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Abstract

3D point cloud registration is a fundamental problem

in computer vision and robotics. Recently, learning-based

point cloud registration methods have made great progress.

However, these methods are sensitive to outliers, which

lead to more incorrect correspondences. In this paper,

we propose a novel deep graph matching-based frame-

work for point cloud registration. Specifically, we first

transform point clouds into graphs and extract deep fea-

tures for each point. Then, we develop a module based

on deep graph matching to calculate a soft correspon-

dence matrix. By using graph matching, not only the lo-

cal geometry of each point but also its structure and topol-

ogy in a larger range are considered in establishing cor-

respondences, so that more correct correspondences are

found. We train the network with a loss directly defined

on the correspondences, and in the test stage the soft cor-

respondences are transformed into hard one-to-one corre-

spondences so that registration can be performed by sin-

gular value decomposition. Furthermore, we introduce a

transformer-based method to generate edges for graph con-

struction, which further improves the quality of the corre-

spondences. Extensive experiments on registering clean,

noisy, partial-to-partial and unseen category point clouds

show that the proposed method achieves state-of-the-art

performance. The code will be made publicly available at

https://github.com/fukexue/RGM.

1. Introduction

Rigid point cloud registration is a task that finds a rigid

transformation to align two point clouds, and it has long

been a fundamental task in computer vision and robotics,

with many important applications, such as autopilot [21,

19, 36], surgical navigation [44] and SLAM [13, 9]. There

are two interlocked subproblems in point cloud registration:

finding the transformation to align the two point clouds and
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Figure 1. The idea of point cloud registration based on graph

matching. Dashed lines represent correspondences. Point fea-

tures and graph features are the features extracted directly through

points and the features extracted based on graphs, respectively.

The two points xi and yj have similar point features because they

have similar local geometries, but they have different graph fea-

tures because the graph topologies around them are different, so

they are not mismatched when graph-based matching is used.

finding the correspondences between the points [17]. Al-

though when the solution to one subproblem is known, the

other subproblem can be easily solved, it is difficult to solve

both subproblems together. Point cloud registration be-

comes even harder when there are outliers, which are the

points with no correspondences in the other point cloud.

Outliers may come from the imperfectness of the sensors

used to collect the point clouds or situations in which the

two point clouds to be registered are not fully overlapped.

Iterative closest point (ICP) [3, 31] is arguably the most

widely used method for rigid point cloud registration, which

starts from an initial transformation and alternately updates

the correspondences and transformation. One major lim-

itation of ICP is that it can only converge to a local op-

timum near the initialization, and its convergence basin is

fairly small, especially when there are noise and outliers. A

series of global registration methods based on branch-and-

bound (BnB) [42, 5, 6] have been proposed to alleviate the

need for initialization by obtaining the global optimal solu-

tion, but the time-consuming BnB limits their practical ap-

plications. Another method for mitigating the need for ini-
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tialization is by keypoint extraction and matching [28, 29].

Based on the correspondences established by matching key

points, RANSAC-like methods can be explored for registra-

tion [28, 29]. However, the speed and accuracy of this type

of method are sensitive to outliers and repetitive geometry

[30]. Several recent methods integrate deep neural networks

for establishing correspondences and a differentiable sin-

gular value decomposition (SVD) algorithm for calculating

the transformation to build an end-to-end trainable network

for point cloud registration, such as DCP [38], RPM-Net

[43] and IDAM [18], and they do not need transformation

initialization. These methods explore deep features to es-

tablish correspondences but the discrimination ability of the

features extracted from point clouds is poor, as shown in

Figure 1, which leads to a large proportion of incorrect cor-

respondences and consequently devastates the registration

accuracy.

In this paper, we propose a robust point cloud registra-

tion framework that utilizes deep graph matching to better

handle outliers, and we denote it as RGM. By constructing

graphs from point clouds to be registered and capturing the

high-order structure of the graphs, RGM can find robust and

accurate point-to-point correspondences to better solve the

point cloud registration problem. To the best of our knowl-

edge, this is the first time that deep graph matching has been

applied to point cloud registration. RGM contains an end-

to-end deep neural network, the first part of which is a fea-

ture extractor that extracts deep local features for each point

by using its neighboring points. Instead of matching these

local point features directly, we construct a graph for each

of the two point clouds and embed [37] both the graph nodes

(local features for each point) and graph structure (second-

order or high-order structure) into node feature space. Then,

we introduce an module consisting of an affinity layer, in-

stance normalization and Sinkhorn to predict soft corre-

spondences from the node features of the two graphs, and

we denote it as AIS module. By using graph matching in the

AIS module, not only the local geometry of each node but

also its structure and topology in a larger range are consid-

ered in establishing correspondences so that more correct

correspondences are found. In training, the binary cross-

entropy loss between the predicted soft correspondences

and the ground-truth correspondences are adopted, which

directly promotes the network to learn better point-to-point

correspondences. In testing, we use the linear assignment

problem (LAP) solver [15] based on the Hungarian algo-

rithm [16] to transform soft correspondences into one-to-

one hard correspondences, and then SVD is employed to

calculate the transformation from the hard correspondences.

Similar to existing methods such as RPM-Net and ICP, we

iteratively optimize the registration results.

Our main contributions are as follows:

• We propose using deep graph matching to solve the

point cloud registration problem for the first time. In-

stead of only using the features of each point, graph

matching can leverage the features of other nodes and

the structural information of graphs when establishing

correspondences so that it can better address the prob-

lem of outliers.

• We introduce the AIS module to establish reliable cor-

respondences between nodes of two given graphs. The

AIS module calculates an affinity matrix between any

two nodes based on the embedded features, and by an-

alyzing the affinity matrix globally and utilizing the

Sinkhorn algorithm, it can effectively reduce the pro-

portion of incorrect correspondences.

• We propose using a transformer to generate soft graph

edges. In registering partial-to-partial point clouds,

better correspondences can be established for the over-

lapping parts by utilizing the attention and co-attention

mechanism in the transformer.

• Our method achieves state-of-the-art performance on

clean, noisy, partial-to-partial datasets and unseen cat-

egories datasets.

2. Related Work

2.1. Traditional Registration Method

A large proportion of traditional methods need an initial

transformation and find a locally optimal solution near the

initialization, in which ICP [3, 31] is an early and represen-

tative method. ICP starts with an initial transformation and

iteratively alternates between solving two trivial subprob-

lems: finding the closest points as correspondences under

current transformation and computing optimal transforma-

tion by SVD from found correspondences. Many variants

have been proposed to improve ICP [26, 24, 27]. Never-

theless, ICP and its variants can only converge to a local

optimum, and their success heavily relies on a good ini-

tialization. To improve the robustness to noise and outliers

and enlarge the convergence basin, some methods transform

point clouds into probability distributions and reformulate

point cloud registration as matching two probability distri-

butions, such as GMM [14] and HGMR [12]. These meth-

ods do not need to alternately solve correspondences and

transformation, but their objective functions are nonconvex,

so they still need a good initialization to avoid converging to

a bad local optimum. Recently, a series of globally optimal

methods based on BnB have been proposed, such as Go-

ICP [42], GOGMA [5], GOSMA [6], and GoTS [20],but

they are very slow and only practical in some limited scenar-

ios. Another line of work avoids transformation initializa-

tion by establishing correspondences. They usually first ex-

tract keypoints from the original point clouds and construct
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feature descriptors for them and then establish potential cor-

respondences through feature matching [28, 29]. After that,

RANSAC-like algorithms can be used to find the correct

correspondences for registration. Different from RANSAC-

like methods, FGR [49] optimizes a correspondence-based

objective function by a graduated nonconvex strategy and

achieves state-of-the-art performance in correspondence-

based point cloud registration. However, correspondence-

based methods are sensitive to duplicate structures and

partial-to-partial point clouds because a large proportion of

the potential correspondences will be incorrect in these sce-

narios. Specifically, the lack of good initialization, a large

proportion of outliers and time constraints are still big chal-

lenges for traditional point cloud registration methods.

2.2. Learning-based Registration Method

The developments of deep learning on point clouds al-

low researchers to make good use of existing research, such

as PointNet [25], and DGCNN [40], to extract point cloud

features for downstream tasks. These studies have stim-

ulated the interest of using deep learning in point cloud

registration. One of the earliest works is PointNetLK [1],

which calculates global feature descriptors of the two point

clouds through PointNet and iteratively uses the IC-LK al-

gorithm [2, 22] to minimize the distance between the two

global feature descriptors to achieve registration. PCRNet

[30] replaces the IC-LK algorithm in PointNetLK with a

deep neural network. DCP [38] utilizes transformer [10, 35]

to compute soft correspondences between two point clouds

and utilizes a differentiable SVD algorithm to calculate the

transformation. Although these methods have the advan-

tages of being fast and some of them do not need transfor-

mation initialization, they cannot effectively handle partial-

to-partial point cloud registration. PRNet [39] proposes a

keypoint detector and uses the keypoint-to-keypoint corre-

spondences in a self-supervised way to solve the partial-

to-partial point cloud registration. DeepGMR [45] ex-

tracts pose-invariant correspondences between raw point

clouds and Gaussian mixture model (GMM) parameters,

and then recovers the transformation from the matched

Gaussian mixture models. IDAM [18] integrates the iter-

ative distance-aware similarity convolution module into the

matching process, which can overcome the shortcomings of

using inner products to obtain pointwise similarity. RPM-

Net [43] proposes a network to predict optimal annealing

parameters and uses annealing and Sinkhorn [32] to obtain

soft correspondences from local features. Soft correspon-

dences can increase robustness, but they lead to the decrease

of registration accuracy, which is shown in our clean experi-

ment. Although these methods can handle partial-to-partial

point cloud registration to some extent, there is still room

for improvement in their accuracy and robustness. The dif-

ference between our method and the existing learning-based

methods is that we construct graphs from the original point

clouds and merge structural information of the graphs into

node features so that the nodes can be better matched.

Graph matching has been widely studied in computer

vision and pattern recognition [11, 33, 48, 8]. Recently,

learning-based graph matching has attracted considerable

research interest [23, 46, 37], but, to the best of our knowl-

edge, there is no research on using learning-based graph

matching to solve the point cloud registration problem.

3. Problem Formulation

3D rigid point cloud registration refers to estimating a

rigid transformation {R, t} to align a source point cloud

X =
{
xi ∈ R

3|i = 1, · · · , N
}

and a target point cloud

Y =
{
yj ∈ R

3|j = 1, · · · ,M
}
, where R ∈ SO(3),

t ∈ R
3. N and M represent the number of points in X

and Y, respectively. The correspondences between points

in X and Y are represented by matrix C = {0, 1}N×M
.

If xi and yj are a pair of corresponding points, Ci,j is 1;

otherwise, it is 0. We first consider the simple case where

there are strict one-to-one correspondences between points

in X and Y, in which, N = M . The rigid point cloud

registration problem can be formulated as minimizing the

following objective function:

e(C,R, t) =

N∑

i

M∑

j

Ci,j ‖Rxi + t− yj‖
2
2 , (1)

subject to
∑M

j Ci,j = 1, ∀i,
∑N

i Ci,j = 1, ∀j, Ci,j ∈

{0, 1}N×M , ∀i, j. In the more difficult case where there are

no one-to-one correspondences, the equality constraints no

longer hold, and they become inequality constraints. We

can introduce slack variables in C as in [43] to convert in-

equality constraints back into equality constraints. The row

constraints are converted as follows, and the column con-

straints are similarly converted:

M∑

j

Ci,j ≤ 1, ∀i →
M+1∑

j

Ci,j = 1, ∀i ≤ N. (2)

Please note that C becomes a (N + 1) × (M + 1) matrix

after introducing one row and one column slack variables,

and the sums of the added row and column are not restricted

to be one.

In this paper, we use an end-to-end neural network to

predict C. Once we know the correspondences, the rigid

transformation can be obtained by SVD.

4. RGM

Figure 2 (a) shows the overall pipeline of RGM. RGM

consists of four components: local feature extractor, edge
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Figure 2. The pipeline of the proposed 3D rigid point cloud registration framework, RGM, where
⊕

represents concatenate features and⊗
represents matrix multiplication. The solid lines are the data flow of both training and testing, and the dotted lines are the data flow that

exists only in testing.

generator, graph feature extractor & AIS module and LAP-

SVD. During training, we use the shared local feature ex-

tractor to extract local features for each point in X and Y,

and take these local features as the node features F of the

initial graph. Next, the edge generator generates edges and

builds the source graph and target graph, and the graphs are

inputted into the graph feature extractor, which processes

the two graphs and outputs new node features F ′ and uses

them to update F . The AIS module predicts the soft corre-

spondence matrix C̃ between nodes of the two graphs. By

using blocks composed of three modules, the edge genera-

tor, graph feature extractor and AIS module, with the same

structure but different weights L times, we can obtain node

features F with better discrimination capability and a more

accurate soft correspondence matrix C̃. Finally, the training

loss is the cross-entropy between C̃ and the ground truth

correspondences. During test, two point clouds are first in-

putted into the network to obtain the soft correspondence

matrix C̃. Then, the soft correspondences are converted to

hard correspondences using the LAP solver, and the trans-

formation is solved by SVD. We also update the transfor-

mation iteratively, similar to ICP. The details of each com-

ponent are explained in the following subsections.

4.1. Local Feature Extractor

To establish the correspondence matrix between two

point clouds, it is necessary to embed the source point cloud

X and the target point cloud Y into a common feature

space. We only use the coordinates of the points to build

a low-dimensional local feature descriptor P for each point.

The local feature descriptor Pxi
of xi is:

Pxi
= {(xi, xn) | ∀xn ∈ Ki} , (3)

where, Ki represents the K-nearest neighboring points of

xi.

Low-dimensional local feature descriptors are mapped

to high-dimensional local feature spaces through nonlinear

functions fθ:RK×6 → R
V , where V is the dimensionality

of the final high-dimensional local feature. The implemen-

tation of fθ is shown in Figure 2 (b), where θ represents

the parameter of the nonlinear function, which consists of

shared multilayer perceptron (MLP), maxpooling and con-

catenation. We use the high-dimensional local features as

the node features F of the initial graph. The node feature

Fxi
of xi can be expressed as follows:

Fxi
= fθ (Pxi

) . (4)

Inspired by the idea of the Siamese network [4], the two

point clouds share the same local feature exactor. When

the two point clouds become closer, the local features also

become similar, so this structure is suitable for iterative reg-

istration.

If only the local features are used to predict the corre-

spondences between point clouds, it is easy to obtain in-

correct correspondences, especially when there are outliers.
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The reason is that the local features do not contain the

structural information of the point cloud on a larger scale

(self-correlation) and the association between the two point

clouds (cross-correlation). Inspired by Wang’s research on

deep graph matching [37], we construct graphs from point

clouds and use deep graph matching to establish better cor-

respondences. Section 4.2 describes how to build graphs

from point clouds, and section 4.3 introduces how to pre-

dict the correspondences by using deep graph matching and

the AIS module.

4.2. Edge Generator Based on Transformer

The graphs built from X and Y are denoted as source

graph Gs = {X,EX} and target graph Gt = {Y,EY}, re-

spectively. The graph nodes are the original points, and the

graph edges are represented by the adjacency matrix E. The

node features of Gs and Gt are denoted by Fxi
and Fyj

, re-

spectively. There are trivial methods to generate the edges,

such as full connection, nearest neighbor connection and

Delaunay triangulation but the features of graphs cannot be

effectively aggregated, as shown in Figure 4 (d). Inspired

by the success of BERT [10] in NLP, we introduce a trans-

former [35] module to dynamically learn the soft edges of

any two nodes within a point cloud. The transformer-based

edge generator is illustrated in Figure 2 (c). The transformer

consists of several stacked encoder-decoder layers. The en-

coder uses a self-attention layer and shared MLP to encode

node features, and the decoder associates and encodes fea-

tures based on the co-attention mechanism. The transformer

takes node features FX,FY as input and encodes them into

embedding features TX, TY. Soft edge adjacency matrices

are obtained by applying a softmax function on the inner

product of the embedding features as follows:

TX, TY = ftransformer(FX,FY), (5)

EX = softmax(〈(TX)
T
, TX〉), (6)

EY = softmax(〈(TY)
T
, TY〉). (7)

4.3. Graph Feature Extractor and AIS Module

This part is shown in Figure 2 (d), which consists of three

consecutive steps as follows: First, we use intra-graph conv

to explore the self-correlation of node features, where fea-

tures are aggregated from nodes along edges within each

graph. The message passing scheme between nodes is the

same as PCA-GM [37]. A node self-correlation feature

Fcorr
xi

of Gs is computed by intra-graph convolution as fol-

lows:

Fcorr
xi

=
N∑

j=1

Ĕi,j ∗ fadj(Fxj
) + fself (Fxi

), (8)

and likewise for Gt. Here, Ĕ is the row normalized ad-

jacency matrix calculated from E, and fadj and fself are

message passing functions, which are implemented by fully

connected layers and ReLU.

Second, the AIS module is used to calculate a soft corre-

spondence matrix. The AIS module consists of an affinity

layer, instance normalization and Sinkhorn. An affinity ma-

trix A between the two graphs is computed as follows:

Ai,j = (Fcorr
xi

)TW(Fcorr
yj

), (9)

where W is the learnable parameter in the affinity layer. If

Fcorr
xi

,Fcorr
yj

∈ R
Q, then W ∈ R

Q×Q.

Before using Sinkhorn to compute the soft correspon-

dence matrix C̃, we need to transform A into a matrix with

positive elements within the finite values. There are two ap-

proaches to do so, and the naı̈ve approach is to use softmax

for rows or columns. The problem with this approach is that

it processes each row or column and does not consider the

matrix as a whole, which may result in the problem that a

smaller value in A is transformed into a larger value in the

transformed matrix1. To avoid this situation, we do not use

softmax but use instance normalization [34] to transform A.

Instance normalization considers all the elements globally

and uses an exponential function to ensure that all elements

are positive. For handling outliers, we add an additional row

and an additional column of ones to the transformed matrix

and then input it into Sinkhorn [32] to calculate the soft cor-

respondence matrix C̃ by the iterative process of alternating

row and column normalizations.

Finally, we enhance the node features by exploring

cross-correlation through cross-graph conv. Cross-graph

conv is similar to intra-graph conv, except that features are

aggregated from the node features of the other graph with

edges replaced by C̃. The more similar the node pairs

between the two graphs are, the higher the corresponding

weight of C̃ will be. We obtain a new node feature F ′

xi
of

node xi with a self-correlation feature and cross-correlation

feature as follows:

F ′

xi
= fcross(F

corr
xi

,

M∑

j=1

C̃i,j ∗ F
corr
yj

), (10)

and likewise for Gt. Here, fcross consists of a feature con-

catenate and a fully connected layer, and it is shared for Gs

and Gt.

4.4. LAP Slover and SVD

To compute the hard correspondence matrix C
pre

, which

is binary, we sum the elements of each row and each col-

umn of C̃ and take out the rows and columns with a sum

greater than 0.5, and apply a LAP solver based on Hungar-

ian algorithm[16] on the resulting matrix to obtain a binary

matrix. Then, the elements of the binary matrix are assigned

1visualization is detailed in Supplementary Material
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to a zero matrix with the shape of C̃ according to their posi-

tion in C̃, and the result is the we need hard correspondence

matrix C
pre

. Finally, we take C
pre

as input to predict the

transformation {R̂, t̂} by SVD.

4.5. Loss

Our loss function takes the ground truth correspondences

directly as supervision, which is different from previous

studies [38, 43, 45] that define loss on transformation pa-

rameters. Cross-entropy loss between soft correspondence

matrix C̃ and ground-truth correspondence matrix C
gt

is

adopted to train our model. The formula is as follows:

loss = −
N∑

i

M∑

j

(C
gt

i,j log C̃i,j + (1−C
gt

i,j) log(1− C̃i,j)).

(11)

Since our loss function is only related to the soft correspon-

dence matrix C̃, the calculations in section 4.4 do not need

to be differentiable.

4.6. Implementation Details

Our local feature extractor considers a neighborhood of

K = 20, and outputs final high-dimensional local features

with the dimension V =1024. We set L = 2 in this study. We

train the network using the SGD optimizer with an initial

learning rate of 1e-3. This network is implemented using

PyTorch. For more details of implementation please see the

supplementary material.

5. Experiments

5.1. Datasets and Evaluation Metrics

All experiments are conducted on the ModelNet40 [41]

dataset, which includes 12,311 meshed CAD models from

40 categories. We randomly sample 2,048 points from the

mesh faces and rescale points into a unit sphere. Each cate-

gory consists of official train/test splits. To select models for

evaluation, we take 80% and 20% of the official train split

as the training set and validation set, respectively, and the

official test split for testing. For each object in the dataset,

we randomly sample 1,024 points as the source point cloud

X, and then apply a random transformation on X to ob-

tain the target point cloud Y and shuffle the point order.

For the transformation applied, we randomly sample three

Euler angles in the range of [0, 45]◦ for rotation and three

displacements in the range of [−0.5, 0.5] along each axis

for translation. Unless otherwise noted, these settings are

used by default in all experiments.

We use six evaluation metrics, and the first four are cal-

culated from the estimated transformation parameters. They

are the mean isotropic errors (MIE) of R and t proposed in

RPM-Net [43], and the mean absolute errors (MAE) of R

and t used in DCP [38], which are anisotropic. All rotation-

related metrics are in units of degrees.

In addition, we propose a new metric, clip chamfer dis-

tance (CCD), which measures how close the two point

clouds are brought to each other, and it is calculated as fol-

lows:

CCD(X̂,Y) =
∑

x̂i∈X

min(min
yj∈Y

(‖x̂i − yj‖
2
2), d)

+
∑

yj∈Y

min(min
x̂i∈X

(‖x̂i − yj‖
2
2), d), (12)

where X̂ is the transformed source point cloud after regis-

tration and x̂i is the ith point. To avoid the influence of out-

liers in partial-to-partial registration, the point pair whose

distance is larger than 0.1 is not included in the calculation.

This is implemented by seting the threshold d = 0.1.

Finally, we also reported the recall with MAE(R)< 1◦

and MAE(t)< 0.1. The best results are marked in bold font

in tables.

5.2. Comparing Methods

We compare our method to ICP [3], fast global registra-

tion (FGR) [49], as well as three latest learning-based meth-

ods, RPM-Net [43], IDAM [18] and DeepGMR [45]. Other

early learning-based methods, such as DCP and Point-

NetLK, are not directly compared, because experiments in

[43, 18, 45] have already shown that these new methods

have better performance. Our method performs two itera-

tions during the test. We adopt the ICP and FGR imple-

mented by Intel Open3D [50]. For IDAM and DeepGMR,

we use the code provided by the authors and train the mod-

els according to the author’s settings. For RPM-Net, we

need to estimate the normal except in the clean experiment

and use the code provided by the author. The number of it-

erations of RPM-Net was set to 5 according to the author’s

article. ICP uses the identity matrix as initialization, and

none of the other methods need transformation initializa-

tion. All networks are retrained because no trained model is

available.

5.3. Clean Point Cloud

We first evaluate the registration performance on clean

point clouds and follow the sampling and transformation

settings in section 5.1. The ground-truth correspondences

are obtained by the strict correspondences between X and

Y. All models are trained and evaluated on clean data, and

Table 1 shows the performance of our method and its peers.

Our method achieves the best performance and greatly out-

performs the strongest learning-based method. In addition,

the success rate of RGM reaches 100%, and most of its

error metrics are close to 0, which cannot be achieved by

other existing methods. Although DeepGMR also achieves
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method MIE(R) MIE(t) MAE(R) MAE(t) CCD  Recall
ICP 3.079 0.02442 6.4467 0.05446 0.03009 74.19%
FGR 0.006 0.00005 0.0099 0.00010 0.00019 99.96%
RPM-Net 0.109 0.00050 0.2464 0.00112 0.00089 98.14%
IDAM 0.731 0.01244 1.3536 0.02605 0.04470 75.81%
DeepGMR 0.001 0.00001 0.0156 0.00002 0.00003 100.00%
RGM <0.001 <0.00001 0.0096 <0.00001 <0.00001 100.00%

Table 1. Performance on clean point clouds

method MIE(R) MIE(t) MAE(R) MAE(t) CCD  Recall
ICP 3.127 0.02256 6.5030 0.04944 0.05387 77.59%
FGR 5.405 0.03386 10.0079 0.07080 0.06918 30.75%
RPM-Net 0.305 0.00253 0.5773 0.00532 0.04257 96.68%
IDAM 1.818 0.01416 3.4916 0.02915 0.05436 49.59%
DeepGMR 1.178 0.00716 2.2736 0.01498 0.05029 56.52%
RGM 0.080 0.00069 0.1496 0.00141 0.04185 99.51%

Table 2. Performance on point clouds with Gaussian noise

a 100% success rate, its errors are larger than RGM. Some

qualitative comparisons are shown in Figure 3 (a).

5.4. Gaussian Noise

To evaluate the robustness to noise, Gaussian noise sam-

pled from N (0, 0.01) and clipped to [−0.05, 0.05] is in-

dependently added to each coordinate of the points in clean

point clouds. These noises might destroy the original corre-

spondences, so we need to rebuild them for training models

that need ground truth correspondences. First, we compute

the point pair distance between Y and X
′, which is obtained

by applying the ground truth transformation to X. Then, if

x′

i ∈ X
′ and yj ∈ Y satisfy Eq. 13, they are regarded

as a corresponding point pair and no longer appear in the

next round calculation. Finally, we find corresponding point

pairs again according to Eq. 13 from the remaining points.

To avoid long-distance point pairs being selected as a corre-

spondence, we only consider the point pairs whose distance

is less than 0.1. The reason why we find the corresponding

point pair again from the remaining points is that the dis-

tance between the two points may not be the smallest but

the second smallest, so they are not found in the first round.

min
x′

n∈X′

(‖x′

n − yj‖
2

2) = ‖x′

i − yj‖
2

2 = min
ym∈Y

(‖x′

i − ym‖
2
2).

(13)

All models are trained and evaluated on the noise data. The

results are shown in Table 2. It is obvious that our method is

much more accurate than the latest learning-based methods

and the traditional methods, and the recall of our method is

close to 100%. Some qualitative comparisons are shown in

Figure 3 (b).

5.5. Partial-to-Partial

Partial-to-partial is the most challenging case for point

cloud registration, and it is important because it occurs fre-

quently in real-world applications. To generate partial-to-

partial point cloud pairs, we follow the protocol in RPM-

method MIE(R) MIE(t) MAE(R) MAE(t) CCD  Recall
ICP 12.456 0.12465 24.8777 0.26685 0.11511 6.56%
FGR 23.185 0.14560 42.4292 0.30214 0.12118 5.23%
RPM-Net 0.864 0.00834 1.6985 0.01763 0.08457 80.59%
IDAM 8.905 0.09192 16.9724 0.19209 0.12393 0.81%
DeepGMR 43.683 0.22479 70.9143 0.45705 0.14401 0.08%
RGM 0.492 0.00414 0.9298 0.00874 0.08238 93.31%

Table 3. Performance on partial-to-partial point clouds

method MIE(R) MIE(t) MAE(R) MAE(t) CCD  Recall
ICP 13.326 0.13033 26.6447 0.27774 0.11879 6.71%
FGR 23.950 0.14067 41.9631 0.29106 0.12370 5.13%
RPM-Net 1.041 0.01067 1.9826 0.02276 0.08704 75.59%
IDAM 10.158 0.10063 19.3249 0.20729 0.12921 0.95%
DeepGMR 44.363 0.22039 71.0677 0.44632 0.14728 0.24%
RGM 0.837 0.00674 1.5457 0.01418 0.08469 84.28%

Table 4. Performance on unseen categories point clouds

Net [43], which is closer to real-world applications. For

each point cloud, we create a random plane passing through

the origin independently, translate it along its normal, and

retain 70% of the points. All models are trained and evalu-

ated on partial-to-partial data and the results are illustrated

in Table 3. Our method is obviously more accurate than

the other methods, and its success rate is higher than 90%.

RPM-Net is the second best method, but its error is still

twice as large as ours. Some qualitative comparisons are

shown in Figure 3 (c). For the inference time of our method

and the comparison methods, please refer to the supplemen-

tary material.

5.6. Unseen Categories

To test each method’s generalization capability on un-

seen shape categories, we take the official train and test

splits for the first 20 categories as the training and valida-

tion sets, respectively, and test on the official test splits of

the last 20 categories. Other experimental settings are the

same as those in the partial-to-partial experiment. The ex-

perimental results are summarized in Table 4. We find that

the performance of traditional methods does not change sig-

nificantly. The generalization capability of RPM-Net is also

good, but it is obvious that our method works better. The

other learning-based methods do not generalize well to un-

seen categories. Some qualitative comparisons are shown

in Figure 3 (d).

5.7. Ablation Studies

In this section, we present the results of the ablation

study to analyze the effectiveness of two key components.

All ablation studies are performed on the partial-to-partial

dataset. We analyze the two key components as follows:

To demonstrate the effectiveness of the AIS module, we

design a variant to replace the AIS module, and the result-

ing method is denoted as RGMVar1. The variant computes

the distance matrix D between the nodes of the two graphs
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Figure 3. Qualitative registration results on ModelNet40, (a) clean, (b) noise, (c) partial-to-partial, and (d) unseen categories.

variants MIE(R) MIE(t) MAE(R) MAE(t) CCD  Recall
RGMVar1 10.746 0.07014 19.2722 0.14255 0.11304 18.33%
RGMVar2 1.554 0.01454 2.9051 0.03101 0.08632 74.17%
RGMVar3 1.197 0.01083 2.2612 0.02236 0.08605 75.59%
RGM 0.837 0.00674 1.5457 0.01418 0.08469 84.28%

Table 5. Ablation studies

by computing the L2 norm of node features, transforms D

into a positive matrix within the finite values by the for-

mula e−(Di,j − 0.5), and uses Sinkhorn to calculate the soft

correspondences. The results are listed in the first row of

Table 5. We find that the registration accuracy becomes

very poor by using the AIS variant, and this result shows

that the proposed AIS module can effectively improve the

registration performance. This is because the AIS module

generates more correct matching than its variant, and an il-

lustrative example of the hard correspondences generated

by AIS and its variant is shown in Figure 4 (b) and (c).

To understand the importance of our edge generator,

we design two variants those use full connection edges

and sparse connection edges instead of building edges by

a transformer, and the resulting methods are denoted as

RGMVar2 and RGMVar3 respectively. The results are

shown in the second and third rows of Table 5, and they

are also inferior to the performance by using a transformer

to generate edges. An example of the hard correspondences

generated by this method is shown in Figure 4 (d) and (e).

5.8. Other Experiments

For experiments on ShapeNet[7] and 3DMatch[47],

computational efficiency, visualizing the learned graph and

so on, please see Supplementary Material.

(a) Ground truth (b) RGM (80%) (c) RGMVar1 (36%) (d) RGMVar2 (38%) (e) RGMVar3 (71%)

Figure 4. An illustrative case of the ground-truth correspondences

and the hard correspondences generated by RGM and its variants.

Black and red blocks represent the correct and incorrect correspon-

dences, respectively. The number in brackets is the proportion of

correct correspondences. Please note that there are 717 points in

the two partial point clouds to be registered, and this is a sub-

sampled figure with 36×36 blocks. Much more correct correspon-

dences are generated by RGM.

6. Conclusion

We introduce deep graph matching to solve the point

cloud registration problem for the first time and propose a

novel deep learning framework RGM that achieves state-of-

the-art performance. We propose the AIS module to estab-

lish accurate correspondences between the graph nodes to

greatly improve registration performance. In addition, the

transformer-based edge generator provides a new idea for

building graph edges in addition to full connection, near-

est neighbor connection and Delaunay triangulation. We

think that the deep graph matching approach has the po-

tential to be used in other registration problems, including

2D-3D registration and deformable registration.
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