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Abstract

Improving the performance of face forgery detectors

often requires more identity-swapped images of higher-

quality. One core objective of identity swapping is to gener-

ate identity-discriminative faces that are distinct from the

target while identical to the source. To this end, prop-

erly disentangling identity and identity-irrelevant informa-

tion is critical and remains a challenging endeavor. In this

work, we propose a novel information disentangling and

swapping network, called InfoSwap, to extract the most

expressive information for identity representation from a

pre-trained face recognition model. The key insight of our

method is to formulate the learning of disentangled repre-

sentations as optimizing an information bottleneck trade-

off, in terms of finding an optimal compression of the pre-

trained latent features. Moreover, a novel identity con-

trastive loss is proposed for further disentanglement by re-

quiring a proper distance between the generated identity

and the target. While the most prior works have focused on

using various loss functions to implicitly guide the learn-

ing of representations, we demonstrate that our model can

provide explicit supervision for learning disentangled rep-

resentations, achieving impressive performance in generat-

ing more identity-discriminative swapped faces.

1. Introduction

Face forgery detection aims to identify whether a given

facial image has been modified, and is currently dominated

by data-driven approaches [35, 31, 28, 27]. This means that

it is difficult to improve the performance of forgery detec-

tors in the absence of high-quality Deepfake data. There-

fore, better face-swapping methods are in dire need to help

develop powerful forgery algorithms.

Recent works have made significant contributions in this

regard. FaceSwap [25] enables face swapping in real-time.

RSGAN [30] and FSNet [36] introduce GAN-based meth-

ods in synthesizing swapped face. FSGAN [32] proposes a

subject-agnostic approach for both face swapping and reen-
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actment. More recently, FaceShifter [26] puts its focus on

the occlusion problem and achieves high fidelity.

The core objective of identity swap (i.e. face swap) is

to keep the identity of the swapped face the same as the

source face while sharing the identity-irrelevant perceptual

information (e.g. pose, expression, and illumination) with

the target face. Therefore, proper disentanglement is an es-

sential premise for well representing the identity and the

perceptual information. Otherwise, entangled target percep-

tion will inevitably bring the target identity into the syn-

thesis process, leading to an identity-mixed result. De-

spite such importance, it is yet to see a breakthrough for

disentangled representation on face swapping. Previous

works [25, 30, 4, 19, 32, 26] attempt to constrain the iden-

tity and perception of the generated faces by adding multi-

ple loss terms to the objective function. However, due to the

lack of explicit supervision, it is still challenging for these

works to learn well-disentangled representations.

In this paper, we focus on improving disentangled repre-

sentation learning in subject-agnostic face swap. The main

idea is to learn the minimal sufficient statistics, namely the

optimal representations, for both the identity and identity-

irrelevant perceptual information from the latent features of

a pre-trained model [10]. By introducing the information-

theoretic principles [44, 40, 2], we model this learning pro-

cess as a problem of optimizing the Information Bottleneck

(IB) trade-off, performed by a novel information disentan-

glement network InfoSwap. Based on the IB principle, we

can provide explicit supervision for disentangled represen-

tation learning. Moreover, we improve the IB objectives to

further facilitate the representation disentangling. Driven

by the intuition that proper swapped faces should be not

only close to the source in identity but also distinct from

the target, we provide a clear definition for discriminative

identities and extent the original IB objectives with a novel

Identity Contrastive Loss (ICL) as an additional regulariza-

tion on the generated identities.

Extensive experiments show that our method can bet-

ter disentangle information and generate more identity-

discriminative swapped faces with higher fidelity. A com-
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Figure 1. Challenging conditions for generating identity-

discriminative faces. More details please refer to Section 4.

parison with state-of-the-art methods is shown in Fig. 1. For

example, the face shape of our generated results is closer

to the source rather than the target. The empirical out-

performance imply that our model can provide data-driven

detection algorithms with more realistic Deepfake data to

improve their performance. The main contributions of this

paper are the following:

• We adopt the IB principle for disentangled representation

to extract the minimal sufficient identity and perceptual

information. The IB principle provides a guarantee that

in the latent space, areas scored identity-irrelevant indeed

contribute little information to predict identity, thus en-

abling explicit supervision for disentanglement.

• We extent the IB objectives with a novel identity con-

trastive loss to further facilitate the disentanglement by

requiring the generated identities to keep proper distances

from the targets.

• We provide a novel metric to evaluate if the generated

identity is discriminative based on its statistical features.

• Experimental results show that our method is robust and

can produce more identity-discriminative swapped faces

with high-fidelity.

2. Related Works

2.1. Identity Swapping

The research on face swap starts with the influential

work [6]. Yet it requires human interaction and cannot

preserve the target expression. Early efforts [5, 47, 8, 29]

are mainly based on the 3D method. Face2Face [43] ad-

dresses the limitation of expression transfer by fitting a

3D morphable model (3DMM) [7] to both the source and

target face. Nirkin et al. [33] proposes a 3D-based face

segmentation method for seamless face transfer. Neural

Textures [42] enables the synthesis of photo-realistic im-

ages with noisy and incomplete 3D geometry. Besides,

learning-based methods have enabled great progress in face

swap. FaceSwap [25] enables real-time subject-aware face-

swapping by building image-to-image translation models

case-by-case. RSGAN [30] swaps the face by learning rep-

resentations of the face and the other area separately. FS-

GAN [32] achieves both face swap and face reenactment

in a subject-agnostic pipeline. FaceShifter [26] proposes to

tackle the occlusion problem via a secondary residual learn-

ing network. While there are many works on feature dis-

entanglement, [45, 17, 16, 48, 13, 14] are for classification

tasks and [50, 37, 12] are not focused on disentangling iden-

tity, for example. [11] proposes a reference-based genera-

tion for face rotation and manipulation, which can be trans-

ferred to face swap. Little attention has been paid to gen-

erating better disentangled and highly discriminative iden-

tities, which is the focus of this work. Recently, some im-

portant advances have been made in face forgery detection.

For example, Faceforensics++ [35] provides an automated

benchmark as well as a large database of manipulated im-

ages for building stronger detection algorithms. However,

improving the accuracy of data-driven forgery detectors re-

quires more high-quality face-swapped data.

2.2. Information Bottleneck
The idea of viewing Deep Neural Network (DNNs) in the

plane of the Mutual Information is first pointed out in [44],

suggesting that the goal of DNNs is to optimize the Infor-

mation Bottleneck (IB) trade-off between the compression

and the predictive power of the internal representations. Af-

ter that, [3] proposes a variational inference to approximate

the bounds on mutual information by using the reparameter-

ization trick [24], so that it becomes easier to optimize the

information bottleneck objective when applying to DNNs.

More recently, [39] proposes to adopt the information bot-

tleneck trade-off in attribution by quantifying the amount of

information that an image region can provide for classifica-

tion tasks. We will provide a more detailed description of

the Information Bottleneck Principle and how it relates to

our work in Section 3.2.

3. Method
Given two facial images, i.e. a source Xs and a target

Xt, our proposed InfoSwap generates a face-swapped im-

age Ys,t that shares the identity with Xs and the perception

with Xt. An overview of the swapping process is shown

in Fig. 2. InfoSwap consists of two learnable modules, an

Informative Identity Bottleneck (IIB in blue) and an Adap-

tive Information Integrator (AII in brown), while the IIB
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Figure 2. An overview of InfoSwap. It consists of two learnable modules, an Informative Identity Bottleneck (IIB in blue) and an Adaptive

Information Integrator (AII in brown), while the pre-trained face recognition network (in green) is fixed. The IIB for both Xs and Xt

are the same (share weights). Note that the controllers λt
i and λs

i differ from the heat maps. They are calculated based on the mutual

information, quantifying the contribution of each feature area in bits. Please refer to Section 3 for more details.

for both Xs and Xt are the same (sharing weights).

Instead of training several new encoders [26], we

learn the identity and perceptual representations in one go

by quantifying and compressing the flow of information

through a pre-trained face recognition model [10] in the for-

ward pass. As shown in Fig. 2(a), given a pre-trained net-

work (in green), denoted as a deterministic encoding func-

tion f(·), we extract its 512-dimensional feature embedding

zid = f(X) and internal features R = {R1, R2, · · · , Rm}
of the first m intermediate layers to represent the identity

and perceptual information respectively. We compress the

internal features {Ri} by adding noise to them via informa-

tion controllers {λs
i} and {λt

i}, to find an optimal disentan-

glement between identity and perceptual information. The

controllers are predicted by the information bottlenecks in

IIB. Then, in Fig. 2(b), the compressed identity and percep-

tual features are sent into AII and integrated based on the

information controllers, outputting the final swapped face

Ys,t. During training, the pre-trained network is fixed.

In this section, we illustrate intuitions behind InfoSwap

and the key designs for learning disentangled representa-

tions. We start by defining the discriminative identities for

swapped faces.

3.1. Discriminative Identities in Face Swapping

The fake identities of swapped faces are more discrimi-

native if there is no overlap between the interval estimations

of two identity similarities: i) the fake and source identity

similarities; ii) the fake and target identity similarities. A

visual explanation is shown in Fig. 3. The overlap of two

intervals means that some fake identities are on the angle

bisector between the source and target identity. Namely,

these generated identities are equally similar to the source

and the target, therefore are less discriminative.

Instead, a discriminative identity should be close to the

source identity zsid, while appropriately away from the tar-

get identity. As shown in Fig. 3(a), the generated identity

should be within a small angle centered on zsid, formally

denoted as zsid ± k · δs,t. Here µs,t and σs,t are the mean

and the standard deviation (std.) of the cosine similarities

between source and target identities; δs,t is the arccosine

value of σs,t. Under this circumstance, the fake identities

within this small interval will keep a proper distance from

target identities, with their similarities to the targets in the

interval of µs,t ± 3σs,t (e.g. k = 3), shown as the lightest

green belt in Fig. 3(b).

Figure 3. Explanation of the discriminative identities generated by

InfoSwap. µs,t and σs,t: the mean and std. of cosine similarities

between source and target identities; δs,t = arccos(σs,t).

To make the generated identities highly discriminative, it

is essential to avoid the target perception bringing the target

identity information into the synthesis process. Therefore,

our model aims to improve the information disentanglement

and generate identity-discriminative swapped faces.

3.2. Informative Identity Bottleneck
In this subsection, we begin with illustrating the infor-

mation bottleneck trade-off, and explain how it is used to

design a powerful disentangling function.

3.2.1 Intuitions and IB Principle

Revisit. In the view of information theories [3], the goal of

deep learning is explained as finding an optimal represen-

tation R of the input source X that: i) captures as much as

possible the relevant information about the target Y , mea-

sured by the Mutual Information I(R;Y ), while ii) max-

imally compressing X by discarding the irrelevant parts
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which do not contribute to the prediction of Y . This sug-

gests the following Lagrangian objective:

min
R

I(X;R)− βI(R;Y ). (1)

where the positive Lagrange multiplier β operates as a

trade-off parameter between the compression of the repre-

sentation complexity, defined by I(X;R), and the predic-

tive power measured by the amount of relevant information

in R, defined by I(R;Y ).
For face swap. The goal is to learn the most expressive

representations R about the identity while maximally com-

pressing the identity-irrelevant perceptual information in it.

Generally, we regard such a learning process as a problem

of optimizing the information bottleneck trade-off, where

X represents the input facial image and Y the ground-truth

identity zid given by the pre-trained model. According to

Eq. (1), we can optimize this trade-off by minimizing the

following objective function:

LIB = Linfo + βLtask, (2)

where Linfo measures the information available in R, and

β is a hyperparameter controlling the trade-off. Ltask mea-

sures the total decline in the performance of face swapping

caused by information compression, which includes not

only the power of predicting identities but also the power

of generating discriminative identities for the final swapped

faces. Therefore, we define it as the sum of two objectives:

Ltask = Lrecog + Licl, which are illustrated in detail next.

3.2.2 Disentanglement with IB Objectives
The optimization process is performed in IIB. As shown in

Fig. 2(a), we model a total number of m information bot-

tlenecks, denoted as IB = {IB1, IB2, · · · , IBm}, and in-

sert them into the first m layers of the pre-trained encoding

network. To disentangle the identity and perceptual infor-

mation in each internal feature Ri, each bottleneck IBi is

designed to predict an information-controller λi using all

m internal features R1, R2, · · · , Rm. We define each bot-

tleneck IBi as a predicting function hIBi
(∗), then:

λi = hIBi
(R1, · · · , Rm) ∈ [0, 1], (3)

where λi is of the same size as Ri. We then compress the

information in Ri by adding noise [24, 41, 23] to it. In

specific, we apply a linear interpolation between Ri and a

Gaussian noise εi based on λi, and the compressed version

of Ri is formulated as:

Zi = λiRi + (1− λi)εi, (4)

where the noise εi ∼ N (µRi
, σ2

Ri
) is set to be of the same

mean and variance with Ri since the face recognition model

is already trained and fixed. Thus Zi ∼ N (µRi
, σ2

Ri
) fol-

lows the same distribution as Ri.

Note that λi controls the replacement of identity-

irrelevant activations with the noise. In areas where λi = 1,

then Zi = Ri and all information is preserved in Ri.

Whereas in areas where λi = 0, Zi = εi, all information is

damped and replaced by noise. This means that these areas

can contribute 0 bits of information for predicting identities,

and thus are indeed irrelevant to identity. Therefore, λi is

different from the heat map (attention map). It is calculated

based on the mutual information between feature areas and

the task target, quantifying the contribution of areas in bits.

Supervision on Information Compression: Linfo

For the first term Linfo in Eq. (2), we use the mutual in-

formation I(Zi, Ri) to quantify the information shared be-

tween Zi and Ri, i.e. the information uncompressed:

Linfo =
1

m

m∑

i=1

I(Zi, Ri). (5)

Given an input X , Ri is constant as the pre-trained network

is fixed, thus according to Eq. (4), Zi|Ri ∼ N (λiRi +

(1−λi)µRi
, (1− λi)

2
σ2
Ri
). Since the KL-divergence stays

the same when both distributions are scaled, we normalize

Zi|Ri and Zi by using µRi
and σ2

Ri
, then for Gaussian dis-

tribution:

I(Zi, Ri) , KL[p(Zi|Ri)||p(Zi)]

= − log (1− λi)
2

+
1

2
[(1− λi)

2 + (λi

Ri − µRi

σRi

)2 − 1].

(6)

Therefore, when λi = 0 and Zi = εi, both Zi and Zi|Ri

have the same distribution N (µRi
, σ2

Ri
), thus I(Zi, Ri) =

0, i.e. contributing 0 bits information.

As for the second term Ltask in Eq. (2), it performs su-

pervision on both the latent space and the pixel space.

Supervision on the latent space: Lrecog

Lrecog is defined as the average decline of the accuracy

in predicting the identities caused by the compression of the

latent space. As shown in Fig. 2(a), we insert one bottleneck

IBi a time to the i-th layer and define the current network as

fIBi
(·). Then, we replace each Ri with its compressed (by

IBi alone) version Zi, and all later layers are calculated on

Zi instead of Ri, outputting a compressed identity embed-

ding z̃
(i)
id (X) = fIBi

(X). The final compressed identity is

the average of all m embeddings (whole IIB), defined as:

z̃id(X) =
1

m

m∑

i=1

z̃
(i)
id (X) =

1

m

m∑

i=1

fIBi
(X), (7)

Therefore, the supervision for the latent representations is

formulated as:

Lrecog = 1− cos〈z̃id, zid〉. (8)

where cos〈z̃id, zid〉 is the cosine distance between the com-

pressed and the original identity.

Supervision on the pixel space via ICL

In addition to Lrecog which focuses mainly on the la-

tent representations, we introduce another supervision Licl

that explicitly requires the swapped face to be identity-

discriminative in a contrastive manner.

The intuition behind contrastive learning is to teach a

model to distinguish between similar and dissimilar things.
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Previously, contrastive losses are usually used in face recog-

nition as a max-margin approach for better separating pos-

itive from negative examples [9, 38, 46]. In our case, to

make the swapped faces more identity-discriminative as de-

fined in Section 3.1, we require the generated identities to be

properly distanced from the target. Based on this intuition,

we propose a novel Identity Contrastive Loss (ICL) which

consists of a positive part Lpos to learn from the source

identity, and a negative part Lneg to explore information

from the distance between the source and target identities:

Licl = Lpos + Lneg. (9)

The positive part Lpos requires the identity of Ys,t to be

close to the source in the cosine distance:

Lpos = − cos〈z̃id(Ys,t), z̃id(Xs)〉, (10)

where z̃id(Ys,t) =
∑

fIBi
(Ys,t)/m is the compressed

identity of Ys,t, as defined in Eq. (7).

As for the negative part Lneg , instead of forcing the iden-

tity distance between Ys,t and the target Xt to approach a

constant value 0, we use the angular margin between the

source and target identities to induce a more proper dis-

tance between z̃id(Ys,t) and z̃id(Xt). As illustrated in Sec-

tion 3.1, a discriminative identity should be in a small inter-

val centered around the source identity. Namely, its proper

distance from the target identity should be close to that of

the source identity. Thus, we use the cosine distance be-

tween source and target identities as a better constraint for

the generated identity:

Lneg = [cos〈z̃id(Ys,t), z̃id(Xt)〉

− cos〈z̃id(Xs), z̃id(Xt)〉]
2
.

(11)

Based on this contrastive loss Licl, we can provide effective

supervision on the generated identity to make the swapped

face more discriminative.

Therefore, the total IB objective function is:

LIB = Linfo + β(Lrecog + Licl). (12)

By minimizing LIB , the values of λi in areas efficiently

informative about the identity will be close to 1, while in

areas less relevant to identity will be compressed near 0.

Thus representations can get properly disentangled based

on these controllers λ1, λ2, · · · , λm.

3.3. Adaptive Information Integration

After the disentanglement process, IIB provides two out-

puts: the compressed identity z̃id(Xs) as defined in Eq. (7),

and the perceptual features which are identity-irrelevant.

We define the perceptual features of Xt as:

f t
i = λt

iε
s
i + (1− λt

i)R
t
i, (13)

multiple as F t = {f t
1, f

t
2, · · · , f

t
m}, and λt

i is the informa-

tion controller defined in Eq. (3). Note that the controller λt
i

is used in the way opposite to Eq. (4), since for the target,

the information we need is in the areas not relevant to iden-

tity. Here the mean and std. of the noise are the same with

Rs
i instead of Rt

i , i.e. εsi ∼ N (µRs
i
, σ2

Rs
i
), for latterly better

integrating with the source identity.

Since the information in Ri is disentangled via the infor-

mation controllers, it is natural to use the controllers again

for re-integration. Therefore, we propose a novel Adap-

tive Information Integrator (AII) with a new set of infor-

mation integrators Λt = {Λt
1,Λ

t
2, · · · ,Λ

t
m}, to guide the

integration based on the controllers λ̃t
i which already learnt

the identity-relevance of each area in f̃ t
i , measured by the

amount of mutual information in bits.

As shown in Fig. 2(b), to get rid of the size of features

in the pre-trained network and flexibly generate higher res-

olution images such as 512×512 and 1024×1024, we first

use a U-Net decoder dec(·) to extend the spacial size of the

perceptual feature f t
i and controller λt

i, defined as:

f̃ t
i = dec(f t

i ) and λ̃t
i = dec(λt

i), (14)

multiple as F̃ t = {f̃ t
1, · · · , f̃

t
m} and λ̃t = {λ̃t

1, · · · , λ̃
t
m}.

Then following AdaIN [18, 34], we use the affine param-

eters from z̃sid and f̃ t
i to normalize the internal activation

in AII , defined as Isi and P t
i respectively referring to the

identity and perceptual activation. After that, the integra-

tion process based on the integrator Λt
i is formulated as:

hi
aii = Λt

i · I
s
i + (1− Λt

i) ·A
t
i,

Λt
i = Tθi(λ̃

t
i, h

i+1
aii ) ∈ [0, 1],

(15)

where Tθi is a parametric function (one convolution layer

with sigmoid activation) for the i-th feature level. hi+1
aii is

the output activation of the previous level, hm+1
aii = z̃sid. The

final result Ys,t is generated from the last activation h1
aii.

Since the integrator Λt
i is learned based on the amount

of mutual information each feature area contains about the

identity, this new integration formula makes more sense

than integrating based on the former activation hi+1
aii alone.

We demonstrate this by an ablation test in Section 4.3.

3.4. Training Losses

Adversarial Loss: To make the swapped face Ys,t more re-

alistic, we employ a multi-scale discriminator D from [34]

to train our model in an adversarial way, and adopt the rela-

tivistic adversarial loss from [20]:

LG
adv = −E(Xs,Ys,t)[log(σ(D(Ys,t)−D(Xs)))],

LD
adv = −E(Xs,Ys,t)[log(σ(D(Xs)−D(Ys,t)))],

(16)

where σ(·) denotes the sigmoid activation. The total adver-

sarial loss is formulated as Ladv = LG
adv + LD

adv .

Perceptual Loss: Given the swapped result Ys,t, we further

use the pre-trained network to extract its perceptual features

in the same way as Eq. (13) and (14):

f̃i(Ys,t) = dec(λ
Ys,t

i εsi + (1− λ
Ys,t

i )R
Ys,t

i ), (17)

where the superscript Ys,t means the corresponding vari-

ables of Ys,t. We define the multi-level perceptual loss, i.e.

L2 loss between the target perceptual features and Ys,t as:

Lper =
1

m

m∑

i=1

[f̃i(Ys,t)− f̃ t
i ]

2
. (18)
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Cycle-consistency Loss: Additionally, we adopt a cycle-

consistency loss Lcyc to further improve the preservation of

the source identity. In specific, we use the compressed iden-

tity of Ys,t and the disentangled perceptual features of Xs to

reconstruct the source image. We define the information in-

tegration process in AII as a generating function g(∗), then

the reconstructed source can be formulated as:

X̂s = g(z̃id(Ys,t), F̃
s, λ̃s), (19)

where F̃ s and λ̃s are the decoded perceptual features and

controllers of Xs. Based on this, we define Lcyc as the L-1

distance between Xs and its reconstruction X̂s:

Lcyc = ‖Xs − X̂s‖1. (20)

Total Objective for InfoSwap: In summary, the final ob-

jective function for training InfoSwap is given by:

Lobj. = LIB + β1Ladv + β2Lper + β3Lcyc, (21)

where β1, β2, β3 are hyper parameters.

4. Experiments

In this section, we first generally compare our method

with several state-of-the-art methods using quantitative and

qualitative metrics. Then, we further evaluate the perfor-

mance of these methods on generating discriminative iden-

tities. After that, we analyze the impact of the proposed

IB optimization on our method. We also report an ablation

study to quantify the improvement brought by each compo-

nent of InfoSwap. We start with implementation details.

During training, the internal features are extracted from

the first 10 layers of the pre-trained network [10], i.e.

m = 10, as these features are spatially larger. Accord-

ingly, IIB consists of 10 information bottlenecks IB =
{IB1, IB2, · · · , IB10}, and AII contains 10 integrating

layers (Eq. (15)). The pre-trained network is not involved in

updates, and other parts are trained end-to-end according to

the total objective Lobj. (Eq. (21)). The images used for the

training are from the FFHQ [22] and the CelebA-HQ [21]

datasets, with an initial resolution of 1024 pixels. We align

these images by facial landmarks [49] and crop them to

512 × 512. The final training set consists of 96000 images

after pre-processing, with the other 4000 images used for

the test set. For more details on architecture and training

strategies, please refer to the supplementary material.

4.1. Quantitative and Qualitative Results

In this subsection, we present quantitative and qualitative

comparisons between InfoSwap and state-of-the-art meth-

ods on the preservation of source identities, target poses and

expressions. The experiments are conducted on the Face-

Forensics++ (FF++) datasets [35].

Quantitative Results: We first use three quantitative met-

rics to evaluate the swapping performance of each method.

For Deepfakes [1], FaceSwap [25] and FaceShifter [26]

which provide their manipulated videos in FF++, we evenly

extract 10 frames from each video and build a test set of size

method ID retrieval↑ pose↓ expression↓
FSGAN [32] 60.41 0.626 0.028

Deepfakes [1] 81.96 1.092 0.114

FaceSwap [25] 54.19 0.488 0.029

DiscoFaceGAN[11] 93.12 1.197 0.159

FaceShifter [26] 97.38 0.511 0.032

InfoSwap 99.67 0.443 0.030

Table 1. General comparisons with SOTA methods. ↑: the higher

the better; ↓: the lower the better. Values underlined are from [26],

others are computed following the same protocol.

10k for each method following the same protocol with [26].

As for FSGAN [32], DiscoFaceGAN [11] and our method,

the test sets of the equal size are generated using the same

source-to-target pairs as the others. As shown in Tab. 1,

the ID retrieval (%) is the mean accuracy of a classifi-

cation among swapped faces and all FF++ original faces

used to measure the identity preservation. Following the

same testing protocol with [26], we use the face recognition

model [46] to extract the identity embeddings. For each

swapped face, we find out the nearest identity (on cosine

distance) in all original faces and check whether it belongs

to the correct source. The results show that our method has

better performance on identity preservation.

The pose and expression reported in Tab. 1 are the mean

square error between the swapped faces and the correspond-

ing targets, measuring the preservation of target perceptual

information. Since the estimation models used in [26] are

not available by now, we use another 3D face alignment

model [15] to estimate the pose and expression parameters.

The results demonstrate that our method is comparable to

other methods in preserving perceptual information. The

expression errors of FSGAN [32] and FaceSwap [25] are

slightly lower than ours, probably due to their strategy of

only generating the inner face regions and swapping them

to the target face by blending. However, such a strategy

could cause the problem of blending inconsistency.

Qualitative Results: (I) Results on FF++. As shown

in Fig. 1, we compare our results with Deepfakes [1],

FaceSwap [25], and the latest work FaceShifter [26] on pre-

serving various identity traits of the source, including face

shape, eyes color, cheekbone shape, skin type, baby fat, and

chin length. The comparisons are based on the test data

provided by FF++. We can see that results produced by our

method share these identity traits with the source much bet-

ter than other methods. This demonstrates the strong ability

of our method to better preserve source identity and make

the generated identities more discriminative. (II) Results

on the test set of FFHQ and CelebA-HQ. We present more

test results in Fig. 4, which demonstrate the strong per-

formance of InfoSwap on producing high-quality swapped

faces across large gaps between different genders, ages, skin

colors, and lighting conditions. More swapped results are

provided in the supplementary material.
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Figure 4. More test results swapped by InfoSwap across large gaps in genders, ages, skin colors and lighting conditions.

User Evaluation: We conduct a user survey to evaluate the

performance of each method concerning preserving source

identity and target perception. For each user, we randomly

sample 30 source-to-target pairs of faces (frames) from all

1000 FF++ videos without duplication. Users are asked to

select from the 4 results (produced by 4 methods using each

pair), the one: (i) most identical to the source face; (ii) with

the most similar expression and posture to target; (iii) looks

most realistic. The results reported in Tab. 2 are based on

the answers from 50 users, showing that our method signif-

icantly outperforms others in all three aspects.

method Identity Perception Fidelity

Deepfakes [1] 0.131 0.052 0.026

FaceSwap [25] 0.120 0.244 0.050

FaceShifter [26] 0.238 0.267 0.246

InfoSwap 0.511 0.437 0.678

Table 2. User Study. Percentage of each method being selected.

4.2. Identity Preserving Evaluation
In this subsection, we provide a detailed comparison of

identity preserving. We demonstrate that identities gener-

ated by InfoSwap are more discriminative by providing sta-

tistical analyses on their similarities to the source and target.

As shown in Tab. 3, we calculate the cosine similarities

of identities generated by InfoSwap and four SOTA meth-

ods. The second column shows the mean and std. of the

similarities between fake identities and the source identi-

ties, while the third column shows the values with the tar-

get, and the last row shows the values between the source

and the target. Fig. 5 is the visualization of this table.

It is obvious that comparing with other methods, most

of the similarities between InfoSwap identities and source

identities (the fifth red box in Fig. 5) are higher than others.

method
with source with target

mean std. mean std.

FSGAN [32] 0.3874 0.1722 0.3478 0.1444

Deepfakes [1] 0.4784 0.1398 0.2666 0.1287

FaceSwap [25] 0.4328 0.1409 0.3236 0.1274

FaceShifter [26] 0.5295 0.1418 0.3108 0.1418

InfoSwap 0.6332 0.0983 0.0770 0.1035

source with target 0.0669 0.1025

Table 3. Cosine similarities of identities. The test sets are ex-

panded to 100k frames (100 frames per video) to better display

the distribution since the variability of each sampling distribution

decreases as the sample sizes increase.

Figure 5. Comparisons with SOTA methods on cosine similarities

of identities. The mean similarity of InfoSwap to the source is

higher than others, while its mean similarity to the target is much

closer to the level between source and target. The narrower boxes

of InfoSwap also indicate its superiority in robustness.

While the similarities to the target identities (the fifth blue

box) are at a much lower level that very close to the simi-

larities between source and target (the green box). Also, the

narrower intervals (box length) of InfoSwap indicate that

our method is more robust than other methods.

More importantly, there are zero overlaps between the
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two estimated intervals of InfoSwap (the fifth pair of red and

blue boxes), which is not observed in other methods. The

zero overlap directly indicates that our generated identities

are more discriminative, as mentioned in Section 3.1. Ex-

perimental results on FF++ show that, similarities between

the target and the identities generated by InfoSwap are of

97.61% falling into the range of µs,t ± 3σs,t, shown as the

lightest green belt in Fig. 3(b), 88.57% into µs,t±2σs,t, and

59.44% into µs,t ± σs,t, indicating that InfoSwap is power-

ful in generating highly discriminative identities.

4.3. Analysis of Components

In this subsection, we start by visualizing the informa-

tion varied in the internal features of the pre-trained model

with and without the informative optimization, showing the

impact of inserting IIB directly.

Visualization of IIB Optimization: Fig. 6 shows the in-

formation contained in the first 8 intermediate feature maps

of the pre-trained model with and without the optimization

by IIB (i.e. Zi and Ri). We can see that in the original

uncompressed features Ri (Fig. 6 (a)), the information is

scattered. Some areas outside the face are regarded as in-

formatively important (e.g. the red areas in the hair), which

are indeed less relevant to identity. While after the IIB opti-

mization (Fig. 6 (b)), the dispersed information is properly

compressed so that in all Zi, areas considered informatively

efficient are concentrated on the face, which well demon-

strates the power of IIB in facilitating disentanglement.

Figure 6. Visualization of information variation in feature maps.

Explanation to Generated Face Shape: As the former

mentioned, the face shape of the results from InfoSwap is

observed to be closer to the source rather than the target.

This may benefit from better disentanglement. During the

optimization in IIB, the shape information of the source face

is learned to be relevant and allowed to pass through the

bottleneck, thus retained in the compressed source identity

to join in the generation. On the other hand, the shape in-

formation of the target face is excluded from the identity-

irrelevant perceptual representations and hence is not in-

volved in the generation. This may also suggest that the

face recognition model [10] in use is sensitive to the shape

information.

Ablation Study: We further perform an ablation study on

FF++ with three configurations of InfoSwap: (i) removing

the IIB module (w/o IIB); (ii) replacing the ICL by conven-

tional identity loss (measures the cosine distance between

the fake and the source identity) (w/o ICL); (iii) discarding

method
Cosine Similarity

Acc.
with source ↑ with target ↓

InfoSwap 0.633 ± 0.098 0.077 ± 0.104 99.7

InfoSwap w/o IIB 0.529 ± 0.118 0.119 ± 0.116 96.3

InfoSwap w/o ICL 0.544 ± 0.111 0.244 ± 0.118 97.9

InfoSwap w/o λ̃t
i 0.550 ± 0.110 0.096 ± 0.111 98.5

Table 4. Ablation results. Acc.: ID retrieval (%) ↑

the controller λ̃t
i in Eq. (15) to integrate the activation Isi

and At
i only based on the former layer output hi+1

aii (w/o λ̃t
i).

We calculate the main metrics introduced above to measure

the effect of each component. As shown in Tab. 4, the mean

similarity to the source drops significantly (greater than one

std.) in all three configurations, with “w/o IIB” declining

the most and ending up with the lowest value on the ID

retrieval. The similarity to the target increases obviously

when replacing ICL with conventional identity loss, indi-

cating that the swapped faces become less distinct from the

target. Discarding information controllers λ̃t
i in integration

also degrades the performance. More qualitative results of

the ablation experiments please refer to the supplementary.

5. Conclusions
In this paper, we have presented InfoSwap for learning

well-disentangled representations. By modeling the learn-

ing process as finding an optimal compression of the pre-

trained latent features based on the information bottleneck

principle, the extracted representations for identity and per-

ceptual information are efficiently disentangled. We extend

the IB objectives with the intuition of contrastive learning

and enable us to generate identity-discriminative swapped

faces. Extensive experiments demonstrate the superiority

of InfoSwap in subject-agnostic face swapping, which is an

encouraging development for building new benchmarks to

improve the performance of data-driven forgery detectors.

6. Broader Impact
Deepfakes, synthetic media that replace a person in an

existing image or video with the appearance of someone

else, have been in the spotlight since they first appeared.

Empowered by it, film-making, computer games, and other

mixed realities are about to see a breakthrough. Yet it also

sparks serious problems in privacy protection if misused.

Identity swapping, the concern of this paper, is one of the

main methods for manipulating the appearances of face im-

ages. Given such potentially negative impacts, several face

forgery detection technologies have recently been proposed

to prevent the misuse of Deepfakes. We will further discuss

such impacts as well as the corresponding solution regard-

ing our work in the supplementary.
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