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Abstract

Recently, deep learning based methods have demon-

strated promising results on the graph matching problem,

by relying on the descriptive capability of deep features

extracted on graph nodes. However, one main limitation

with existing deep graph matching (DGM) methods lies in

their ignorance of explicit constraint of graph structures,

which may lead the model to be trapped into local mini-

mum in training. In this paper, we propose to explicitly for-

mulate pairwise graph structures as a quadratic constraint

incorporated into the DGM framework. The quadratic con-

straint minimizes the pairwise structural discrepancy be-

tween graphs, which can reduce the ambiguities brought

by only using the extracted CNN features. Moreover, we

present a differentiable implementation to the quadratic

constrained-optimization such that it is compatible with the

unconstrained deep learning optimizer. To give more pre-

cise and proper supervision, a well-designed false matching

loss against class imbalance is proposed, which can bet-

ter penalize the false negatives and false positives with less

overfitting. Exhaustive experiments demonstrate that our

method achieves competitive performance on real-world

datasets. The code is available at: https://github.

com/Zerg-Overmind/QC-DGM .

1. Introduction

Graph matching aims to find an optimal one-to-one node

correspondence between graph-structured data, which has

been widely used in many tasks [3, 6, 9, 14, 20, 37]. By in-

tegrating the similarity between nodes and edges in a com-

binatorial fashion, graph matching is often mathematically

formulated as a quadratic assignment problem (QAP) [29].
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(a) DGM without quadratic constraint

(b) DGM with quadratic constraint (our method)

Figure 1. Deep graph matching with/without quadratic constraint.

Matching results are in left and the predicted (black) v.s. the

ground truth (red) correspondence matrices are in right.

QAP is known to be NP-hard [16], and various approxima-

tion techniques [25, 26, 28, 34] have been proposed to make

it computationally tractable.

Until recently, deep graph matching (DGM) methods

give birth to many more flexible formulations [13, 32, 39,

45] besides traditional QAP. DGM aims to learn the mean-

ingful node affinity by using deep features extracted from

convolutional neural network. To this end, many existing

DGM methods [32, 39, 45] primarily focus on the feature

modeling and refinement for more accurate affinity con-

struction. The feature refinement step is expected to capture

the implicit structure information [39] encoded in learnable

parameters. However, nodes with similar deep features are

hard to distinguish from each other in deep graph match-

ing, while their structure contexts may be very different.

Moreover, the implicit structure information is not specific

enough, which is insufficient to clearly represent the struc-

tural discrepancy over graphs (e.g., Fig. 1(a)).

In traditional graph matching, it is common to incor-

porate pairwise structures into the formulation to enhance

matching accuracy [25], which inspired us to consider

quadratic structural constraint in deep graph matching to

maximize the adjacency consensus and achieve global con-

sistency. More precisely, we use the pairwise term of
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Figure 2. Overview of our proposed architecture for deep graph matching under quadratic constraint. Node attributes consisting geometric

prior and deep features are refined to build the initial node affinity matrix, which is followed by a Sinkhorn layer and then further optimized

under quadratic constraint (QC). Loss between the prediction and the ground truth (GT) is calculated by the proposed false matching loss

(FM-Loss).

Koopmans-Beckmann’s QAP [29] as our quadratic con-

straint to minimize the adjacency discrepancy of graphs to

be matched (e.g., Fig. 1(b)). To this end, we present a

modified Frank-Wolfe algorithm [23], which is a differen-

tiable optimization scheme w.r.t. learnable parameters in

our model and the relaxed Koopmans-Beckmann’s QAP.

Another important issue of deep graph matching is class

imbalance. Concretely, the result of a graph matching task

is usually represented as a permutation matrix, where only a

small portion of the entries take the value of one represent-

ing the pairs to be matched while the rest are zero-valued,

leading to the imbalance between matched and unmatched

entries. In case of such class imbalance, it will be problem-

atic to establish the loss function between predicted match-

ing matrices and ground truth matrices by using the con-

ventional cross-entropy-type loss functions (see Section 3.4

for details). To our best knowledge, there is no loss func-

tion specifically designed for deep graph matching to take

care of the class imbalance issue so far. To this end, we de-

sign a novel loss function for deep graph matching, called

False Matching Loss, which will be experimentally shown

to be better for dealing with class imbalance and overfitting

in compared with previous works.

Our main contributions are highlighted as follows:

- We explicitly introduce quadratic constraint with

our constructed geometric structure into deep graph

matching, which can further revise wrong matches by

minimizing structure discrepancy over graphs.

- We present a differentiable optimization scheme in

training to approach the objective such that it is com-

patible with the unconstrained deep learning optimizer.

- We propose a novel loss function focusing on false

matchings, i.e. false negatives and false positives, to

better lead the parameter update against class imbal-

ance and overfitting.

2. Preliminaries and Related Work

For better understanding, this section will revisit some

preliminaries and related works on both traditional combi-

natorial graph matching and deep graph matching.

2.1. Combinatorial graph matching

Graph matching aims to build the node-to-node corre-

spondence between the given two graphs GA = {VA, EA}
with |VA| = n and GB = {VB , EB} with |VB | = m, where

V we denote as the set of nodes and E as the set of edges.

By denoting X as the correspondence matrix indicating the

matching between two graphs GA and GB , i.e., Xij = 1
means the i-th node in VA matches to the j-th node in VB ,

Xij = 0 otherwise, one well-known form of graph match-

ing with combinatorial nature can be written as:

min
X

||A−XBXT ||2F − tr(XT
uX) (1)

X ∈ {0, 1}n×m,X1n = 1m,XT1n ≤ 1n

where A ∈ R
n×n, B ∈ R

m×m are adjacency matrices en-

coding the pairwise information of edges in graphs GA and

GB , respectively. Xu ∈ R
n×m measures the node similari-

ties between two graphs. || · ||F is the Frobenius norm. Gen-

erally, Eq. (1) can be cast as a quadratic assignment prob-

lem called Koopmans-Beckmann’s QAP [29]. One can find

more details in [43].

In the previous works [15, 38, 47] following this com-

binatorial graph matching formulation, the node similar-

ity Xu and adjacency matrices A,B are usually calculated

with some specifically designed handcrafted features like

SIFT [30], Shape Context [2], etc. And then they will

solve the objective functions (e.g., Eq. (1)) with different

discrete or continuous constrained-optimization algorithms

[8, 38, 10, 44]. Until recently, the deep learning based

graph matching framework has been developed consisting

of learned features and unconstrained optimizer, which will

be detailed in next section.
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2.2. Deep graph matching

Feature extraction. Recently, many works [13, 39, 41,

45, 32] on deep graph matching have been proposed

to take advantages of the descriptive capability of high-

dimensional deep features as node or edge attributes, which

can collect visual information of background images. As

a basic setting of these works, the output of CNN lay-

ers relu4 2 and relu5 1 are commonly used, denoted as

U ∈ R
n×d and F ∈ R

n×d,

U = align(CNNrelu4 2(I), V ) (2)

F = align(CNNrelu5 1(I), V ) (3)

where I denotes the input image and V denotes the an-

notated keypoints. CNN here is a widely used architec-

ture VGG16 [35] initially pretrained on the ImageNet [33].

”align” in Eq. (2) and Eq. (3) is bi-linear interpolation to

approximately assign the output features of a convolution

layer to the annotated keypoints on the input image pairs.

Feature modeling and refinement. Since the extracted

raw features are independent with the graph structure, var-

ious refinement strategies on the raw features are adopted

in deep graph matching trying to implicitly utilize the in-

formation of graph structure. As a typical example of non-

Euclidean data, a graph with its node and edge attributes can

be processed by graph convolutional network (GCN) [21]

under the message passing scheme to update its attributes.

Each node attribute is updated by aggregating its adjacency

node attributes so that GCN is expected to implicitly capture

the structure contexts of each node to some extent. There

are also some works [32, 45] using unary node features to

model pairwise edge features for matching.

Differentiable optimization. Deep graph matching asks

for the model fully-differentiable so that many combina-

torial solvers and methods (e.g., Hungarian algorithm [22]

and IPFP [26]) are not recommended. Thus, various relax-

ation approaches become popular, which refer to the recent

progress [32, 39, 42].

Under these settings, deep graph matching can be refor-

mulated as maximizing the node affinity based on the ex-

tracted features.

Loss function for deep graph matching. Though many

works about deep graph matching have been proposed,

there are few thorough discussions about loss functions.

The prototype of cross entropy loss has been widely used

in deep graph matching, e.g. permutation loss [39] and

its improved version [45]. Instead of directly calculating

the linear assignment cost, GMN [46] uses “displacement

loss” measuring pixel-wise offset on the image but is shown

to have a weaker supervision than cross entropy loss [39].

However, none of the existing works consider the class im-

balance that naturally exists in deep graph matching. Be-

sides, overfitting and gradient explosion are always conspic-

uous on models trained with cross-entropy-type loss func-

tions. For the above reasons, we propose a novel loss func-

tion specifically designed for deep graph matching, which

not only considers numerical issue but also shows promis-

ing performance against overfitting and class imbalance.

3. DGM under Quadratic Constraint

We briefly demonstrate our method overview here. As

shown in Fig. 2, given the input two images with detected

or annotated keypoints as graph nodes, we firstly adopt the

CNN features and the coordinates of keypoints to calculate

both the initial node attributes and the pairwise structural

context as weighted adjacency matrices. By this end, we

establish graphs with structural attributes, based on which

we explicitly use the weighted adjacency matrices to con-

struct the quadratic constraint, and design a differentiable

constrained-optimization algorithm to achieve compatibil-

ity with the deep learning optimizer. Since the quadratic

constrained-optimization is non-convex and needs a proper

initialization, we update the node attributes with weighted

adjacency matrices through a GCN module and a differen-

tiable Sinkhorn layer [1, 36] respectively, to obtain a node

affinity matrix between two graphs as the initialization. Fi-

nally, the solved optimum will be compared with the ground

truth by the proposed false matching loss, which addresses

the issue of class imbalance to achieve better performance.

3.1. Geometric structure for DGM

Unary geometric prior Since our work doesn’t focus

on deep feature extraction, we follow the previous deep

graph matching works to use CNN features described in

Eq. (2) and Eq. (3). Moreover, features from different lay-

ers of CNN are expected to incorporate both the local and

global semantic information of images, we concatenate U

and F together as Pr = cat(U;F) to be the initial node

attributes of two graphs.

Since the extracted raw features associated to nodes

only have visual information of local patches, to make raw

node attributes more discriminative, we add the the nor-

malized 2D Cartesian coordinate [x̂, ŷ] of each node as

P = cat(Pr; [x̂, ŷ]), which provides a unary geometric

prior that can better describe the locations of nodes as a

complement to the CNN features.

Pairwise structural context In deep graph matching,

the graph construction is usually based on node coordinates

and never consider the visual meaningful features of the

background image. For this reason, we introduce deep fea-

ture weighted adjacency matrices AD and BD of the two

graphs to learn more proper relations among graph nodes,

which are defined as

AD = f(PA)⊙A, BD = f(PB)⊙B (4)
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Figure 3. Illustration of the geometric relationship between two

nodes and their edge connection in attribute space. Normalized

attributes of nodes are represented as coloured squares.

where A ∈ R
n×n,B ∈ R

m×m are the binary adjacency

matrices built on coordinates of nodes in two graphs, PA ∈
R

n×(d+2),PB ∈ R
m×(d+2) are the above-mentioned node

attributes of two graphs, ⊙ denotes element-wise product.

f(P) can be various commutative function and here we use

a linear kernel fi,j = pT
i pj for simplicity, where pi is the

i-th row of P. As illustrated in Fig. 3, the geometric mean-

ing of the function f is related to the cosine of the angle

between two normalized node attributes, which can be de-

tailed as cosθij =
〈pi,pj〉
|pi||pj | = 1√

3
1√
3
〈pi,pj〉 = 1

3p
T
i pj .

By this definition, each element of AD and BD represents

the feature distance between the corresponding nodes while

preserving the topology constraints provided by A and B.

Attributes fusion with GCN There are many convo-

lutional architectures [12, 48] for processing irregular data.

As a typical example of non-Euclidean data, a graph with

its node and edge attributes can be processed by GCN under

the message passing scheme to update its attributes. Each

node attribute is updated by aggregating its adjacency node

attributes so that GCN is expected to capture the structure

contexts of each node in an implicit way. With the above

interpretation, we adopt GCN that incorporates both update

from neighbors and self-update, which can be written as:

Pl+1 = σ(ADPlWl
r + PlWl

s) (5)

where Wl
r,W

l
s ∈ R

(d+2)×(d+2) denote learnable parame-

ters of GCN at l-th layer. σ is the activation function. The

updated attributes Pl+1 is then used to update AD and BD

by Eq. (4).

Node affinity Since we have the refined attributes of two

graphs, the node affinity Kl
p ∈ R

nA×nB at l-th iteration can

be built by a learnable metric:

Kl
p = exp{Pl

AWl
affP

l
B

T
} (6)

where Wl
aff is a matrix containing learnable parameters.

We then adopt Sinkhorn layer taking Kl
p to the set of

doubly-stochastic matrices D, which is the convex hull of

the set of permutation matrices P .

3.2. Quadratic constraint for DGM

To explicitly utilize the information of graph structures,

we formulate the objective as to minimize the pairwise

Algorithm 1: DGM under Quadratic Constraint

Input: Nodes of graph pairs Vs; two input images

Is, where s=A, B; the ground truth X∗;

initial parameters W = {Wl
r,W

l
s,W

l
aff}

Output: prediction XP ∈ P
//feature extraction and alignment

Us ← align(CNNrelu4 2(Is), Vs);
Fs ← align(CNNrelu5 1(Is), Vs);
//node attributes

Ps ← cat(Us;Fs; [x̂s, ŷs]);
Training stage :
for epoch k ≤ n do

Pl
s ← GCN((AD)s,P

l−1
s );

(Al
D)s ← f(Pl

s)⊙As;

Kl
p ← exp{Pl

AW
l
affP

l
B

T
};

X←Kl
p;

for iter = 1:m1 do

for k = 1:m2 do

y← argmin
y
∇g(X)Ty;

//fD is Sinkhorn normalization

s← fD(y);
X←X− ǫk(X− s);

end

X← fD(X);
end

W← Lfm(X, XGT), W;

end

Inference stage :
XP ←X;

for iter = 1:m do

repeat

y← argmin
y
∇g(XP )

Ty;

//fP is Hungarian algorithm

s← fP(y);
XP ←XP − ǫk(XP − s);

until XP converges;

XP ← fP(XP );
end

structure discrepancy between the graphs to be matched.

As Eq. (1), Koopmans-Beckmann’s QAP explicitly involves

the second-order geometric context in its pairwise term and

the optimal solution will minimize the two terms simulta-

neously. The learnable metric Kl
p we obtained from Eq. (6)

is considered as the initial point of X, i.e., X0 = Kl
p. We

rewrite Eq. (1) as:

min
X

g(X) = min
X
||AD −XBDXT ||2F − tr(Xu

TX) (7)

We specify unary affinity matrix Xu as the obtained node
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affinity matrix Kl
p in both the training stage and the infer-

ence stage.

Due to the paradox between the combinatorial nature

of QAP formulation and the differentiable requirement of

deep learning framework, we consider a relaxed version of

Eq. (7): X ∈ [0, 1]nA×nB ,X1nB
= 1,XT1nA

≤ 1nA
.

The value of X is continuous and satisfies normalization

constraints at the same time. By minimizing the objective

function, the solution will close to the ground truth in the

direction of minimizing the adjacency inconsistency.

3.3. Quadratic constrained­optimization

We adopt a differentiable Frank-Wolfe algorithm [23] for

g(X) to obtain an approximate solution:

yk = argmin
y
∇g(Xk)

Ty (8)

s = fproj(yk) (9)

X̄k+1 = Xk − ǫk(Xk − s) (10)

Xk+1 = fproj(X̄k+1) (11)

where ǫk is a parameter representing the step size. Usually,

we set ǫk = 2
k+2 [18] in implementation. In training stage,

fproj in Eq. (9) and Eq. (11) is the Sinkhorn layer to project

the positive variable into the set of doubly stochastic matri-

ces D, while fproj is the Hungarian algorithm in the infer-

ence stage for obtaining a discrete solution. We write down

the gradient of g(X) as:

∇g (X) = −2[UTXBl
D +UXBl

D

T
]−Xu (12)

where U = Al
D − XBl

DXT . In training stage, the vari-

able X is associated with the learnable parameters W =
{Wl

r,W
l
s,W

l
aff} and every iteration of Frank-Wolfe al-

gorithm is actually going with the parameters fixed before

backpropagation [17]. From Eq. (10) and Eq. (11), Xk+1 is

differentiable with respect to Xk so Xk+1 is differentiable

with respect to X0 = Kl
p by the recursive relations:

Xk+1 = fr(Xk) = fr ◦ fr(Xk−1) = ... = fk
r (X0) (13)

where fr(X) , fproj(X − ǫk(X − s)) is a differentiable

function w.r.t. X in training stage. Since the goal of the op-

timization is to utilize the information of the pairwise term

in Eq. (7), only few iterations roughly approaching to a local

minimum in training stage can fulfill our purpose. Though

there is no guarantee of global minimum, it is actually not

necessary because the pairwise term will be noisy with out-

liers and the global minimum may not be the desired match-

ing. Besides, few iterations in training stage encourage the

model to learn a relatively short path to approximate the ob-

ject so that it is easier to convergence within fewer iterations

in inference stage.

0 1
𝐿+ 𝐿−𝐿fm𝛼 𝛽

Figure 4. An illustration of the work flow about our proposed false

matching loss. We take both the false positive and false negative of

the predicted doubly stochastic matrix into consideration. α and β

are two parameters to weight the two terms.

3.4. False­matching loss

Class imbalance. The elements of correspondence ma-

trix can be divided into two classes with clear different

meaning, one of which represents matched pairs and the

other represents unmatched pairs. Given two graphs with

equal number of nodes n, there are n elements of corre-

spondence matrix are 1 while the rest n2 − n are 0. Under

the constraint of one-to-one matching, the unmatched pairs

clearly take the majority. Though the values of the soft cor-

respondence matrix are all between 0 and 1, the two classes

should be separately treated in the calculation of loss during

training.

The cross-entropy-type loss functions such as permuta-

tion loss [39] and its improved version [45] achieve the

state-of-the-art performance. This type of loss functions

directly measures the linear assignment cost between the

ground truth X∗ ∈ {0, 1}n×n and the prediction X ∈
[0, 1]n×n like

Lce = −
∑

i,j

X∗
ij logXij + (1−X∗

ij) log(1−Xij) (14)

with i ∈ GA, j ∈ GB . Cross entropy loss does not con-

sider the class imbalance in deep graph matching because

the vast majority of 1−X are preserved by multiplying

1−X∗ while at most n elements of X are kept by mul-

tiplying X∗. Similarly, cross entropy loss with Hungarian

attention [45] can not solve this issue either and the so called

Hungarian attention in loss function brings discontinuity in

learning.

Numerical stability. Since the optimization of deep

learning is unconstraint, the local minimum with bad prop-

erties can not be avoid. Once a bad case or a bad local

minimum occurs, e.g. at least one element of the predic-

tion X approaches to 0 while the corresponding element of

the ground truth X∗ is 1, the cross-entropy-type loss will

be invalid. Though permutation loss with Hungarian atten-

tion mechanism is more focus on a specific portion of the

prediction X, it only works without severe bad cases either.
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(a) cross entropy loss Lce (b) false matching loss Lfm

Figure 5. Comparison between cross entropy loss and false match-

ing loss on a toy example, where X ∈ R
1×3 and X

∗ = (0, 0, 1).
We mark the three extreme points of X: A = (0, 0, 1), B =
(0, 1, 0) and C = (1, 0, 0). A cooler color means a smaller value.

The comparison shows that false matching loss has a higher value

than cross entropy loss when it close to the ground truth. Besides,

false matching loss has a high but limited value when X close to

the extreme points, which are the bad cases for cross entropy loss

and make the loss function output infinite values. The curve of

cross entropy loss on points between B and C are below the red

line connected to B and C, while the curve of false matching loss

coincides with the red line.

Even with gradient clipping, overfitting is still a problem to

be addressed.

Facing the problems above, we propose a new loss func-

tion called false matching loss:

Lfm = eα
∑

i,j [X⊙(1−X∗)]ij
︸ ︷︷ ︸

L+

+ eβ
∑

i,j [X
∗⊙(1−X)]ij

︸ ︷︷ ︸

L−

(15)

where i ∈ GA, j ∈ GB . L+ and L− of our false match-

ing loss penalize false positive matches and false negative

matches, which are the main indexes describing the false

matchings in statistics. To address the issue of class imbal-

ance, we draw on the experience of focal loss [27] and take

two hyperparameters α and β for weighting.

As illustrated in Fig. 5, false matching loss is more

smooth and always has a relatively large value than cross

entropy loss even when the prediction X is close to the

ground truth. While on extreme points that are away from

the ground truth, false matching loss will have more proper

outputs (high but limited). Besides, the values of cross en-

tropy loss on points between B and C are lower than that

on B and C, which is not proper because points between B

and C are still far away from the ground truth.

Our method is summarized in Algorithm 1.

4. Experiments and Analysis

In this section, we evaluate our method on two challeng-

ing datasets. We compare the proposed method with sev-

eral state-of-the-art deep graph matching methods: GLM-

Net [19], PCA [39], NGM [40], CIE1 [45], GMN [46],

LCSGM [42] and BB-GM [32]. To compare the proposed

false matching loss with the previous work: permutation

loss with Hungarian attention [45], we follow [45] to im-

plement the loss function for the source code is not publicly

available. Given graphs with n nodes, the matching accu-

racy is computed as

accuracy =
1

n

∑

i,j

[X∗ ⊙Hungarian(X)]ij (16)

Stochastic gradient descent (SGD) [4] is employed as the

optimizer with an initial learning rate 10−3. In our false

matching loss, we set α = 2 and β = 0.1. In our opti-

mization step, we set the number of iterations m1 = 3 and

m2 = 5 for the consideration of both computational effi-

ciency and convergence.

Since the feature refinement step is not limited to

Eq. (5), we additionally deploy another novel architec-

ture SplineCNN [12] to replace Eq. (5) as a comparision

with [32]. Thus, two versions of our method are pro-

vided: qc-DGM1 and qc-DGM2. In qc-DGM1, the node

attributes are refined by a two-layer GCN as Eq. (5) with

ReLU [31] activation function. While in qc-DGM2, the

refinement step is done by a two-layer SplineCNN [12]

with max aggregation. In our implementation, all the input

graphs are constructed by Delaunay triangulation. Specif-

ically for GMN [46], two input graphs are constructed by

fully-connected topology and Delaunay triangulation re-

spectively. While GMND is another version of GMN that

two input graphs are both constructed by Delaunay triangu-

lation.

4.1. Results on Pascal VOC Keypoints

Pascal VOC dataset [11] with Berkeley annotations of

keypoints [5] has 20 classes of instance images with an-

notated keypoints. There are 7,020 annotated images for

training and 1,682 for testing. Before training, each in-

stance is cropped around its bounding box and is re-scaled

to 256 × 256 as the input for VGG16. We follow the pre-

vious works to filter the truncated, occluded and difficult

images. The training process will be performed on all 20

classes. Because of the large variation of pose, scale, and

appearance, Pascal VOC Keypoints is considerably a chal-

lenging dataset.

Experimental results on 20 classes are given in Table 1.

Since the peer work [32] suggests to compare F1 score (the

harmonic mean of precision and recall) on the dataset with-

out intersection filtering, we provide F1 score of our method

to compare with BB-GM [32] and its ablation BB-GM-Max

as shown in Table 2.

To show the robustness of the deep graph matching mod-

els against outliers, we add outliers to the original set of

keypoints. The 2D Cartesian coordinates of the outliers are

generated by Gaussian distribution N (0, 10). The outliers

exist only in inference stage to challenge the model trained
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

GMN [46] 35.5 50.0 52.2 45.2 75.5 69.1 59.0 61.1 34.4 51.9 66.4 53.4 53.9 50.7 31.1 75.8 59.2 47.9 86.1 89.6 57.4

GMND [46] 40.8 57.1 56.2 48.2 75.5 71.6 64.1 63.3 36.3 54.3 50.2 57.6 60.3 55.4 35.5 85.2 62.7 51.8 86.5 87.4 60.0

qc-GMN 37.3 52.2 54.3 47.2 76.4 70.4 61.2 61.7 34.5 53.1 69.1 55.4 56.0 52.4 31.6 77.3 59.7 49.1 87.4 89.7 58.8

PCA [39] 40.9 55.0 65.8 47.9 76.9 77.9 63.5 67.4 33.7 66.5 63.6 61.3 58.9 62.8 44.9 77.5 67.4 57.5 86.7 90.9 63.8

qc-PCA 42.5 58.5 66.1 51.3 79.6 78.2 65.8 68.7 35.1 66.8 65.6 62.5 62.1 63.1 45.1 80.7 67.7 59.1 87.0 91.1 64.8

PCA-H [39] 50.8 61.7 62.6 56.4 80.0 75.6 72.4 74.0 38.5 64.3 49.9 63.8 65.2 63.5 46.0 78.5 68.0 41.5 82.2 90.8 64.3

PCA-F 50.0 66.7 61.8 55.1 81.5 75.5 70.1 70.4 39.7 64.8 60.3 65.5 67.6 64.2 45.6 84.4 68.6 56.5 88.7 91.1 66.3

NGM [40] 50.8 64.5 59.5 57.6 79.4 76.9 74.4 69.9 41.5 62.3 68.5 62.2 62.4 64.7 47.8 78.7 66.0 63.3 81.4 89.6 66.1

GLMNet [19] 52.0 67.3 63.2 57.4 80.3 74.6 70.0 72.6 38.9 66.3 77.3 65.7 67.9 64.2 44.8 86.3 69.0 61.9 79.3 91.3 67.5

LCSGM [42] 46.9 58.0 63.6 69.9 87.8 79.8 71.8 60.3 44.8 64.3 79.4 57.5 64.4 57.6 52.4 96.1 62.9 65.8 94.4 92.0 68.5

CIE1-H [45] 51.2 69.2 70.1 55.0 82.8 72.8 69.0 74.2 39.6 68.8 71.8 70.0 71.8 66.8 44.8 85.2 69.9 65.4 85.2 92.4 68.9

qc-DGM1(ours) 48.4 61.6 65.3 61.3 82.4 79.6 74.3 72.0 41.8 68.8 65.0 66.1 70.9 69.6 48.2 92.1 69.0 66.7 90.4 91.8 69.3

qc-DGM2(ours) 49.6 64.6 67.1 62.4 82.1 79.9 74.8 73.5 43.0 68.4 66.5 67.2 71.4 70.1 48.6 92.4 69.2 70.9 90.9 92.0 70.3

Table 1. Accuracy (%) of 20 classes and average accuracy on Pascal VOC. Bold numbers represent the best performing of the methods to

be compared. Method with “-H” and “-F” denotes it with permutation loss with Hungarian attention and false matching loss, respectively.

Suffix “-QC” denotes the method with the proposed quadratic constraint.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv Mean

BB-GM-Max [32] 35.5 68.6 46.7 36.1 85.4 58.1 25.6 51.7 27.3 51.0 46.0 46.7 48.9 58.9 29.6 93.6 42.6 35.3 70.7 79.5 51.9

BB-GM [32] 42.7 70.9 57.5 46.6 85.8 64.1 51.0 63.8 42.4 63.7 47.9 61.5 63.4 69.0 46.1 94.2 57.4 39.0 78.0 82.7 61.4

qc-DGM1 (ours) 30.1 59.1 48.6 40.0 79.7 51.6 32.4 55.4 26.1 52.1 47.0 50.1 56.8 59.9 27.6 90.4 50.9 33.1 71.3 78.8 52.0

qc-DGM2 (ours) 30.9 59.8 48.8 40.5 79.6 51.7 32.5 55.8 27.5 52.1 48.0 50.7 57.3 60.3 28.1 90.8 51.0 35.5 71.5 79.9 52.6

Table 2. F1 score (%) of matching and mean over 20 classes on Pascal VOC without intersection filtering.

Method face mbike car duck wbottle Mean

HARG-SSVM [7] 91.2 44.4 58.4 55.2 66.6 63.2

GMN [46] 98.1 65.0 72.9 74.3 70.5 76.2

GMND 100.0 82.4 84.4 84.0 91.2 88.4

qc-GMN 100.0 65.7 75.3 81.1 90.5 82.5

PCA [39] 100.0 76.7 84.0 93.5 96.9 90.2

qc-PCA 100.0 83.3 87.3 93.8 97.1 92.3

PCA-H [39] 100.0 76.9 88.9 89.7 92.9 89.7

PCA-F [39] 100.0 78.4 86.8 93.2 97.2 91.1

NGM [40] 99.2 82.1 84.1 77.4 93.5 87.2

GLMNet [19] 100.0 89.7 93.6 85.4 93.4 92.4

LCSGM [42] 100.0 99.4 91.2 86.2 97.9 94.9

CIE1-H [45] 100.0 90.0 82.2 81.2 97.6 90.2

BB-GM [32] 100.0 99.2 96.9 89.0 98.8 96.8

qc-DGM1(ours) 100.0 95.0 93.8 93.8 97.6 96.0

qc-DGM2(ours) 100.0 98.8 98.0 92.8 99.0 97.7

Table 3. Accuracy (%) of 5 classes and the average on Willow

Object Class.

on the clean data (without outliers). This robustness test is

more challenging than that on synthetic graphs because all

the inliers and outliers have their extracted CNN features

and thus, more close to the real-world scenes. Experimental

results are shown in Fig. 6. With our quadratic constraint,

the improvement of overall accuracy is witnessed on the

clean data and the robustness of deep graph matching mod-

els have been significantly improved against outliers.

By comparing PCA and qc-PCA or GMN and qc-GMN

in Table 1, the effectiveness of our quadratic constraint is

shown to be general and the matching accuracy is improved

over all 20 classes by considering our quadratic constraint.

4.2. Results on Willow Object Class

Willow Object Class dataset [7] contains 5 classes with

256 images in total. Three classes (face, duck and wine
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Figure 6. Robustness analysis against outliers on Pascal VOC

(a) and Willow Object Class (b). Method with “+” means with

quadratic constraint while “-” means without quadratic constraint.

bottle) of the dataset are from Caltech-256 and the rest two

classes (car and motorbike) are from Pascal VOC 2007. We

resize all the image pairs to 256×256 for VGG16 backbone

and crop the images around the bounding box of the objects.

The variations of the pose, scale, background and illumina-

tion of the images on Willow Object Class are small, and

thus, graph matching tasks on this dataset are much more

easier.

As shown in Table 3, the proposed method achieves the

competitive performance. Comparing the methods with and

without quadratic constraint (PCA and qc-PCA or GMN

and qc-GMN), the performance improvements on Willow

dataset are more prominent than those on Pascal VOC,

which because the structure variations of graph pairs on

the easier dataset are relatively small and quadratic con-

straint contributes to matching more soundly. Since BB-

GM adopts SplineCNN to refine the features, we provide
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Figure 7. Matching examples on Pascal VOC and Willow Object Class. Nodes with the same color indicate the correspondence of a graph

pair. All the visualized graphs are constructed by Delaunay triangulation in yellow.

qc-DGM2 for fair comparison.

4.3. Further study

Table 4 shows the usefulness of the proposed compo-

nents. CNN feature vector of each node has d=1024 di-

mensions, which are supposed to be better than the two-

dimensional coordinates but the geometric prior encoded in

coordinates provides a more precise description of graph

nodes. By simply combining the unary geometric prior with

the extracted CNN features, the matching accuracy is im-

proved, which supports our point of view, i.e., CNN features

are indeed useful but not discriminative enough to depict

pixel-wise graph nodes.

Quadratic constraint. There are various forms of

quadratic constraint that are not limited to ours. Global

affinity matrix K is constrainted by graph incidence ma-

trices in the factorized form of Lawler’s QAP [24, 47],

which can be considered as another form of quadratic con-

straint adopted in GMN. As shown in Table 1 and Table 3,

GMN performs significantly worse than GMND on both

two datasets by replacing similar graph topology with the

completely different one, while the extracted deep features

of both settings remain the same. This implies the main lim-

itation of quadratic constraint, i.e., only graphs with similar

topology contribute to matching. Besides, the fact shows

the independent relationship between the graph structure

and raw deep features for the change of graph topology can

not be reflected by raw deep features (before being refined).

False-matching loss vs. cross entropy loss. The two

main loss functions to be compared with ours are permu-

tation loss [39] and permutation loss with Hungarian atten-

tion [45]. We report accuracy/loss with training epoch in

Fig. 8. In experiments, the model with cross-entropy-type

loss functions (Loss-P and Loss-H) always encounter the

bad cases leading to gradient explosion in training stage,

while our false matching loss (Loss-F) can avoid this issue.

Besides, false matching loss is shown to do better against

overfitting than the compared two loss functions.
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Figure 8. Accuracy/loss vs. training epoch on Pascal VOC. As the

training goes, the loss functions try to drag the output to binary and

the local minimum with bad properties makes the cross-entropy-

type loss explosion. Since the accuracy will be very close to 0

after gradient explosion, we truncate the descending curves and

keep them unchanged for better visualization.

raw

attributes

unary

geomteric prior

pairwise

structure context

QC

optimization
accuracy

√ √ √ √
69.3√ √ √
68.5√ √
68.3√
67.8

Table 4. Ablation study of qc-DGM1 on Pascal VOC. The com-

ponent been adopted is marked by a tick. “QC optimization” is

quadratic constrained-optimization.

5. Conclusion

In this work, we explicitly introduce quadratic constraint

of graph structure into deep graph matching. To this end,

unary geometric prior and pairwise structural context are

considered for objective construction and a differentiable

optimization scheme is provided to approach the problem.

Moreover, we focus on class imbalance that naturally exists

in deep graph matching to propose our false matching loss.

Experimental results show the competitive performance of

our method. In future work, we plan to seek a more general

form of quadratic constraint to the learning-based optimiza-

tion for better matching.
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Evaluation of convex optimization techniques for the

weighted graph-matching problem in computer vision. In

Joint Pattern Recognition Symposium, pages 361–368.

Springer, 2001. 1

[35] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 3

[36] Richard Sinkhorn and Paul Knopp. Concerning nonnegative

matrices and doubly stochastic matrices. Pacific Journal of

Mathematics, 21(2):343–348, 1967. 3

[37] Richard Szeliski. Computer vision: algorithms and applica-

tions. Springer Science & Business Media, 2010. 1

[38] F. D. Wang, N. Xue, Y. Zhang, G. S. Xia, and M. Pelillo.

A functional representation for graph matching. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

42(11):2737–2754, 2020. 2

[39] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning

combinatorial embedding networks for deep graph match-

ing. In Proceedings of the IEEE International Conference

on Computer Vision, pages 3056–3065, 2019. 1, 3, 5, 6, 7, 8

[40] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural

graph matching network: Learning lawler’s quadratic assign-

ment problem with extension to hypergraph and multiple-

graph matching. arXiv preprint arXiv:1911.11308, 2019. 6,

7

[41] Runzhong Wang, Junchi Yan, and Xiaokang Yang. Combi-

natorial learning of robust deep graph matching: an embed-

ding based approach. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2020. 3

[42] Tao Wang, He Liu, Yidong Li, Yi Jin, Xiaohui Hou, and

Haibin Ling. Learning combinatorial solver for graph match-

ing. In Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, pages 7568–7577, 2020. 3, 6,

7

[43] Junchi Yan, Xu-Cheng Yin, Weiyao Lin, Cheng Deng,

Hongyuan Zha, and Xiaokang Yang. A short survey of re-

cent advances in graph matching. In Proceedings of the 2016

ACM on International Conference on Multimedia Retrieval,

pages 167–174, 2016. 2

[44] Junchi Yan, Chao Zhang, Hongyuan Zha, Wei Liu, Xiaokang

Yang, and Stephen M Chu. Discrete hyper-graph matching.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 1520–1528, 2015. 2

[45] Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li.

Learning deep graph matching with channel-independent

embedding and hungarian attention. In Proceedings of the

International Conference on Learning Representations, vol-

ume 20, 2020. 1, 3, 5, 6, 7, 8

[46] Andrei Zanfir and Cristian Sminchisescu. Deep learning of

graph matching. In Proceedings of the IEEE Conference on

Computer Vision and Pattern recognition, pages 2684–2693,

2018. 3, 6, 7

[47] Feng Zhou and Fernando De la Torre. Factorized graph

matching. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 38(9):1774–1789, 2015. 2, 8

[48] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,

Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong

Sun. Graph neural networks: A review of methods and ap-

plications. arXiv preprint arXiv:1812.08434, 2018. 4

5078


