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Abstract

Temporal receptive fields of models play an important

role in action segmentation. Large receptive fields facilitate

the long-term relations among video clips while small re-

ceptive fields help capture the local details. Existing meth-

ods construct models with hand-designed receptive fields in

layers. Can we effectively search for receptive field combi-

nations to replace hand-designed patterns? To answer this

question, we propose to find better receptive field combina-

tions through a global-to-local search scheme. Our search

scheme exploits both global search to find the coarse com-

binations and local search to get the refined receptive field

combination patterns further. The global search finds pos-

sible coarse combinations other than human-designed pat-

terns. On top of the global search, we propose an expecta-

tion guided iterative local search scheme to refine combina-

tions effectively. Our global-to-local search can be plugged

into existing action segmentation methods to achieve state-

of-the-art performance. The source code is publicly avail-

able on http://mmcheng.net/g2lsearch.

1. Introduction

Action recognition segments the action of each video

frame, playing an important role in computer vision appli-

cations such as clips tagging [59], video surveillance [8, 9],

and anomaly detection [54]. While conventional works [4,

17,18,56] have continuously refresh the recognition perfor-

mance of short trimmed videos containing a single activity,

segmenting each frame densely in long untrimmed videos

remains challenging as those videos contain many activ-

ities with different temporal lengths. Temporal convolu-

tional networks (TCN) [12,16,35,40,65] are widely adapted

in action segmentation tasks with their ability to capture

both long-term and short-term information. Appropriate re-

ceptive fields in layers are crucial for TCN as large recep-
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operators dilations

Figure 1. Search space comparison between searching for network

architecture and receptive field combinations. Left: Network ar-

chitecture search mostly search for several operations with differ-

ent functions. Right: The search space of receptive field combi-

nations is huge. The white, green, blue nodes and orange shade

represent the dilation rate candidates, the sparse search space in

global search, one of the global searched results, and the local

search space.

tive fields contribute to long-term dependencies while small

receptive fields benefit the local details. State-of-the-art

(SOTA) methods [5, 29, 39, 40, 65] rely on human-designed

receptive field combinations, i.e., dilation rate or pooling

size in each layer, to make the trade-off between capturing

long and short term dependencies. Questions have raised:

Are there other effective receptive field combinations that

perform comparable or better than hand-designed patterns?

Will the receptive field combinations vary among different

datasets? To answer those questions, we propose to find

the possible receptive field combinations in a coarse-to-fine

scheme through the global-to-local search.

As shown in Fig. 1, unlike the existing network archi-

tecture search spaces [3, 27, 43] that only contain several

operation options within a layer, the available search space

of receptive field combinations could be huge. Suppose

a TCN has L convolutional layers and D possible recep-

tive fields in each layer. There are DL possible combi-

nations, i.e., the number of possible receptive field com-

binations in MS-TCN [12] is 102440. Directly apply net-

work architecture searching algorithms [27, 41, 43, 66] to

such a huge search space is impractical. For example,

conventional reward-based searching methods [42, 47, 66]

are not suitable for CNN-based models with a huge search
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space. The model training and performance evaluation of

each possible combination are too costly. Differentiable ar-

chitecture searching methods (DARTS) [3, 41, 43] rely on

shared big networks to save training time, thus only sup-

porting several operators within a layer due to the model

size constraint. Moreover, they heavily dependent on the

initial combination and fail to find new combinations with

a huge difference from the initial one. While our goal is

to explore effective receptive field combinations other than

human-designed patterns in the huge search space, those al-

gorithms are either too costly or cannot support the large

search space.

To explore the search space with low cost, we exploit

both a genetic-based global search to find the coarse recep-

tive field combinations and an expectation guided iterative

(EGI) local search to get the refined combinations. Specif-

ically, we follow the MS-TCN [12] to use dilation rates to

determine layers’ receptive fields. A genetic-based global

search scheme is proposed to find coarse combinations

within a sparsely sampled search space at an affordable

cost. The global search discovers various combinations that

achieve even better performance than human designings but

have completely different patterns. Based on the global-

searched coarse combinations, we propose the local search

to determine fine-grained dilation rates. Our proposed con-

volutional weight-sharing scheme enforces learned dilation

weights to approximate the probability mass distribution for

calculating the expectation of dilation rates. The expecta-

tion guided searching transfer the discrete dilation rates into

a distribution, allowing fine-grained dilation rates search-

ing. With an iteratively searching process, the local search

gradually finds more effective fine-grained receptive field

combinations with low cost. Our proposed global-to-local

search scheme can be plugged into existing models, sur-

passing human-designed structures with impressive perfor-

mance gain. In summary, we make two major contributions:

• The expectation guided iterative local search scheme

enables searching fine-grained receptive field combi-

nations in the dense search space.

• The global-to-local search discovers effective recep-

tive field combinations with better performance than

hand-designed patterns.

2. Related Work

2.1. Action Segmentation

Many approaches have been proposed for modeling de-

pendencies for action segmentation. Early works [13–15]

mostly model the changing state of appearance and actions

with sliding windows [2, 30, 51]. Thus they mainly focus

on short-term dependencies. Capturing both short-term and

long-term dependencies then gradually becomes the focus

of action segmentation.

Sequential Model. Sequential models capture long-short

term dependencies in an iterative form. Vo and Bobick [64]

apply the Bayes network to segment actions represented

with the stochastic context-free grammar. Tang et al. [63]

use a hidden Markov model to model transitions between

states and durations. Later, hidden Markov models are com-

bined with context-free grammar [32], Gaussian mixture

model [33], and recurrent networks [34, 50] to model long-

term action dependencies. Cheng et al. [7] apply the se-

quence memorizer to capture long-range dependencies in

visual words learned from the video. However, these se-

quential models are inflexible in parallel modeling long-

term dependencies and usually suffer from information for-

getting [12, 40].

Multi-stream Architecture. Some researchers [10, 49,

57, 58] utilize multi-stream models to model dependencies

from both the long and short term. Richard and Gall em-

ploy [49] dynamic programming to inference models com-

posed of length model, language model, and action classi-

fier. Singh et al. [57] learn short video chunks representa-

tion with a two-stream network and pass these chunks to

a bi-directional network to predict action segmentation re-

sults sequentially. A three-stream architecture is proposed

in [58], which contains egocentric cues, spatial and tem-

poral streams. Tricornet [10] utilizes a hybrid temporal

convolutional and recurrent network to capture local mo-

tion and memorize long-term action dependencies. Cou-

pledGAN [19] uses a GAN model to utilize multi-modal

data to better model human actions’ evolution. Capturing

long-short term information with multiple streams increases

the computational redundancy.

Temporal Convolutional Network. Recently, temporal

convolutional networks (TCN) are introduced to model de-

pendencies of different ranges within a unified structure by

adjusting receptive fields and can process long videos in

parallel. Lea et al. [35] propose the encoder-decoder style

TCN for action segmentation to capture long-range tem-

poral patterns and apply the dilated convolution to enlarge

the receptive field. TDRN [37] further introduces the de-

formable convolution to process the full-resolution residual

stream and low-resolution pooled stream. MS-TCN [12,40]

utilizes multi-stage dilated TCNs with hand-designed dila-

tion rate combinations to capture information from various

temporal receptive fields. However, the adjustment of re-

ceptive fields still relies on human design, which may not be

appropriate. Our proposed efficient receptive field combi-

nations searching scheme can automatically discover more

efficient structures, improving these TCN based methods.
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Complementary Techniques. Instead of capturing long-

term and short-term information, some works [11, 65] fur-

ther improve the action segmentation performance with

boundary refinement. Li et al. [11] utilize an iterative train-

ing procedure with transcript refinement and soft boundary

assignment. Wang et al. [65] leverage semantic bound-

ary information to refine the prediction results. Other re-

searchers focus on action segmentation under the weakly

supervised [11,33,50] or unsupervised [55] settings. These

works still rely on the efficient TCN to model the action

dependencies, thus complementing the proposed method.

2.2. Network Architecture Search

The genetic algorithm [45] has achieved remarkable per-

formance on a wide range of applications. Many genetic-

based methods are recently introduced for the neural net-

works architecture search of vision tasks [42,44,47,61,66].

An evolutionary coding scheme is proposed in Genetic

CNN [66] to encode the network architecture to a binary

string. A hierarchical representation is presented by Liu et

al. [42] to constrain the search space. Real et al. [47] regu-

larize the evolution by an age property selection operation.

Sun et al. [61] introduce a variable-length encoding method

for effective architecture designing. However, the genetic

algorithm requires the training of each candidate, consum-

ing too much computational cost when faced with a huge

search space.

Differentiable architecture search [43] saves the train-

ing time by introducing a large network containing sub-

networks with different searching options. The importance

of searched blocks is determined by gradient backpropa-

gation [53]. This differentiable search idea is further ex-

tended [67] to deal with semantic segmentation [41] and

other tasks beyond image classification [3]. However, these

network architecture search methods are designed for find-

ing a limited number of operations such as convolution,

ReLU, batch normalization, short connection, etc. Thus,

they cannot handle the huge receptive field combinations

search space. In this paper, we propose a global search to

handle the huge search space with sparse sampling. The

expectation guided iterative local search then transfers the

sparse search space of receptive fields into the dense one for

fine-level searching.

3. Method

The pipeline of our proposed global-to-local search

method has two components: (i) a genetic-based global

search algorithm that produces coarse but competitive com-

binations of the receptive fields; (ii) an expectation guided

iterative local search scheme that locally refines the global-

searched coarse structures.

3.1. Description

Our objective is to efficiently search for optimal recep-

tive field combinations for the given dataset. The receptive

field can be represented with multiple forms, such as the

dilation rate, kernel size, pooling size, stride, and the stack

number of layers. In this work, we mainly follow the MS-

TCN [12] to formulate the receptive fields using the com-

binations of dilation rates in layers and propose to evolve

these combinations during the searching process. Note that

other receptive field representations can also be applied to

the proposed global-to-local search with some minor adjust-

ments.

Suppose a TCN has L convolutional layers and D =
{d1, d2, ..., dN} is the possible dilation-rates/receptive-

fields in each layer. The combination of receptive fields is

represented with C = {c1, ..., cl, ..., cL}, where l ∈ [1, L]
is the index of layers with dilated convolutions, and cl ∈ D
is the receptive field of each layer. There are |D|L possible

combinations of receptive fields, i.e., the possible receptive

field combinations in MS-TCN [12] is 102440 when dila-

tion rates ranging from 1 to 1024. Directly searching for

effective combinations in such a large search space is im-

practical. We thus decompose the searching process into the

global and local search to find the combination in a coarse-

to-fine manner.

3.2. Global Search

The objective of the global search is to find the coarse

receptive field combinations with affordable cost. There-

fore, we reduce the search space by sparsely sampling the

dilation rates within layers. Multiple sparse discrete sam-

pling strategies such as uniform sampling, gradually sparse

sampling, and gradually dense sampling can be applied

to sparse the search space. A gradually sparse sampling

scheme from small to large dilation rates is appropriate for

the action segmentation task. Because small receptive fields

benefit the extraction of precise local details while large re-

ceptive fields contribute to coarse long-term dependencies

of video sequences. Therefore we formulate the receptive

field space in global search as:

Dg = {di = ki, i ∈ [0, 1, · · ·T ]}, (1)

where k is the controller of the search space sparsity, and

T determines the largest available receptive field. With the

same maximum receptive field, |Dg| ≪ |D|. The search

space is greatly reduced. i.e., when set k = 2, and set the

maximum receptive field to 1024 as in MS-TCN, the search

space is reduced from 102440 to 1140.

However, the reduced space of receptive field combina-

tions can still be huge, unaffordable for a brute force search.

We propose a genetic algorithm [45] based method to find

coarse combinations that are competitive or even better than
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E(Ci)

Figure 2. Illustration of one iteration in our genetic-based global search algorithm.

human designing. We illustrate one iteration of our pro-

posed genetic-based global search in Fig. 2. We now detail

the selection, crossover, mutation process within our pro-

posed global search method.

Selection. The population of receptive field combinations

can be described as a group of candidate structures P =
{Ci, i ∈ [1,M ]}, where Ci is the candidate structure in the

global search space, and M is the number of individuals in

the population. The selection operation selects individuals

to be kept in P based on the estimated performance of each

structure Ci, denoted by E(Ci):

E(Ci) = f(V |Ci, θn), (2)

where f(·) is the evaluation metric detailed in Sec. 4, and

V , θn are the cross-validation set and model trained with n
epochs, respectively.

Crossover. This operation generates new samples of re-

ceptive field combinations. Every two combinations in the

population are exchanged to born new patterns of the com-

bination while maintaining the local structures. Each Ci

will be selected for the crossover operation with probability

p(Ci):

p(Ci) =
E(Ci)∑M

i E(Ci)
. (3)

Instead of randomly exchanging individual points, we

choose to exchange random segments of the receptive field

combination since the representation ability lies in the com-

bination patterns. Specifically, we randomly choose two an-

chors and exchange combinations within anchors to gener-

ate new samples.

Mutation. The mutation operation avoids getting stuck in

local optimal results by choosing an individual with proba-

bility pm and randomly changing a value within the selected

combination.

The global search process can be summarised as Algo-

rithm (1), and a simple example is given in Fig. 2. With

the coarse search space and the global search method, we

can find receptive field combinations with different pat-

terns than human-designed structures while having similar

or even better performance. We further propose the local

search to locally find the more efficient combinations on top

of the global-searched structures. We show in Tab. 5 that

Algorithm 1 Global Search.

Input: Iterations N , training epoch n, randomly initialized

P , mutation probability pm, and population size M ;

for iter in [1, N ] do

Select individuals for crossover based on Eqn. (3) and

crossover for every two selected individuals;

Mutate the new individuals with probability pm;

Training each individual with n epochs;

Select the top M individuals based on Eqn. (2) as the

new population P ;

end for

return P .

local search heavily relies on the initial structure, revealing

the importance of global search.

3.3. Expectation Guided Iterative Local Search

The local search aims to find more efficient receptive

field combinations in a fine-grained level at a low cost. A

naive approach is to sample finer-grained dilation rates near

the initial dilation rate searched by the global search and

apply existing DARTS algorithms [3, 43] to choose for the

proper one. However, even with the good initial structure

provided by the global search, the available range of fine-

grained dilation rates is still large. Existing search algo-

rithms are designed for searching sparse operators with sev-

eral choices in each layer, thus cannot handle dilation rates

with hundreds of choices. While too sparsely sampling is in

conflict with our goal of searching for the finer-grained re-

ceptive fields. Also, DARTS methods search operators with

different functionality [43], while the searching on receptive

fields only contains one functional dimension. Different

subsets in the dataset sometimes prefer different searching

options. Searching within a functional dimension enables

us to determine dilation rates with the expectation of all sub-

sets instead of choosing the option required by one majority

subset. Therefore, we propose an expectation guided itera-

tive (EGI) local search scheme to determine the finer-level

dilation rates on top of the global-searched structures.

Suppose that the receptive field of a layer l is Dl. For

a dataset, once we get the probability mass distribution of

dilation rates around Dl, we can obtain the expected dila-

tion rate with the weighted average of the dilation rates re-

quired by all subsets. However, the probability mass of di-
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+

Figure 3. The approximated probability mass function of dila-

tion rates is determined by the multi-dilated convolutional layer

with shared weights. di is the dilation rate and αi is the PMF

in Eqn. (4).

lation rates for the dataset is inaccessible. Therefore, we

utilize a convolutional weight-sharing scheme to enforce

the learned importance weights of dilation rates to approx-

imate the probability mass. To get the approximated prob-

ability mass function of dilation rates, we first evenly sam-

ple S dilation rates near the initial dilation rate Dl within

the range of [Dl ± ∆Dl]. The set of available dilation

rates within this layer is Tl = {di|i ∈ [1, S]}, where

di = Dl − ∆Dl + (i − 1) · 2∆Dl/(S − 1). ∆Dl is the

finer controller of the search space that is smaller than the

sampling sparsity in the global search.

Algorithm 2 Expectation Guided Iterative Local Search.

Input: Iterations N , initial receptive fields D;

Initialize model using given D;

for iter in [1, N ] do

Construct Tl for each layer based on D;

Train model to get the PMF in Eqn. (4);

Obtain new dilation rates through Eqn. (6);

Update D;

end for

return local-searched D.

With the dilation rates set Tl, we propose a multi-dilated

layer composed of a shared convolutional weight and multi-

ple branches with different dilation rates, as shown in Fig. 3.

Each branch has a unique weight to determine the impor-

tance of the dilation rate. During the searching process, the

weights are updated with the gradient backpropagation to

reflect the receptive field requirements of the dataset. Ex-

isting DARTS schemes [43, 67] have separated weights in

each branch. In contrast, our convolutional weight-sharing

strategy forces the model to learn the approximated prob-

ability of receptive fields and ease the model convergence.

Specifically, the dilation rates in the multi-dilated convo-

lutional layer are set to Tl. Apart from the shared con-

volutional θ, the multi-dilated layer contains weight W =

Output

Input

Figure 4. Visualization of receptive field combinations changes

during the EGI local searching process.

{w1, w2, ..., wi, i ∈ [1, S]} to determine the importance of

the dilation rates. W is unbounded, thus cannot be directly

used to determine the dilation rates probability. Therefore,

we propose a normalization function to get the approxi-

mated probability mass function PMF (di) of dilation rates

through normalizing wi:

PMF (di) = αi =
|wi|∑S

i |wi|
. (4)

With the probability mass function, given the input feature

x, the output y of the multi-dilated convolutional layer can

be written as follows:

y =

S∑

i

αiΨ(x, di, θ), (5)

where Ψ(x, di, θ) is the convolutional operation with the

shared weight θ and dilation rate di. αi is updated with

gradient optimization. Once we get the probability mass

function, the newly searched dilation rate D
′

l is obtained

with the expectation:

D
′

l = ⌊
∑

di∈Tl

PMF (di) · di⌋. (6)

To reduce the computational cost during the local search

process, we reduce the number of dilation rates in Tl to 3

by default and apply the iterative search scheme to find the

more suitable dilation rate based on the D
′

l from the last

iteration. The local search process can be summarised as

Algorithm (2). Furthermore, Fig. 4 visualizes the dilation

rates changes during the local searching process.

4. Experiments

We introduce the implementation details, verify the

effectiveness, and analyze the property of our proposed

global-to-local search scheme in this section.
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BreakFast 50Salads GTEA

F@{10,25,50} Edit Acc F@{10,25,50} Edit Acc F@{10,25,50} Edit Acc

MS-TCN [12] 52.6 48.1 37.9 61.7 66.3 76.3 74.0 64.5 67.9 80.7 87.5 85.4 74.6 81.4 79.2

Reproduce 69.1 63.7 50.1 69.9 67.3 78.8 75.3 64.4 71.4 77.8 87.1 83.6 70.4 81.1 75.5

Global 72.2 66.0 51.5 71.0 69.2 79.3 76.5 68.1 71.9 81.2 89.1 87.1 74.4 84.2 78.6

Local 74.9 69.0 55.2 73.3 70.7 80.3 78.0 69.8 73.4 82.2 89.9 87.3 75.8 84.6 78.5

Table 1. Performance of the global and local searching stages of our global-to-local searching method using MS-TCN [12] as the baseline.

#Cls #Vid #Frame Scene

GTEA [15] 11 28 1115 daily activities

50Salads [60] 17 50 11552 preparing salads

BreakFast [31] 48 1712 2097 cooking breakfast

Table 2. Details of three action segmentation datasets. #Cls and

#Vid are the numbers of classes and videos, respectively. #Frame

is the average frames of videos.

4.1. Implementation Details

Structure Searching and Training. Our proposed

method is implemented with the PyTorch [46], Mind-

Spore [1], and Jittor [28] frameworks. Following existing

works [12,40], features are first extracted from videos using

the I3D network [4] and then passed to action segmentation

models to get the temporal segmentation. Since our pro-

posed global-to-local search scheme is model-agnostic, the

training settings for model evaluation, i.e., training epochs,

optimizer, learning rate, batch size, keep the same with the

cooperation methods [5, 40, 65]. In the global search stage,

we set the total iterations N = 100, k = 2 in Eqn. (1), the

initialized population size M = 50, and mutation proba-

bility pm = 0.2. The T in Eqn. (1) is set to 10, indicat-

ing the maximum dilation rate of the global search space

is 1024. We observe that 5 epochs of training can reflect

the structure performance, and therefore models are trained

with 5 epochs for evaluation. In the EGI local search stage,

∆Dl and S are set to be 0.1Dl and 3, respectively. We train

the model for 30 epochs during local search and update the

structure every 3 epochs.

Datasets. Following [5, 12, 40, 65], we evaluate our

proposed method on three popular action segmentation

datasets: Breakfast [31], 50Salads [60], and GTEA [15].

The details of the three datasets are summarised in Tab. 2.

As far as we know, the Breakfast dataset is the largest

public dataset for action segmentation task, which has a

larger number of categories and samples compared with the

other two datasets. So we perform our ablations mainly

on the Breakfast dataset if not otherwise stated. Following

common settings [5, 12, 40, 65], we perform 4-fold cross-

validation for the Breakfast and GTEA dataset and 5-fold

cross-validation for the 50Salads dataset.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

ED-TCN [35] - - - - 43.3

HTK (64) [32] - - - - 52.0

TCFPN [11] - - - - 56.3

GRU [50] - - - - 60.6

GTRM [29] 57.5 54.0 43.3 58.7 65.0

MS-TCN [12] 52.6 48.1 37.9 61.7 66.3

Ours-MS-TCN 74.9 69.0 55.2 73.3 70.7

MS-TCN++ [40] 64.1 58.6 45.9 65.6 67.6

Ours†-MS-TCN++ 72.4 66.8 53.5 70.2 69.6

BCN [65] 68.7 65.5 55.0 66.2 70.4

Ours†-BCN 72.5 69.9 60.2 69.0 72.9

SSTDA [5] 75.0 69.1 55.2 73.7 70.2

Ours‡-SSTDA 76.3 69.9 54.6 74.5 70.8

Table 3. Cooperating with SOTA methods. We perform the whole

search pipeline based on MS-TCN [12]. Because of the limited

computing resources, we only perform the EGI local search on

MS-TCN++ [40] and BCN [65], denoted by †. SSTDA [5] uses

MS-TCN [12] as a backbone, so we directly add our searched

structure to SSTDA, denoted by ‡.

Evaluation Metrics. We follow previous works [5,12,40,

65] to use the frame-wise accuracy (Acc), segmental edit

score (Edit) [35], and segmental F1 score [38] at tempo-

ral intersection over union with thresholds 0.1, 0.25, 0.5

(F@0.1, F@0.25, F@0.5) as our evaluation metrics.

4.2. Performance Evaluation
Global2Local Search. Our proposed global-to-local

search aims to find new combinations of receptive fields bet-

ter than human designings. We mainly take MS-TCN [12]

as our baseline architecture to perform the global-to-local

search. When testing the MS-TCN on the Breakfast dataset,

we train all models with the batch size 8 to save training

time. The reproduced results shown in Tab. 1 indicates that

large batch size achieves much better performance. Tab. 1

shows that global-to-local searched structures achieve con-

siderable performance improvements than human-designed

baselines, i.e., the searched structure surpasses the repro-

duced baseline with 5.8% in terms of F@0.1. The global-

to-local search focuses on the receptive field combinations,

thus can cooperate with existing SOTA action segmentation

methods to further improve their performance. As shown

in Tab. 3, on the large scale BreakFast dataset, global-to-

local search consistently boosts the performance of MS-
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Figure 5. Performance comparison between our proposed genetic-

based search and random search during the global search stage.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

DARTS 73.8 67.6 52.8 72.8 69.3

Ours 74.9 69.0 55.2 73.3 70.7

Table 4. Performance of our proposed EGI local search and previ-

ous DARTS [43].

TCN++ [40], BCN [65], and SSTDA [5]. Also, we give

comparisons on two small scale datasets, 50Salads and

GTEA dataset in Tab. 10 and supplementary, proving the

effectiveness of our proposed global-to-local search.

Global Search. Global search reduces the computational

cost with the sparse search space and our proposed genetic-

based searching scheme. Fig. 5 shows the performance

change of models during the global searching process.

Compared with the random search, the genetic-based global

search convergences faster. The standard division of model

performance searched by genetic-based search is smaller

than the random search, showing the stability of our pro-

posed search scheme. The visualized well-performed

global-searched structures shown in the supplementary

prove that the global search discovers various structures

completely different from human-designed patterns. Tab. 5

also shows that the local search heavily relies on global-

searched structures to achieve better performance.

Local Search. Based on the global-searched structures,

our proposed EGI local search aims to fine-tune the re-

ceptive field in a finer search space. Compared with the

DARTS [43] method that only supports several search op-

tions, the EGI local search iteratively finds the accurate dila-

tions in a dense space, obtaining structures with better per-

formance, as shown in Tab. 4. As shown in Tab. 6, EGI

local search is insensitive to the number of sampling dila-

tion rates S, as it searches dilation rates with the expec-

tation. Tab. 5 shows that the EGI local search can boost

the performance of randomly generated, human-designed,

and global-searched structures. Still, the performance of

the local-searched structures is related to the initial struc-

tures, as local search focuses on searching for receptive

fields within a finer local search space. We visualize the

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

random 67.7 61.8 48.3 68.4 67.0

random + local 73.6 67.8 53.7 72.3 69.9

baseline [12] 69.1 63.7 50.1 71.0 69.2

baseline + local 74.1 68.5 55.3 72.3 70.2

global 72.2 66.0 51.8 71.5 69.4

global + local 74.9 69.0 55.2 73.3 70.7

Table 5. Performance of the EGI local search initialized by differ-

ent structures.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

S = 2 74.8 68.9 55.0 73.4 70.4

S = 3 74.9 69.0 55.2 73.3 70.7

S = 4 74.9 68.8 55.1 73.3 70.9

Table 6. Ablation of the value of S in the EGI local search.

BreakFast F@0.1 F@0.25 F@0.5 Edit Acc

sigmoid 72.7 66.9 52.7 71.8 69.4

softmax 73.2 67.2 52.0 71.6 69.7

Eqn. (4) 74.9 69.0 55.2 73.3 70.7

Table 7. Ablation of possible probability mass functions in EGI

local search.

searching process of the iterative local search in Fig. 4. The

dilation rates for each layer gradually converge to a suit-

able state during the iterative searching process. Tab. 7 veri-

fies different ways to get the approximated probability mass

function PMF (di) from weight w. Eqn. (4) is more supe-

rior than the sigmoid function and softmax function as it

maintains the probability distribution while the other two

functions change the distribution non-linearly.

4.3. Observations

In this section, we try to exploit the common knowledge

contained in the global-to-local searched structures.

Connections between Receptive Fields and Data. We

want to know if receptive field combinations vary among

data. Therefore, we evaluate the generalization ability of

the searched structures on the subsets of the same dataset

and different datasets, respectively. Within the BreakFast

dataset, we perform the global-to-local search on one fold

and then evaluate the searched structures on other folds.

Tab. 9 shows that there is almost no obvious performance

gap on different folds, indicates that receptive field combi-

nations almost have no difference within a dataset. How-

ever, when search and evaluate structures across different

datasets, different structures searched on different datasets

have a large performance gap as shown in Tab. 8. We can

conclude that different data distribution will result in dif-

ferent receptive field combinations. We visualize the struc-

tures searched from different datasets in Fig. 6. The struc-

ture searched on 50Salads dataset trends to have larger re-
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Figure 6. Visualization of the global-to-local searched structures of three datasets with the MS-TCN baseline. Each row represents the

dilations of one structure, which contains four stages.
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Figure 7. Visualization of average dilation rates in each stage and

the range of performance of global-searched structures.

ceptive fields, while the structure searched on the GTEA

dataset has smaller receptive fields. The number of video

frames shown in Tab. 2 is positively correlated with recep-

tive fields. Longer videos need larger receptive fields to cap-

ture the context. We also show more searched structures in

the supplementary.

Receptive Fields for Different Stages. Our global-to-

local search is based on MS-TCN. MS-TCN contains four

stages, and all stages share the same receptive field combi-

nation in human designing. The visualized searched struc-

tures shown in Fig. 6 demonstrate that different stages have

different receptive field combinations, which conflicts with

human designing. We further count the average receptive

fields of each stage among all individuals. The range of

performance and the average dilation rates of each stage are

shown in Fig. 7. The average dilation rate in the first stage

of MS-TCN tends to be large on high-performance struc-

tures. In contrast, the average dilation rate in the third stage

of MS-TCN is relatively small on high-performance struc-

tures. We assume that the first stage of MS-TCN requires

large receptive fields to get the long-term context for coarse

prediction, while the following stages need small receptive

fields to refine the results locally.

5. Conclusion

We propose a global-to-local search scheme to search

for effective receptive field combinations in a coarse-to-

fine scheme. The global search discovers effective recep-

tive field combinations with better performance than hand

designings but completely different patterns. The expec-

MS-TCN Arch-50Salads Arch-GTEA Arch-BF

50Salads 67.1 75.4 68.8 72.6

GTEA 83.8 82.4 88.9 85.6

BF 69.9 75.1 72.5 76.4

Table 8. Cross-validation performance (F@0.1) of searched struc-

tures among the fold 1 of different datasets. Arch-dataset indicates

the structure is searched on which dataset.

BreakFast Arch-1 Arch-2 Arch-3 Arch-4

fold1 76.4 76.3 76.2 75.7

fold2 74.1 75.3 75.1 74.6

fold3 76.1 76.6 76.1 75.4

fold4 71.7 72.1 72.0 71.8

Table 9. Cross-validation performance (F@0.1) of searched struc-

tures among different folds of the BreakFast dataset. Arch-n

means the structure is searched on fold n.

50Salads F@0.1 F@0.25 F@0.5 Edit Acc

Spatial CNN [36] 32.3 27.1 18.9 24.8 54.9

Bi-LSTM [57] 62.6 58.3 47.0 55.6 55.7

Dilated TCN [35] 52.2 47.6 37.4 43.1 59.3

ST-CNN [36] 55.9 49.6 37.1 45.9 59.4

TUnet [52] 59.3 55.6 44.8 50.6 60.6

ED-TCN [35] 68.0 63.9 52.6 59.8 64.7

TResNet [26] 69.2 65.0 54.4 60.5 66.0

TricorNet [10] 70.1 67.2 56.6 62.8 67.5

TRN [37] 70.2 65.4 56.3 63.7 66.9

TDRN [37] 72.9 68.5 57.2 66.0 68.1

MS-TCN [12] 76.3 74.0 64.5 67.9 80.7

Ours-MS-TCN 80.3 78.0 69.8 73.4 82.2

Table 10. Comparison with SOTA on the 50Salads dataset.

tation guided iterative local search scheme enables search-

ing fine-grained receptive field combinations in the dense

search space. Our proposed global-to-local search can be

plugged into multiple tasks, i.e., action segmentation, prob-

abilistic forecasting [6], classification [20, 21, 24], segmen-

tation [22, 23, 62], detection [25, 48] methods to further

boost the performance.
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