sample transferability

and to re-weight source examples [4].

In this paper, we introduce multiple source domains to

PDA, aiming at opening a novel topic named Multi-Source

Partial Domain Adaptation (MSPDA) to the research com-

munity. Note that our MSPDA setting differs from the one

proposed in [11], i.e., we don’t assume that the source do-

mains share an identical label space.

3. Proposed Method

3.1. Problem Definition

Suppose that there are N source domains DS1
, DS2

,

DS3
, . . . , DSN

with label spaces YS1
, YS2

, . . . , YSN
and

one target domain DT without labels. fD represents the fea-

ture map of domain D (extracted by common feature extrac-

tors such as ResNet) and FD stands for the refined features

through our proposed model (note that F is derived through

source-target pairs). We use YT to represent the target label

space. According to the illustration in Figure 1, the problem

settings of the MSDA and MSPDA tasks are as follows:

(1) MSDA. All domains share an identical label space:

YS1
= YS2

= · · · = YSN
= YT . (2) MSPDA. Any pair of

source domains or source-target pair does not share the la-

bel space, but the union set of source domains contains the
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Figure 2: The general framework of the proposed PFSA method, which consists of two parts: partial feature selection and

partial feature alignment. A selection vector is firstly derived to refine the extracted feature maps of multiple source domains

and target domain samples. Three advanced feature alignment losses are jointly integrated to learn refined feature maps for

the adaptation for target domain samples.

entire target label space: YS1
6= YS2

6= . . . 6= YSN
6= YT ,

YT ⊆
⋃N

i YSi
.

Our goal is to predict the category labels of the target

sample given the extracted features of the labeled samples

in the multiple source domains and the unlabeled examples

in the target domain.

3.2. Our PFSA Approach

As the overall framework shown in Figure 2, our pro-

posed PFSA model has two major steps: partial feature se-

lection and partial feature alignment. The first step derives

filtering vectors for refining the feature map given the ex-

tracted features of multiple source domains and the target

domain. Then in the second step, three novel feature align-

ment losses focusing on three different aspects in classifi-

cation tasks are jointly considered to learn refined feature

maps that eliminate the discrepancy of different domains.

3.2.1 Partial Feature Selection

In practice, different pairs of domains share distinct com-

mon features. If we compulsively align the features that do

not exist in the target domain, the negative transfer will oc-

cur. So pair-wise selecting vectors are in demand to refine

the features. We use the L1 distance (to keep the sparsity of

output) to represent the similarity between fDS
and fDT

:

∆(DT ,DSi
) =

∣

∣fDT
− fDSi

∣

∣ ∈ R
n (1)

For convenience, we use ∆i to represent ∆(DT ,DSi
). Ide-

ally, a specific dimension of ∆i denotes the similarity be-

tween DT and DSi
on the feature level, and the smaller the

value is, the closer it is to the target. For instance, if the jth

dimension of ∆i, namely (∆i)j , has the minimum value,

we infer that the jth dimension of the feature appears to

be the most related feature among the source and the target

domain. We can select r dimensions with the smallest L1

distance as the refined features. To extract partial features,

a selection vector can be applied to the original feature map

(suppose that the dimension of the raw feature space is n):

vi = [(vi)1, (vi)2, . . . , (vi)n] ∈ R
n, (2)

where vi is the selecting vector conducted from DT and

DSi
, (vi)j = 1 if the jth feature is selected (one of the r

dimensions with the smallest values), otherwise, (vi)j = 0.

However, the ability of the trivial version of the method il-

lustrated above is limited, because practically partial fea-

tures should be conducted through weighted combinations

of the raw features, instead of completely sparse selections.

So a partial selection module (PSM) that is built on a two-

layer fully-connected neural network is utilized to automat-

ically learn and derive the filtering vector of ∆i, and the

refined features of the source domains can be represented

as follows:

FDSi
= F (DT ,DSi

) = fDSi
· vi, (3)

where vi = PSM(∆i) is the output of PSM. Note that we

take the L1 distance between the source and the target do-
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main as the input of PSM, which is different from previous

approaches, e.g., the domain attention strategy proposed by

Wang et al. [27] uses the feature map as the input of the

global pooling layer. The output of PSM (represented as vi

for domain DSi
) is regarded as the filtering vector instead

of refined features. In the training procedure, we use the av-

erage value v̄ = 1

N

∑N

i=1
vi to filter target domain, while

no selecting vector is applied in testing procedure.

To improve the effectiveness of domain adaptation, we

use the high-order moment distance proposed in [20] as the

loss function of PSM:

MD2(DS ,DT ) =
1

N

N
∑

i=1

‖E(F k
DSi

)− E(F k
DT

)‖2

+

(

N

2

)−1 N−1
∑

i=1

N
∑

j=i+1

‖E(F k
DSi

)− E(F k
DSj

)‖2, (4)

where FDT
= fDT

· v̄ represents the refined features of the

target domain, and E(F k) denotes the k-order moment of

F . To avoid the zero or infinite trivial solutions, we apply

a L2 regularization to restrict the output of PSM to be close

to 1 as:

R(v̄) =
n
∑

i=1

(1− v̄)2i . (5)

Finally, the partial selection loss can be represented as fol-

lows:

Lp = MD2(DS ,DT ) + λregR(v̄), (6)

where λreg is the trade-off parameter of regularization.

3.2.2 Partial Feature Alignment

To align the features on the refined feature map, we pro-

pose three feature alignment loss functions to redistribute

the samples of different domains, focusing on three distinct

aspects (i.e., domain-level, class-level, and discrimination)

in the classification task.

Suppose that nb represents the batch size, and nc is the

number of samples that belong to class c in a batch. To

construct alignment losses, we define the center of class

as [FDSi
]c = 1

nc

∑nc

j=1
(FDSi

)j (only the refined features

of samples that belongs to class c is used in calculating

[FDSi
]c). We use symbol [FD]c to denote the center of class

c in domain D. Note that the centers are maintained for

each category in each domain. For example, if there are 4
categories and 3 domains, 4× 3 centers of class will be cal-

culated. For the target domain, we generate pseudo labels

to indicate target samples’ categories. In order to preserve

the information learned from previous batches, the centers

are updated through exponential moving average [28]:

[FD]c,1 =
1

nc

nc
∑

j=1

(FD)j,1, (7)

[FD]c,b = βc[FD]c,b−1 + (1− βc)
1

nc

nc
∑

j=1

(FD)j,b, (8)

where b denotes the current number of batch and βc is the

trade-off hyper-parameter for formal and novel centers. The

centers are maintained every batch.

Considering that the pseudo labels generated from the

model are not credible initially, we use self-entropy as a

metric to judge the reliability of pseudo labels. For each tar-

get sample, we conduct the prediction probabilities of each

category (represented as pi), and compute the self-entropy:

H(p) = −
∑

i

pi log pi. (9)

Then we sort the target samples in a batch according to H

and remain only α% of the target samples in the batch with

lower self-entropy (indicating that the model is confident

with the prediction of these samples).

Class-Level Alignment Loss. Inspired by the local Rela-

tion Alignment Loss (RAL) proposed by [26], we require

the samples of the same category to be mapped close to the

respective center, and such constraint can be represented in

the following form using moment distance:

Lc =

N
∑

i=1

C
∑

j=1

nc
∑

m=1

‖E([FDSi
]kj,b)− E(((FDSi

)j,b)
k
m)‖

+

C
∑

j=1

nc
∑

m=1

‖E([FDT
]kj,b)− E(((FDT

)j,b)
k
m)‖, (10)

where [FDSi
]j,b and ((FDSi

)j,b)m represent the center of

class, and data sample m, of domain i, class j, at batch b,

respectively. [FDT
]j,b and ((FDT

)j,b)m denote the target

center of class, and data sample m, of class j at batch b,

respectively. E(F k) is the k-order moment of F , and N , C,

nc represent the number of source domains, the number of

total categories, and the number of samples that belong to

class j, respectively. As a consequence, this loss function

creates a restriction on data samples that images of the iden-

tical category should be aligned correctly to the respective

center by the feature extractor.

Domain-Level Alignment Loss. In addition to class-level

alignment, it is also expected that the source domains “fol-

low” the route of the target domain, which alleviates the

negative influence caused by the misalignment between

each pair of the source domain and the target domain. In-

stead of aligning the entire data samples of the source do-

mains and the target domain, we calculate the L2 distance

between the source centers and the target centers as the
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domain-level alignment loss:

Ldom =

N
∑

i=1

C
∑

j=1

([FDT
]j,b − [FDSi

]j,b)
2, (11)

where [FDT
]j,b represents the center of class j at batch b

in target domain DT , and [FDSi
]j,b stands for the center of

class j at batch b in source domain DSi
.

Discrimination Loss. Leveraging the centers of the target

domain, we construct a metric that describes the degree of

dispersion. First, a Euclidean distance is calculated between

each pair of the centers for the target domain. Considering

that the centers of different categories are required to isolate

from each other, we set a hyper-parameter B to control the

sparsity of class centroids, i.e., keep the distance between

different centers close to B. The discrimination loss can be

written as follows:

Ldisc =

C−1
∑

i=1

C
∑

j=i+1

(B − ‖[FDT
]i,b − [FDT

]j,b‖2)
2, (12)

where C denotes the total number of categories, [FDT
]i,b

and [FDT
]j,b are the ith and the jth category’s center of the

target domain at batch b, respectively. From Eq. 12, the

classification error rate can be reduced by isolating target

domain samples with different pseudo labels.

3.3. Optimization

For the training procedure, we introduce an auxiliary

classifier C2 to strengthen the robustness of feature extrac-

tion and classification by utilizing the adversarial training

strategy proposed in [23], i.e., training two classifiers by

maximizing the discrepancy of the predictions with a fixed

feature extractor, and then updating the parameters of the

feature extractor when keeping the two classifiers fixed.
Specifically, the entire PFSA framework introduces three

major components, G (general feature extractor), C (C1 and

C2, the main and the auxiliary classifiers, respectively), and

PSM (inferring selecting vector). We first forward the net-

work as illustrated above and calculate the proposed losses

Lp, Lc, Ldom, Ldisc, note that only the main classifier C1 is

used for gaining pseudo labels of the target domain. The

network (G, C and PSM ) is updated with the following

objective function:

minLs + λpLp + λcLc + λdomLdom + λdiscLdisc, (13)

where Ls is the cross-entropy loss of the two classifiers, and

λp, λc, λdom, λdisc are trade-off hyper-parameters of each

loss function.
And then the discrepancy between the target predictions

of C1 and C2, namely PC1
(DT ) and PC2

(DT ), is calcu-

lated through absolute distance. We expect the two classi-

fiers to enlarge the discrepancy of the predictions and min-

imize the cross-entropy loss Ls, while the feature extractor

reduces the discrepancy during the adversarial training. As

the model converges, the discrepancy approaches 0, indicat-

ing that the feature extractor successfully derives invariant

features with respect to the classifiers. The objective func-

tion can be written as follows:

min
C

Ls − |PC1
(DT )− PC2

(DT )|, (14)

min
G

|PC1
(DT )− PC2

(DT )|. (15)

The entire training procedure of our proposed PFSA

method is summarized in Algorithm 1.

Algorithm 1 Training procedure of our proposed PFSA

method.

Input: data samples DT ,DS1
,DS2

, . . . ,DSN
, hyper-

parameters λreg, λp, βc, λc, λdom, λdisc, B.

Output: Model parameters θG, θPSM , θC1
, θC2

1: repeat

2: Generate feature map fDT
= G(DT ), fDS1

=
G(DS1

), fDS2
= G(DS2

), . . . , fDSN
= G(DSN

).

3: Derive refined feature FDT
, FDS1

, FDS2
, . . . , FDSN

using Eq. 3.

4: Conduct predictions PC1
(DT ), PC2

(DT ) and calcu-

late the cross-entropy loss Ls for C1 and C2.

5: Predict pseudo labels for the target domain utilizing

PC1
(DT ) and select credible predictions according

to Eq. 9.

6: Update class centers using Eq. 8.

7: Calculate Lc, Ldom, Ldisc, Lp using Eq. 10, 11, 12,

6, respectively.

8: Update θG, θPSM , θC1
, θC2

with Eq. 13.

9: Regenerate refined feature map FDT
, FDS1

, FDS2
,

. . . , FDSN
with Eq. 3.

10: Conduct predictions PC1
(DT ), PC2

(DT ) and calcu-

late the cross-entropy loss Ls for C1 and C2.

11: Update θG, θC1
, θC2

with Eq. 15.

12: until Reach the maximum iterations or convergence.

4. Experiments

4.1. Experimental Setup

Datasets and Features. We perform multiple experiments

on three prevailing MSDA datasets to evaluate our model:

(1) Digit-Five is collected from five different digit clas-

sification datasets, including MNIST-M [5], MNIST [12],

USPS [10], SVHN [19], and Synthetic Digits [5]. Each do-

main contains ten classes corresponding to digits ranging

from 0 to 9. Specifically, we use the data generated by [20].

In MSPDA scenario, we choose 5 classes out of the entire

10 classes for each source domain and 7 classes for the tar-

get domain. (2) Office-31 [22] is a conventional MSDA

dataset containing 4652 images in 31 categories. Images are

collected from the office environment and are presented in
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Standards Models → mm → mt → up → sv → sy Avg

Single-Best

DAN (2015) [14] 63.8±0.7 96.3±0.5 94.2±0.9 62.5±0.7 85.4±0.8 80.4

DANN (2016) [6] 71.3±0.6 97.6±0.8 92.3±0.9 63.5±0.8 85.4±0.8 82.0

ADDA (2017) [25] 71.6±0.5 97.9±0.8 92.8±0.7 75.5±0.5 86.5±0.6 84.8

Source-Combine

DAN (2015) [14] 67.9±0.8 97.5±0.6 93.5±0.8 67.8±0.6 86.9±0.5 82.7

DANN (2016) [6] 70.8±0.8 97.9±0.7 93.5±0.8 68.5±0.5 87.4±0.9 83.6

JAN (2017) [15] 65.9±0.7 97.2±0.7 95.4±0.8 75.3±0.7 86.6±0.6 84.1

ADDA (2017) [25] 72.3±0.7 97.9±0.6 93.1±0.8 75.0±0.8 86.7±0.6 85.0

MCD (2018) [23] 72.5±0.7 96.2±0.8 95.3±0.7 78.9±0.8 87.5±0.7 86.1

Multi-Source

MDAN (2018) [32] 69.5±0.3 98.0±0.9 92.4±0.7 69.2±0.6 87.4±0.5 83.3

DCTN (2018) [29] 70.5±1.2 96.2±0.8 92.8±0.3 77.6±0.4 86.8±0.8 84.8

M3SDA(2019) [20] 72.8±1.1 98.4±0.7 96.1±0.8 81.3±0.9 89.6±0.6 87.7

MDDA (2020) [34] 78.6±0.6 98.8±0.4 93.9±0.5 79.3±0.8 89.7±0.7 88.1

LtC-MSDA (2020) [26] 85.6±0.8 99.0±0.4 98.3±0.4 83.2±0.6 93.0±0.5 91.8

PFSA (Ours) 89.6±1.2 99.4±0.1 98.6±0.1 84.1±1.1 95.7±0.3 93.5

Table 1: Experiment results on Digit-Five dataset. mm, mt, up, sv, and sy represents MNIST-M, MNIST, USPS, SVHN and

Synthetic Digits, respectively. The result of maximum accuracy is marked in bold.

three domains: Amazon, Webcam, and DSLR. We choose

21 categories for each source domain and 21 categories for

the target domain when performing MSPDA experiments.

(3) DomainNet [20] is currently the largest and the most

challenging dataset in MSDA. It comes with around 0.6

million images in 6 domains: clipart, infograph, painting,

quickdraw, real, and sketch. Within each domain, images

of 345 categories are collected.

In each experiment, we use symbol “→ A” to indi-

cate that the target domain is A, while other domains are

used as source domains. For fair comparisons, we use the

MSDA settings reported in [26]. The choice of categories in

MSPDA experiments follows the MSPDA setting discussed

in Section 3.1.

Implementation Details. As for the parameter settings, we

set the four trade-of hyper-parameters λp = 0.005, λc =
0.05, λdom = 0.008, λdisc = 1.5 × 10−6. βc is set to 0.5
and B = 103. Experiments are done under identical set-

tings of hyper-parameters except for the learning rate. In the

training procedure of Digit-Five, we set the learning rate to

0.001. As for Office-31 and DomainNet, the learning rate

is set to 5× 10−5 for the pretrained backbone while the rest

of the model updates with learning rate 0.001.

Compared Methods and Evaluation Metric. To exam-

ine the effectiveness of our model, we take the following

MSDA models as our Multi-Source baselines: MDAN [32],

DCTN [29], M3SDA [20], MDDA [34], and LtC-MSDA

[26]. We also conduct Single-Best (the best performance of

single-source domain adaptation among all source domains)

and Source-Combine (all source domains are combined as a

single source domain) standards to compare our model with

typical single-source methods, e.g., DAN [14], DANN [6],

JAN [15], ADDA [25], and MCD [23].

As for MSPDA experiments, we migrate MSDA models

MDAN [32], DCTN [29], M3SDA [20], LtC-MSDA [26]

and PDA models PADA [3], SAN [2], ETN [4] to MSPDA

setting as our MSPDA baselines. Specifically, few changes

are needed for MSDA models other than the label spaces

among source domains and target domain are not shared

anymore. While for PDA models, we combine all the source

domains as one single domain to adapt to the conventional

PDA settings. We do not conduct single-best criterion as

MSDA settings, because a single source domain in MSPDA

does not contain the entire label space of the target, which

doesn’t fit the conventional problem setting of PDA.

Standards Models → D → W → A Avg

Single-Best
DAN (2015) [14] 99.0 96.0 54.0 83.0

ADDA (2017) [25] 99.4 95.3 54.6 83.1

Source-Combine

DAN (2015) [14] 98.8 96.2 54.9 83.3

JAN (2017) [15] 99.4 95.9 54.6 83.3

ADDA (2017) [25] 99.2 96.0 55.9 83.7

MCD (2018) [23] 99.5 96.2 54.4 83.4

Multi-Source

MDAN (2018) [32] 99.2 95.4 55.2 83.3

DCTN (2018) [29] 99.6 96.9 54.9 83.8

M3SDA (2019) [20] 99.4 96.2 55.4 83.7

MDDA (2020) [34] 99.2 97.1 56.2 84.2
LtC-MSDA (2020) [26] 99.6 97.2 56.9 84.6

PFSA (Ours) 99.7 97.4 57.0 84.7

Table 2: Results on Office-31 dataset. A, W, and D stands

for domain Amazon, Webcam, and DSLR, respectively.

The best results are marked in bold.

4.2. Overall Comparison on MSDA Task

Results on Digit-Five Dataset. Experiment results on

Digit-Five is reported in Table 1. According to Table 1,

our model achieves an average accuracy of 93.5%, which

outperforms current MSDA approaches by a large margin.

Especially, a performance gain of 4% is presented in “→
mm” task. Notice that we also get some slight but steady

performance gain on tasks where accuracies are relatively

high, which indicates our model’s efficiency in the circum-

stance where pseudo labels are approximately reliable.
Results on Office-31 Dataset. According to Table 2, the

result is much lower in “→ A” task than others, mainly

because domain DSLR (D) and Webcam (W) are highly

similar but differ from Amazon (A), which may not meet

our assumption that the union set of source domain features

contains the target’s features. In other words, only a part of

target (Amazon) features are aligned with source domains

(DSLR and Webcam), and some key features of the target

domain may be ignored by the model because they do not

present in source features.
Results on DomainNet Dataset. In Table 3, we report our

results on DomainNet. Generally, a performance gain of
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Standards Models → clp → inf → pnt → qdr → rel → skt Avg

Single-Best

DAN (2015) [14] 39.1±0.5 11.4±0.8 33.3±0.6 16.2±0.4 42.1±0.7 29.7±0.9 28.6

DANN (2016) [6] 37.9±0.7 11.4±0.9 33.9±0.6 13.7±0.6 41.5±0.7 28.6±0.6 27.8

JAN (2017) [15] 35.3±0.7 9.1±0.6 32.5±0.7 14.3±0.6 43.1±0.8 25.7±0.6 26.7

ADDA (2017) [25] 39.5±0.8 14.5±0.7 29.1±0.8 14.9±0.5 41.9±0.8 30.7±0.7 28.4

MCD (2018) [23] 42.6±0.3 19.6±0.8 42.6±1.0 3.8±0.6 50.5±0.4 33.8±0.9 32.2

Source-Combine

DAN (2015) [14] 45.4±0.5 12.8±0.9 36.2±0.6 15.3±0.4 48.6±0.7 34.0±0.5 32.1

DANN (2016) [6] 45.5±0.6 13.1±0.7 37.0±0.7 13.2±0.8 48.9±0.7 31.8±0.6 32.6

JAN (2017) [15] 40.9±0.4 11.1±0.6 35.4±0.5 12.1±0.7 45.8±0.6 32.3±0.6 29.6

ADDA (2017) [25] 47.5±0.8 11.4±0.7 36.7±0.5 14.7±0.5 49.1±0.8 33.5±0.5 32.2

MCD (2018) [23] 54.3±0.6 22.1±0.7 45.7±0.6 7.6±0.5 58.4±0.7 43.5±0.6 38.5

Multi-Source

MDAN (2018) [32] 52.4±0.6 21.3±0.8 46.9±0.4 8.6±0.6 54.9±0.6 46.5±0.7 38.4

DCTN (2018) [29] 48.6±0.7 23.5±0.6 48.8±0.6 7.2±0.5 53.5±0.6 47.3±0.5 38.2

M3SDA (2019) [20] 58.6±0.5 26.0±0.9 52.3±0.6 6.3±0.6 62.7±0.5 49.5±0.8 42.6

MDDA (2020) [34] 59.4±0.6 23.8±0.8 53.2±0.6 12.5±0.6 61.8±0.5 48.6±0.8 43.2

LtC-MSDA (2020) [26] 63.1±0.5 28.7±0.7 56.1±0.5 16.3±0.5 66.1±0.6 53.8±0.6 47.4
PFSA (Ours) 64.5±0.8 29.2±0.8 57.6±0.5 17.2±0.6 67.2±0.6 55.1±0.7 48.5

Table 3: Results on DomainNet. clp, inf, pnt, qdr, rel, skt reprecents clipart, infograph, painting, quickdraw, real, sketch,

respectively. Results of maximum accuracy scores are marked in bold.

Standards Models
Digit-Five Office-31

→mm →mt →up →sv →sy Avg →D →W →A Avg

MSDA

MDAN (2018) [32] 55.4 79.8 73.1 35.4 43.1 57.4 74.2 71.9 28.6 58.2

M3SDA (2019) [20] 69.3 98.0 96.3 47.8 78.3 77.9 78.2 71.0 32.9 60.7

LtC-MSDA (2020) [26] 60.0 97.6 97.7 43.5 83.7 76.5 83.3 76.2 31.0 63.5

PDA

PADA (2018) [3] 63.9 90.4 93.1 40.5 62.8 70.1 75.6 73.8 38.0 62.5

SAN (2018) [2] 55.4 96.1 96.5 32.6 55.1 67.1 83.1 77.8 39.8 66.9

ETN (2019) [4] 48.7 93.6 93.4 36.6 64.6 67.4 83.9 78.5 41.1 67.8

MSPDA PFSA (Ours) 69.5 98.2 99.0 68.7 86.9 84.5 84.2 79.0 40.2 67.8

Table 4: Overall comparison of our PFSA approach and state-of-the-art MSDA and PDA approaches in MSPDA task.

1.1% is produced by our model. In particular, we achieve an

accuracy of 64.5% and 55.1% on task “→ clp” and “→ skt”,

respectively, outperforming existing approaches by a large

margin. According to the results, the dataset is quite chal-

lenging, especially on “→ qdr” task. We think the dataset

is difficult due to the following reasons: First, DomainNet

contains 345 categories of images in each domain, which is

much more than any other MSDA dataset. The large num-

ber of categories makes it difficult for feature extractors to

derive unique features, and it is harder for classifiers to dis-

cern certain samples. Second, significant distribution shift

presents from domain to domain, especially among quick-

draw and others. Such distribution shift increases the dif-

ficulty of refining informative features since misalignment

can occur when pseudo labels are not credible.

4.3. Overall Comparison on MSPDA Task

The results with the experimental setting of MSPDA

problem on Digit-Five and Office-31 are presented in Table

4. It can be found that our proposed method performs sig-

nificantly better than all MSDA methods on both datasets.

Besides, our approach outperforms the existing PDA mod-

els by a large margin on Digit-Five and reaches SOTA on

Office-31. Specifically, compared with MSDA baselines,

our method produces a performance gain of 6.6% on Digit-

Five dataset and a performance gain of 4.3% on Office-31

dataset. In comparison with PDA approaches, a perfor-

mance gain of 14.4% is presented on Digit-Five. Dramatic

drops in performance can be witnessed compared with con-

ventional MSDA or PDA settings, we think this is because

other methods only take either multi-source domain adap-

tion or partial domain adaption into consideration, while

our approach is capable of handling both scenarios.

4.4. Further Analysis

Effect of the Key Components. To further interpret the

efficiency of each component of partial feature extracting

strategy and alignment losses, we conduct ablation study

on Digit-Five and the result is presented in Figure 3.
By reducing the loss terms used in the model, different

degrees of performance drop can be witnessed according to

Figure 3. Particularly, a significant performance drop is pre-

sented in situation No FA, i.e., all three alignment losses are

removed from our model, either in MSDA or MSPDA. It

demonstrates that the alignment mechanism makes a great

contribution to the performance of our method. Other than

the alignment losses, the PSM structure also plays a vi-

tal role, especially in MSDA scenario where“→ mm” task

and “→ sv” task suffer a great loss without PSM. We state

that the proposed structures contribute in different aspects

to the overall task, and the combination of all loss functions

reaches the best performance on all five tasks.
Parameter Sensitiveness Analysis. Furthermore, we in-

vestigate the effect of the hyper-parameters βc in Eq. 8 and

λp, λc, λdom, λdisc in Eq. 13. In this experiment, we set the

numerical range of βc in the range [0.1, 0.9] and increase it

by step. For the hyper-parameters λ∗, we set their range

in [10−6, 10−1]. We change the value of one specific pa-

rameter and fix the others in each experiment. The sensi-

tivity analysis of the five parameters of PFSA on task “→
mm” is shown in Figure 4. In particular, the optimal value

for βc is 0.5. As the value gets lower, the accuracy drops,

indicating that placing too much reliance on novel centers
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will bring more instability, which does harm to the perfor-

mance. If βc is too high, e.g., 0.9, the performance also

drops, since the centers update slowly with high βc, and

the model may ignore some crucial information from novel

batches in this case. Furthermore, the optimal values for

λp, λc, λdom, λdisc are 0.005, 0.05, 0.008, and 1.5 × 10−6,

respectively. Thus it indicates that the loss terms behind the

four hyper-parameters have different contributions. When

the values of the four hyper-parameters are too large (e.g.,

lager than 0.1), some performance drops are presented due

to the ignorance of the conventional cross-entropy loss for

classification tasks. As the four hyper-parameters get too

low (less than 10−6), nevertheless, the performance gener-

ally falls as the impacts of these loss terms become trivial.

In practice, we can efficiently search for suitable settings of

hyper-parameters on the validation set for different applica-

tion scenarios.
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Figure 3: Ablation study of PFSA in MSDA and MSPDA

tasks on Digit-Five dataset.
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Figure 4: Sensitivity analysis on the five parameters.

Visualization of Selected Features Subspace. To illus-

trate our method’s capability of selecting the features as-

sociated with the target domain and aligning the target do-

main to source domains, we visualize the feature spaces of

the source domains and the target domain using t-SNE [16]

feature embedding when executing “→ sv” task. The vi-

sualization result is presented in Figure 5. As Figure 5(a)

demonstrates, some outlier target samples can be witnessed,

indicating that the model without PFSA can confuse with

the domain and the category information. Without PFSA,

the misalignment among the target and the source domains

occurs, which contributes to the presence of discrete tar-

get features. In Figure 5(b), nevertheless, clear clusters

are generated through our proposed PFSA approach in the

universal feature space and target features are well-aligned

with all source samples within the identical category. The

centers of different categories are discernable after PFSA

refinement and the outlier samples are filtered out, which

demonstrates that partial features are correctly extracted and

aligned through our PFSA strategy. Besides, the cluster

centers of the target domain are also closer to those of the

source domains, indicating the effectiveness of our PFSA

approach in domain adaptation.

(a) Without PFSA (b) With PFSA

Figure 5: Feature space t-SNE [16] visualization of the

model trained with and without PFSA in “→ sv” task. The

target domain SVHN is marked in red and the source do-

mains are presented in other colors.

5. Conclusion

In this paper, we proposed a novel Partial Feature Selec-

tion and Alignment (PFSA) scheme to refine and align the

feature map extracted by conventional feature generators.

We regarded the L1 distance between the source and tar-

get features as the similarity among features, and selecting

vectors are derived through partial selection module (PSM)

for each pair of source and target domain using L1 dis-

tance as the input. The selecting vectors are applied to the

original feature map to conduct a more informative feature

space. Three alignment losses are calculated on the basis of

the novel feature space, concentrating on three different re-

quirements in classification tasks. Extensive experiments on

MSDA and MSPDA tasks show that our model is capable

of tackling both distribution shift and label shift problems.
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