
Single-Shot Freestyle Dance Reenactment

Oran Gafni

Facebook AI Research

oran@fb.com

Oron Ashual

Facebook AI Research

oron@fb.com

Lior Wolf

Facebook AI Research

and Tel-Aviv University

wolf@fb.com

(a) (b) (c)
Figure 1. Single-shot dance reenactment. Using only a single image of a target person and their corresponding extracted semantic map

(a), and a driving person’s pose (b), we are able to render a novel corresponding semantic map of the target person, and a realistic person

in the novel pose (c). Unlike previous work, we are able to maintain the body shape of the target person.

Abstract

The task of motion transfer between a source dancer and

a target person is a special case of the pose transfer prob-

lem, in which the target person changes their pose in ac-

cordance with the motions of the dancer. In this work, we

propose a novel method that can reanimate a single im-

age by arbitrary video sequences, unseen during training.

The method combines three networks: (i) a segmentation-

mapping network, (ii) a realistic frame-rendering network,

and (iii) a face refinement network. By separating this task

into three stages, we are able to attain a novel sequence of

realistic frames, capturing natural motion and appearance.

Our method obtains significantly better visual quality than

previous methods and is able to animate diverse body types

and appearances, which are captured in challenging poses.

1. Introduction

The goal of this work is to animate a target person, who

is specified by a single input image, to mimic the motion of

a driving person, who is captured in a video sequence. This

pair of inputs can be considered the easiest to obtain, and

most minimalist and generic input for the given synthesis

problem. Importantly: both the input image and the driving

video are unseen during training.

The method we propose extends the envelope of the cur-

rent possibilities in multiple ways: (i) the target person can

vary in body shape, age, ethnicity, gender, pose, and view-

point (ii) the sequence of poses that form the motion can be

unconstrained, which is why we emphasize freestyle dance,

(iii) the background can vary arbitrarily and is not limited

to the source image or the background of the driving video.

This general setting contrasts with the limitations of ex-

isting methods, which often struggle to maintain the tar-

get person’s appearance and avoid mixing elements from

the driving video. The existing methods also often require

an input video of the target person, have difficulty produc-

ing natural motion, and are limited to specific backgrounds.

This is true, even for methods that train to map between

specific persons seen during training.

To achieve this novel set of capabilities, we make ex-

tensive use of the latest achievements of neural networks

for human capturing. Two pre-trained pose recognition net-

works are used to analyze the input video, a pre-trained hu-

man parsing network is used to segment the input image (of
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the target person), a pre-trained face embedding network is

used to improve the face, and an inpainting network is uti-

lized to extract the background of each training image. This

maximal use of existing tools is an enabler for our method:

using just one of the pose networks, or using pose in lieu of

human parsing fails to deliver the desired results.

In addition to these components, for which there exist

previous works that include a subset of it, we further employ

specific representations. In order to ensure that the clothing

and face appearance are captured realistically, we employ

a five-part human encoder to the realistic frame-rendering

network, consisting of four ImageNet-trained classifiers,

and a trained face embedding network. These provide a rich

embedding of the target, later enforced by a set of relevant

perceptual losses. To ensure that finger motion is natural

and the rendered hands do not suffer from missing parts,

hand training data is augmented.

The method separates the pose and frame generation

parts, performing each by a different network. The pose

is provided in the space of a part-based segmentation map

and is conditioned on both the target person and the motion

frame. The second network transforms the generated pose

and the target person’s details to a masked frame, which is

blended with an arbitrary background. The frame is further

improved by applying a face refinement network based on

an appearance preserving perceptual loss.

An extensive set of experiments is provided to estab-

lish the visual and numerical validity of the method. Com-

pared to previous methods, our method provides consider-

ably more accurate and visually pleasing results, as evalu-

ated by a set of numerical metrics, a user study, and visual

examples. Contrary to most previous work, we emphasize

the ability to handle diversity in the target and generated in-

dividuals, promoting inclusion, which is generally lacking

in this line of work.

2. Related work

A similar setting was presented in few-shot vid2vid

(fsV2V) [41], which generates a video sequence given a

driver video and a source image containing a target per-

son. Like our method, this method only trained once and

can then be applied to any pairs of inputs. However, there

are major differences in the applicability of the methods:

our method can generate in arbitrary backgrounds, broader

ranges of motions and is less restricting with respect to the

inputs. Technically, fsV2V employs a hypernetwork [18]

that predicts the weights of a vid2vid network [42] given the

target domain image(s), while our method employs condi-

tioning based on this input. fsV2V suffers from flow-based

artifacts, since it warps between consecutive frames, while

our method generates entirely de-novo images.

DwNet [36] also warps the input image based on the mo-

tion of the driver video. Therefore, it is bound to the static

background of the target person and suffers from artifacts

around the animated character.

“Everybody dance now” [5] and vid2vid [42], similarly

to [41] generate an entire image, which includes both the

target character and its background, resulting in artifacts

near the edges of the generated pose [33, 6], background

motion artifacts, and blurriness in some parts of the back-

ground. We employ a mask-based solution to integrate the

generated character into an arbitrary background. Masks

were previously used in the context of dancing to reanimate

a specific person [56]. Methods that model a specific per-

son do not need to model variation in body shape or capture

novel appearances from a single frame.

Unlike our work and fsV2V, many methods require the

target person to be specified by a video containing suffi-

ciently varied motion (and not just an arbitrary still image),

and are retrained per each pair of motion-source video and

target-person video [5, 43, 47, 35].

vid2game [16] is also trained per-person on a video con-

taining a character’s motion. Another difference from our

work is that there is no replacement of appearance nor

transfer of motion. Similar to our work, vid2game incor-

porates two networks Pose2Pose (P2P) and Pose2Frame

(P2F), which are analog to two of the networks we use.

However, the inputs and outputs differ from those of our

networks, and the P2P network of vid2game generates sim-

ilar poses in an autoregressive manner, while our task is

more related to pose transfer. While vid2game is trained

in a fully supervised manner, our network is trained in a

self-supervised manner to reconstruct a person that exists in

the image.

Once the frame is obtained, we employ a face refinement

network that utilizes an autoencoder architecture similar to

the de-ID network [14]. While [14] seeks to distance the

appearance from that of a target person, our method has op-

posite goals, bringing the appearance closer.

In still images, the problem of pose transfer is well

studied [28, 37, 1, 45, 9, 57, 11, 10, 39, 30, 26], out of

which [9, 39, 30] use a human parser, as we do. Most of

these contributions employ images from the DeepFashion

dataset [27], which has four prominent disadvantages. First,

the images are set against a white background; second, the

poses are limited to those encountered in fashion photogra-

phy, and for example, the hands are rarely above the head;

third, the body shapes in the dataset are limited, and fourth,

the number of different appearances, ethnicities and ages

are few, resulting in overfitting to specific gender and age

types.

Another popular benchmark is the Market-1501

dataset [53], which depicts low-resolution images, with

limited pose variability, that greatly differ from the dancing

reenactment scenario. Explicit 3D modeling for single-

image reanimation has been practiced as well [46], yet
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tends to result in unnatural motion and suffers from artifacts

resulting from target image occlusions.

3. Method

Our method reenacts a character specified by a single

input image, based on a given sequence of pose-frames.

The method is designed to be generic, and the models are

trained once and can then be applied, at test time, to any

input character and motion sequence, without adjustments,

re-training, or fine-tuning.

The method relies on three image2image networks, each

trained independently: (i) the P2B (Pose-to-Body) network

maps pose and character information into body data, (ii) the

B2F (Body-to-Frame) network maps the body-pose infor-

mation obtained from the B2P and the character informa-

tion to a frame, and (iii) the FR network refines the face in

the frame generated by the P2F network.

On top of the three main networks we train (P2B, B2F,

and FR), we employ an extensive set of pre-trained net-

works, in a manner that is unprecedented as far as we can as-

certain: (i) a VGG network [38] trained on the ImageNet [7]

dataset that is used for obtaining the perceptual loss while

training the B2F. (ii) A face detection and 2D alignment

network [2]. (iii) VGGFace2, which is a face embedding

network [3] that is used for training both the B2F and FR

networks. (iv) The DensePose [34] network and (v) the

OpenPose [4] network are both used to obtain pose infor-

mation from each frame, as a way to represent the input

of P2B. (vi) A human parsing network HP [24] is used to

extract the body in the target image. (vii) An inpainting

network [49, 48] extracts the background from the training

images, as well as from the target image at inference time.

During training, we employ additional networks as dis-

criminators that are denoted by Dk. There are a total of five

discriminators: two are used for training the P2B, two for

training the B2F, and one for training the FR.

The index i = 1, 2, .. is used to denote a frame index.

The generated video frames (constructed from the output of

B2F and FR) are denoted by fi. The output of P2B is a se-

quence of generated semantic maps PM
i that are trained to

mimic the output HP provides on real images of human fig-

ures. The input to P2B is comprised of two sequences: PD
i

and PS
i , denoting the dense annotation provided by Dense-

Pose, given a video v and the stick figure and face land-

marks output of OpenPose on v, respectively. In addition,

P2B receives a semantic map pM∗ that denotes the parsing

obtained by network HP for an input image I , that is used

to specify the (target) person to reenact.

B2F receives as input the sequence PM (here and be-

low, the index is omitted to denote the entire sequence) and

ez , which is the concatenated embedding extracted by the

pre-trained VGGFace2 and VGG encapsulating the target

person appearance. The output of P2F consists of two se-

quences: zi denotes the generated image information, and

mi is a sequence of blending masks (values between 0 and

1), that determines which image regions in the frame out-

put would contain the information in zi and which would

contain the background information provided by the user.

The background information is denoted by bi and can be

dynamic. The combination of the background with the syn-

thesized images, in accordance with the masks is denoted

by f0
i . The output frames are generated by applying the

refinement network FR to it.

Our method’s flow consists of the following set of equa-

tions, given the input sequence of background frames b, im-

age specification of the target person I , and a video contain-

ing the desired motion v.

pM∗ = HP(I) (1)

PD
i , PS

i = DP(vi),OP(vi) (2)

PM
i = P2B(pM∗, PS

i , PD
i ) (3)

t1, t2−5 = l(I, pM∗) (4)

ez = [VGGFace2(t1),VGG(t2−5)] (5)

(zi,mi) = B2F(PM
i , ez)) (6)

f0
i = zi ·mi + bi · (1−mi) (7)

fi = FR(f0
i , t1) (8)

where i = 1, 2, .., HP , DP , and OP are the Human-

Parsing, DensePose and OpenPose networks respectively,

the P2B and B2F are the Pose2Body and the Body2Frame

networks. l (Eq 6) is a function that separates the input im-

age I into 5 stacked 224x224 images t1−5, containing the

appearance of the (1) face and hair, (2) upper-body clothing,

(3) lower-body clothing, (4) shoes and socks, and (5) skin

tone, in accordance with the semantic parsing map pM∗. As

stated, B2F returns a pair of outputs, an image zi and a

mask mi that are linearly blended with the desired back-

ground bi to create the initial frame f0
i , using a per-element

multiplication operator denoted by (·). FR takes this initial

frame, and updates the face to better resemble the face of

the target person, as captured in I . The semantic segmenta-

tion maps PM
i and pMi are used in order to specify the face

areas in the generated frame f0
i and in I, respectively.

3.1. Pose2Body network

The P2B’s objective is to capture and transfer motion

into the desired body structure, one frame at a time. The

network has three inputs pM∗, PS
i , and PD

i . the first is

produced by the human parser network applied to image I ,

the other two are obtained by pose networks, as applied to

frame i of the motion-driving video. The parsing map pM∗

consists of 22 labels, of which 20 labels are used as in the

VIP dataset [54], and 2 labels are added to augment the hand

landmarks extracted by OpenPose as labels.
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Figure 2. The architecture of the P2B network. Given a semantic

segmentation of the target body pM∗, a source pose PS

i , and a

source dense pose PD

i , the network generates the semantic map

PM

i of the target person in the desired pose.

DensePose outputs three channels of the UV(I) space,

where two channels project 3D mapping to 2D, and the

third is a body index channel, with values between 0 − 24.

OpenPose generates key-points, which are joined to a sin-

gle RGB stick-figure. Facial and hand landmarks are added

to the stick-figure, increasing certainty and stability to the

generated output.

The P2B network utilizes the architecture of

pix2pixHD [43]. In contrast to its original use for

unconditioned image-to-image cross-domain mapping, we

modify the architecture to allow it to generate a semantic

segmentation map. Specifically, P2B produces the output

PM
i , which lies in the same domain as pM∗.

The architecture of P2B is illustrated in Fig. 2. Three in-

puts of the same spatial dimension are concatenated to one

input tensor. The encoder part of the network is a CNN with

ReLU [31] activations and batch normalization [21]. The

latent space embedding goes through nr residual blocks.

Finally, the decoder u employs fractional strided convo-

lutions [12], ReLU activations, and instance normaliza-

tion [40]. A sigmoid non-linearity is applied after the last

convolution to generate the output segmentation map.

3.1.1 Training the Pose2Body network

Following [43], we employ two discriminators (low-res and

high-res), indexed by k = 1, 2. During training, the LS-

GAN [29] loss is applied. An L1 feature-matching loss is

applied over both discriminators’ activations. In contrast to

the B2F implementation, we apply a cross-entropy loss over

the generated output.

The loss applied to the generator can be formulated as:

LP2B =
2

∑

k=1

(

LLSk + λDLFMk
D

)

+ λCELCE (9)

where the networks are trained with λD = 40, λCE = 1.

The LSGAN generator loss is:

LLSk = E(pA
i
)

[

(

Dk(P2B(pAi ))− 1
)2
]

(10)

The expectation is computed per mini-batch, over the input

HP, OP and DP pAi = pM∗, PS
i , PD

i . The discriminator-

feature matching-loss compares the ground-truth semantic

map with the generated one, using the activations of the dis-

criminator, and is calculated as:

LFMk
D
= E(pA

i
)

M
∑

j=1

1

Nj
||D

(j)
k (PM

i )−D
(j)
k (P2B(pAi ))||1

(11)

with M being the number of layers, Nj the number of el-

ements in each layer, and D
(j)
k the activations of discrim-

inator k in layer j. The CE loss forces the generated 22

channels PM
i to be similar to the ground truth semantic map

PM∗

i , and can be formulated as:

LCE = CE(PM∗

i , P2B(pAi )) (12)

P2B is trained using the Video instance-level Parsing

(VIP) dataset [55]. The dataset provides semantic seg-

mentation annotations of people in diverse scenarios. Each

training step relies on a single person in two different poses.

To segment individuals in different views and poses, we

rely on their location in a random frame, and an addi-

tional random frame, limited to a range of 250 consecutive

frames. From the first, we utilize the semantic annotation,

and DP/OP (Eq (2)) as the network input, and the second is

used for the semantic segmentation annotation ground truth,

guiding towards the desired body-type and clothing.

Disentangling body structure. Few-shot generation meth-

ods suffer from the inability to generate a diverse set of body

structures, as it is both challenging to correctly capture a

body structure by a few samples, and datasets are highly

biased towards certain body types. As a result, networks

tend to learn a transformation of the source body structure,

through the stick or dense pose representation, to the gener-

ated body structure.

In addition to data augmentation in the form of random

rotation and scaling of the inputs and output, we establish

a more robust form of disentanglement between the guid-

ing poses PS
i , PD

i and the generated and source semantic

maps pM∗, PM
i , by introducing an additional form of data

augmentation which is independent of the input and output

body structures. We deliberately create a mismatch between

the poses and semantic maps, by squeezing and stretching

solely the body structures (segmentation maps) rather than

the input poses. The network experiences samples that are

in the exact same pose and view, yet differ in body struc-

ture. Examples of diverse body structure capability can be

seen in Fig. 1 and in the supplementary.

3.2. Body2Frame network

B2F relies on two sources of input information: the

generated pose of the target person PM
i and the encod-
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Figure 3. B2F and FR architectures. B2F receives as input the tensor l(I, pM∗) in which the segmented parts of the image I are introduced

through an array of pre-trained networks, and a conditioning semantic map pMi . The output frame f0

i is generated by blending a generated

frame zi with the background bi in accordance with a generated mask mi. FR extracts a face embedding utilizing a trained face embedding

network and concatenated to the latent space. The pose, expression and lighting conditions are encoded for each input frame by the encoder,

while the appearance can be taken from any image of that person.

ing of the target person’s image I . The latter is obtained

based on image I and its segmentation map pM∗. A stack

t1−5 = l(I, pM∗) of five 224x224 images is created, corre-

sponding to the resized bounding boxes around five seman-

tic segments: (1) face and hair, (2) upper-body clothing, (3)

lower-body clothing, (4) shoes and socks, and (5) skin tone.

The output of B2F is a high-resolution (512×320) frame

f0
i . The frames in the sequence i = 1, 2, .. are generated

one by one, similarly to the P2B network. Each frame

is generated by blending the background frame bi (can be

static or dynamic) with the two outputs of B2F, the mask

mi and the generated image zi, as formulated in Eq. 7.

Architecture. The architecture of the B2F network is de-

picted in Fig. 3. Image t1 is passed through a pre-trained

face embedding network to extract the appearance embed-

ding, while images t2−5 are encoded using a network pre-

trained over the ImageNet dataset. The embedding ex-

tracted from the five pre-trained networks is concatenated

into a single vector ez of size 2048 + 4 ∗ 512 = 4096. The

latent space is projected by a fully connected layer to ob-

tain a vector that is a reshaped tensor of size 4× 4× 1024.

The decoder has seven upsample convolutional layers with

interleaving SPADE [32] blocks.

At test time, the latent space and FC layer are constant

for a specific user, hence run only once, increasing the

method’s speed and applicability.

Datasets. To enable diverse generation capabilities in

terms of appearance (ethnicity, gender and age), pose,

and perspective, we combine the Multi-Human Parsing

(MHPv2) [52, 22] and the Crowd Instance-level Human

Parsing (CIHP) [17] datasets. Both datasets contain various

poses, viewpoints, and appearances, increasing the robust-

ness of the network. Every annotated person is cropped to

provide a single sample, that is later randomly resized for

data augmentation purposes.

Face emphasis. Although a face refinement network is ap-

plied to the B2F output, it is limited in its refinement capa-

bilities. Therefore, the B2F is required to generate a high-

quality face as part of the novel person. The desired target

face is introduced through the embedding, as extracted by

the trained face embedding network. To encourage the gen-

erated face to be similar to the target face, both in quality

and appearance, we apply a set of perceptual losses aimed

at the expected position of the generated face. This is done

in a pre-processing step, where all face locations are calcu-

lated using the face annotation. During training, these lo-

cations are adjusted to the random transformations applied,

such as resizing, cropping, and flipping.

We apply a perceptual loss over the low, mid and high-

level activations of a trained face embedding network.

While high-level abstractions encourage appearance preser-

vation, lower-levels handle other aspects, such as expres-

sions.

Additional guidance is provided to the face area in the

form of explicit labels. Facial landmarks are used to draw

five additional labels for the (1) eyebrows, (2) eyes, (3)

nose, (4) lips, and (5) inner mouth. Although these land-

marks are extracted from the driving (source) video, the

perceptual losses applied to the face, as described in Eq. 18,

help preserve the target person’s appearance and expression.

Blending mask. B2F generates a blending mask in tan-

dem with the generated character. This is imperative, as it

enables the generated person to be embedded in any static

or dynamic scene naturally. Training the B2F on an image

dataset introduces an additional strain on the learning pro-

cess of the blending mask, as there is no background image

where the character is not present. To tackle this, we add a

pre-processing step of inpainting all images, regenerating a
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region obtained by dilating the union of all semantic seg-

mentation masks obtained by HP. To increase generation

quality, all losses are applied solely to the character. The

semantic segmentation annotation labels are used to mask

irrelevant image areas, such as the background or other peo-

ple present in the same crop.

Loss terms The following objective functions are used for

training B2F:

LG
hinge = −‖D1,2(P

M
i , zb)‖1 (13)

L
D1,2

hinge = −‖min(D1,2(P
M
i , zb)− 1, 0)‖1−

‖min(−D1,2(P
M
i , xb)− 1, 0)‖1

(14)

L
Dk=1,2

FM = E(PM
i

,xb,zb)

M
∑

j=1

1

Nj
||D

(j)
k (PM

i , xb)−

D
(j)
k (PM

i , zb))||1

(15)

with M being the number of layers, Nj the number of el-

ements in each layer, D
(j)
k the activations of discriminator

k in layer j, zb, xb = z ⊙ PD+
i , x ⊙ PD+

i , and L
G/D
hinge as

in [50, 25].

LV GG
FM =

M
∑

j=1

1

N ′

j

||V GG(j)(x) − V GG(j)(o))||1 (16)

with N ′

j being the number of elements in the j-th layer, and

V GG(j) the VGG classifier activations at the j-th layer.

The network also outputs a mask, which is trained using

the L1 loss to reconstruct a binary version of the HP frame

PM
i after threshold at zero, denoted by PD+

i (λm = 5.0):

Lm
i = λm‖mi − PD+

i ‖1 (17)

3.3. Face refinement network

The third network, FR, receives two inputs: the aligned

face of the target person, as extracted from I , and the

aligned face in the generated frame f0
i . In both cases, the

face is extracted and aligned using the method of [2].

The face crop obtained from f0
i is denoted c0i and serves

as the input to FR. The face crop obtained from I and pM∗ is

denoted by cI , and it serves as a conditioning signal to this

network. For this purpose, the pre-trained VGGFace2 [3]

network is used, and the activations of the penultimate layer,

denoted by VGGFace(cI) are concatenated to the latent

representation given by the encoder part of FR.

FR has the same autoencoder architecture as the de-id

network [15], which solves the de-identification problem,

which is very different from the current face refinement

goal. We, therefore, employ a perceptual loss that differs

from that of [15] and minimize the following loss:

Lfacep =
∑

j

‖VGGFacej(cI)−VGGFacej(c
0
i )‖ (18)

where the index j is used to denote the spatial activations

size at specific layers of network VGGFace, and the summa-

tion runs over the last layers of each block of size 112×112,

56×56, 28×28, 7×7, 1×1 (1×1 being the size of the top-

most block, i.e., VGGFace(c) = VGGFace1×1(c)). The

rest of the loss terms (reconstruction losses, mask regular-

ization losses, adversarial losses) are the same as [15].

FR outputs a generated crop c and a blending mask mc:

[c,mc] = FR(cI , c
0
i ) (19)

To create the final frame fi, the crop c is blended with the

region of frame f0
i that corresponds to the face, in accor-

dance with the values of the mask mc.

4. Experiments

Datasets. Our networks are trained on cropped images,

each containing a single person. The VIP dataset [55] is

used to train the P2B network. The dataset contains 404

densely annotated videos with pixel-wise semantic part cat-

egories and a total of 21k frames. After cropping each

separate person, the customized dataset contains a total of

62k images. The B2F network is trained by combining two

datasets. MHPv2 [23] contains 25k images with an aver-

age of three people per image. After removing small and

highly occluded people, 53k unique people remain. CIHP

[17] contains 28k images. After pre-process, 1.7k differ-

ent people with a total of 44k images (average of 25 images

per person) remain. For each person, up to 15 random pairs

are chosen, resulting in 19k unique pairs. Additional imple-

mentation details are provided in the supplementary.

For the numerical analysis, the target is taken from the

driving video, establishing a valid ground-truth. For visual

comparisons, where no ground-truth is required, we select

21 target images, out of which 11 are clearly visible, in a

full-bodied frontal pose (denoted as the “simple” targets).

Ten target images depict individuals who are not fully visi-

ble, or not in a standing frontal pose, denoted as the “chal-

lenging” targets. All target images used are provided in the

supplementary.

The vast majority of the selected target images are taken

out of the DFDC dataset [8]. The DFDC dataset is uniquely

diverse, allowing a comprehensive evaluation of the meth-

ods over different attributes, such as ethnicity, gender and

age, but also pose, viewpoint and scale. Additional images

were obtained from consenting individuals, attached as part

of the supplementary.
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Figure 4. Comparison with previous methods. Each column presents a different target image. Our method is better able to handle both the

”simple” (4 left) and ”challenging” (4 right) targets, rendering higher quality and better appearance preserving results.

Method SSBS ↑ SSIS ↑ DPBS ↑ DPIS ↑ LPIPS ↓ LPIPS ↓ SSIM ↓ FID ↓ Human

(VGG) (SqzNet) Preference

fsV2V[41] 0.870 0.193 0.896 0.436 0.567 0.474 0.255 201.82 0.98

Pose Warping[1] 0.764 0.143 0.791 0.347 0.462 0.372 0.132 159.71 0.88

SPT[39] 0.851 0.165 0.862 0.404 0.378 0.289 0.127 109.13 0.81

Ours 0.902 0.218 0.928 0.500 0.375 0.283 0.116 83.95 -

Table 1. Comparison with previous work. The last column denotes the percent of samples in which the users preferred our results over the

baseline. All results were obtained on ”simple” targets only, as previous methods could not handle ”challenging” targets.

Baselines. We compare our results with state of the art

methods that represent the different approaches existing in

the literature for the task of dance generation. When avail-

able, we use the authors’ pre-trained weights; otherwise,

we train the models with our dataset, following the au-

thors’ instructions. fsV2V[41] generates the entire video

using a target image, OpenPose and DensePose data. It em-

ploys a hyper-network that predicts the weights of a vid2vid

network. To achieve improved results, we followed the

authors’ instructions and fine-tuned the network for each

video. Pose Warping[1] generates a new frame by trans-

forming each body part of the target, based on pose key-
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(a) (b) (c) (d) (e)
Figure 5. B2F/FR ablation study. (a) Our result and the target face. In the following, we show the resulting frame of a variant of our method.

In red a zoom in of a certain part, and in green the same crop from our full method. (b) No FR (blurrier face, features are less distinctive),

(c) no blending mask (crude edges surrounding the entire rendered character), (d) hand/finger labels not added (arm distortions due to

finger uncertainty, fingers less distinct), (e) no face loss, lower resolution (256x160) (appearance not preserved, edge pixelization)

points of the source and target images, followed by a fusion

operation. SPT[39] resembles our approach, as the gener-

ator consists of two main parts. The first, a semantic gen-

erator, generates a new semantic map based on the source

semantic segmentation and the new pose. The second, an

appearance generator, renders the final frame. Generation is

performed gradually in 128x128 and 256x256 pixels. Since

the authors did not release the code for their semantic gen-

erator, we employ our P2B results instead.

Evaluation metrics. All comparisons are made over tar-

gets and driving videos that do not appear in any training

datasets. We use nine videos with an average of 300 frames

each, obtained with consent from a video blogger. The eval-

uation metrics can be naturally divided into two distinct

groups: quality and pose similarity.

For pose similarity, DPBS (DensePose Binary Simi-

larity) and DPIS (DensePose Index Similarity) calcula-

tions [13] are used and are further adapted to serve as se-

mantic segmentation similarity metrics (SSBS and SSIS).

DPBS (SSBS) evaluates the IoU between a binary repre-

sentation of the ground-truth and generated DensePose (the

HP network), while DPIS (SSIS) evaluates the mean over

each body-part index, for the same network.

For quality metrics, we rely on SSIM [44], LPIPS [51]

and FID [19] to capture perceptual notions. LPIPS is ap-

plied with both the VGG [38] and SqueezeNet [20] net-

works.

In addition, a user study is conducted among n = 50
participants. Each participant is shown the nine videos,

where each video is shown as an instance generated by our

method alongside an instance generated by one of the previ-

ous methods. The videos and targets are randomly selected

such that three videos are presented for each method. The

participant is asked to then select the video they prefer for

each of the nine pairs of videos shown.

4.1. Results

Since the baseline methods struggle with challenging

conditions, we measure performance only on the “simple”

settings. As can be seen in Tab. 1, our method achieves

superior results over all baselines and metrics. Those are

apparent for both pose similarity and quality metrics. Addi-

tionally, the users present an overwhelming preference to-

wards our method.

A visual comparison can be seen in Fig. 4 and in the sup-

plementary (image and video samples). For both “simple”

and “challenging” targets, our results are noticeably better

at appearance preservation and quality.

4.2. Ablation

A visual ablation study is provided, where a distinction

is made between structural and full pipeline aspects. The

necessity of certain components in B2F and the existence of

the FR network are examined with details in Fig. 5, while

P2B is evaluated in in the supplementary. For each case, the

dominant discrepancies are emphasized in a green square

for our result, and a red square for each ablation case.

5. Conclusions

The desiderata of person animation techniques include

not just visual quality, natural motion, motion fidelity, and

appearance preservation, but also the ability to capture mul-

tiple body types, gender, ethnicity, and age groups. Diver-

sity in human pose generation is imperative to making sure

technology is inclusive and can benefit everyone. However,

it is often neglected in the literature.

The method we present, provides a much more detailed

model of the human body, its appearance and its motion,

than previous approaches. It is trained in a way that encour-

ages it to address diverse inputs. In a comprehensive set of

experiments, we demonstrate that the method is able to ob-

tain better visual quality and better fidelity of both motion

and appearance than the existing methods.
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